

M. Štěpnička¹, U. Bodenhofer², M. Daňková¹, V. Novák¹

Institute for Research and Applications of Fuzzy Modeling¹ University of Ostrava, Czech Republic

> Institute of Bioinformatics² Johannes Kepler University Linz, Austria

> > ・ロト・日本・モト・モト モ

IRAFM in 2008	Introduction	Preliminaries	Results	Conclusions
Outline				

- Introduction
- 3 Preliminaries
- 4 Results
- 5 Conclusions

Goals and activities

1. Approximate reasoning and fuzzy approximation

- Applications of fuzzy logic in broader sense: fuzzy quantifiers, deduction, syllogisms, fuzzy inference systems (Novák, Perfilieva, Dvořák, Štěpnička, Pavliska, Daňková)
- e Higher order fuzzy logics: interpretations and properties of a fragment of logic in models based on Ω-sets (Močkoř)
- Fuzzy relation equations, algorithm of recognition of linearly dependent and independent vectors in semi-linear spaces (Perfilieva, Štěpnička, Kupka)
- Use of fuzzy transforms: numerical methods for differential equations and other applications (Perfilieva, Štěpnička)

Goals and activities

2. Combination of stochastic and fuzzy models

- Mining linguistic associations from data (Novák, Dvořák, Perfilieva, Kupka)
- Soft computing methods in image processing (Perfilieva.) Pavliska, Vajgl, Daňková)
- Soft computing methods for time series analysis (Perfilieva.) Novák, Dvořák, Pavliska, Štěpnička)

IDAEM

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

3. Fuzzy modeling of complex processes

Development of the LFLC software package and co-operating applications (Pavliska, Dvořák, Huňka)

Implicational Interpretation - Continuity Issue

Goal

1. Approximate reasoning and fuzzy approximation

Activity

Applications of fuzzy logic in broader sense: fuzzy quantifiers, deduction, syllogisms, fuzzy inference systems

IRAFM in 2008	Introduction	Preliminaries	Results	Conclusions
Outline				

4 Results

$$\mathcal{R} := \mathsf{IF} x \text{ is } \mathcal{A} \mathsf{THEN} y \mathsf{ is } \mathcal{B}$$
(1)

... usually, we have a finite set of them

$$\mathcal{R} = \{\mathcal{R}_1, \dots, \mathcal{R}_n\}$$
(2)

and we talk about the so called *linguistic description* (or a *fuzzy rule base*)

Usually so called **Relational Interpretation** is considered:

- Sets X and Y are inupt/output universes, respectively
- 2 Linguistic expressions A, B are interpreted by fuzzy sets $A \in \mathcal{F}(X)$ and $B \in \mathcal{F}(Y)$, respectively
- Solution Solution
- 3 Linguistic description \mathcal{R} is interpreted by a fuzzy relation $R \in \mathcal{F}(X \times Y)$ involving fuzzy relations R_i

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

In case of the *relational interpretation* the inference is usually modelled as an image of a fuzzy set under a fuzzy relation:

$$B' = A' \circ R$$

 $A' \in \mathcal{F}(X)$ - fuzzy input

 $B' \in \mathcal{F}(Y)$ - fuzzy output, deduced by the inference \circ with help of the relational interpretation R

Each appropriate inference has the property that in case of a crisp input $x' \in X$ the output B' is deduced based ONLY on the fuzzy relation R:

$$B'(y)=R(x',y)$$

(□) (@) (E) (E) (E)

Two main interpretations

DNF (Mamdani-Assilian interpretation)

$$\check{R}(x,y) = \bigvee_{i=1}^{n} (A_i(x) * B_i(y))$$

CNF (Implicational interpretation)

$$\hat{R}(x,y) = \bigwedge_{i=1}^{n} (A_i(x) \to B_i(y))$$

< □ > < □ > < □ > < □ > < □ > < □ >

- There is no significant difference between CNF and DNF interpretations (from the practical point of view)
- DNF is widely applied while CNF is ignored
- To each continuous and piecewise monotonous function *f* : *X* → *Y* there exists *Â* and an appropriate defuzzification DEF such that DEF_Y(*Â*(*x*, ·)) = *f*(*x*) for each *x* ∈ *X*

... strange reasons and arguments for the ignorance

Consistent linguistic description:

- contains no conflict in rules
- ... no rules with the same (or similar) antecedents and contradictory consequents

Inconsistent linguistic description

IF obstacle is left OR front THEN bypass is right IF obstacle is right OR front THEN bypass is left.

D. Dubois, H. Prade: CNF interpretation of inconsistent linguistic description **lowers** the largest membership degree.

Consistency of a linguistic description defined via so called coherence.

Coherence

 $\hat{R} \in \mathcal{F}(X \times Y)$ - interpretation of linguistic description (2). \hat{R} is *coherent* if to each $x \in X$ there exists $y \in Y$ such that

$$\hat{R}(x,y) = 1$$

. .

Coherence: $Core(\hat{R}(x, \cdot))$ is non-empty!

Fix x, the set of $y \in Y$ such that $A_i(x) \to B_i(y) = 1$ is the set y such that

$$A_i(x) \leq B_i(y),$$

i.e., the set of those outputs which fully satisfy the *i*-th rule. The higher $A_i(x)$, the narrower is the set of such y

For a given $x \in X$, $\operatorname{Core}(\hat{R}(x, \cdot)) \neq \emptyset$ is

$$\bigcap_{i=1}^n \{y \mid A_i(x) \to B_i(y) = 1\} \neq \emptyset.$$

There has to be $y \in Y$ fully satisfying all rules.

Coherence (D. Dubois, H. Prade)

For all $x' \in X$ there exists $y \in Y$ such that R(x', y) = 1

Figure from D. Dubois, H. Prade and L. Ughetto - IEEE '97

Preliminaries

Results

Conclusions

Coherence = consistency

Incoherent rule base

・ロット 御マ キョマ キョン

Coherence - remarks

Note:

- Coherence of can be easily checked or even fulfilled in advance when constructing a linguistic description (see D. Dubois, H. Prade, L. Ughetto, D. Coufal)
- The construction of the coherence explains, why the MOM defuzzification is applied when dealing with CNF (averages only nodes with maximal equal to 1 values)
- If \tilde{R} , the coherence as defined above is inappropriate
- D. Coufal proposed a coherence index for Ř based on the convexity, but it is not that easy to check

IRAFM in 2008	Introduction	Preliminaries	Results	Conclusions
Outline				

Introduction

4 Results

5 Conclusions

Basic definitions and notations

$$\mathcal{L} = \langle [0, 1], \lor, \land, *, \rightarrow, 0, 1 \rangle \tag{3}$$

ヘロト ヘ回ト ヘヨト ヘヨト

3

X be a compact subset of real numbers \mathbb{R}^m

Let
$$A \in \mathcal{F}(X)$$
 and $\alpha \in [0, 1]$. Then
height(A) = sup{ $A(x) \mid x \in X$ },
Core(A) = { $x \mid A(x) = 1$ },
Supp(A) = { $x \mid A(x) > 0$ },
Ceil(A) = { $x \mid A(x) = \text{height}(A)$ },
[A] $_{\alpha} = {x \mid A(x) \ge \alpha}$.

Convexity

 $A \in \mathcal{F}(X)$ is convex if

$$A(\lambda x_1 + (1 - \lambda)x_2) \ge A(x_1) \land A(x_2), \quad \lambda \in [0, 1], \ x_1, x_2 \in X$$

Strict convexity

 $A \subset U$ is strictly convex if

 $A(\lambda x_1 + (1-\lambda)x_2) > A(x_1) \land A(x_2), \quad \lambda \in (0,1), x_1, x_2 \in Supp(A),$

and $x_1, x_2 \notin Core(A)$

... removes constant parts excepting the core and the support

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

(i) Let $Ceil(A) \neq \emptyset$. Then the *mean of maxima* of A is a function

$$\mathrm{MOM}_{X}(A) = \begin{cases} \frac{\sum_{x \in \mathrm{Ceil}(A)} x}{|\mathrm{Ceil}(A)|} & \text{if } \int_{\mathrm{Ceil}(A)} 1 \ dx = 0, \\ \frac{\int_{\mathrm{Ceil}(A)} x \ dx}{\int_{\mathrm{Ceil}(A)} 1 \ dx} & \text{otherwise.} \end{cases}$$

(ii) Let $\int_X A(x) dx > 0$. Then the *center of gravity* of A is a function

$$\operatorname{COG}_X(A) = \frac{\int_X x \cdot A(x) \, dx}{\int_X A(x) \, dx}.$$

General setting and notations

For all further consideration,

we assume:

- $X \subset \mathbb{R}^m$ and $Y \subset \mathbb{R}$
- $(X, \|\cdot\|)$ and $(Y, |\cdot|)$ are compact normed spaced
- i.e. X is a compact set on \mathbb{R}^m and Y is a closed interval
- ∂C denotes the boundary of an arbitrary set C and C
 denotes the closure of the set C, in a given normed spaces

General setting and notations

Let \hat{R} be coherent and let $\hat{R}_i \in \mathcal{F}(X \times Y)$ be given by

$$\hat{R}_i(x,y) = A_i(x) \rightarrow B_i(y).$$

Then functions $I\hat{R}_i, S\hat{R}_i, I\hat{R}, S\hat{R}, M\hat{R} : X \to Y$ are defined as follows

$$I\hat{R}_{i}(x) = \inf Core(\hat{R}_{i}(x, \cdot)), \qquad (4)$$

$$S\hat{R}_i(x) = \sup Core(\hat{R}_i(x, \cdot)),$$
 (5)

$$I\hat{R}(x) = \inf \operatorname{Core}(\hat{R}(x, \cdot)), \qquad (6)$$

$$S\hat{R}(x) = \sup \operatorname{Core}(\hat{R}(x, \cdot)),$$
 (7)

$$M\hat{R}(x) = \frac{I\hat{R}(x) + S\hat{R}(x)}{2}.$$
(8)

Coherence = consistency

Functions defined above

IRAFM in 2008	Introduction	Preliminaries	Results	Conclusions
Outline				

Introduction

Ruxinary result

Lemma 1

 $B_i \in \mathcal{F}(Y), i = 1, \ldots, n$ be normal and convex.

Then for all $x \in X$ and arbitrary $\alpha \in [0, 1]$, either $[\hat{R}(x, \cdot)]_{\alpha} = \emptyset$ or it is a closed interval.

Corollary 1

Assumptions of Lemma 1 hold.

Then

$$\mathrm{MOM}_Y(\hat{R}(x,\cdot))=\mathrm{M}\hat{R}(x), \quad x\in X.$$

(9)

 focus restricted to coherent f. relations based on convex and normal consequent fuzzy sets ⇒ defuzzified output is only the arithmetic mean of inf and sup of the Core

Fact

Assumptions of Lemma 1 hold and $I\hat{R}$, $S\hat{R}$ are continuous.

Then the defuzzified output $MOM_Y(\hat{R}(x, \cdot))$ is a continuous function too.

Let us restrict our focus to:

 continuous normal consequent fuzzy sets B_i that are strictly convex (membership functions are continuous and strictly monotone to the left and to the right of Core(B_i)).

It means that in the rest of the presentation, we will consider:

$$B_i(y) = \begin{cases} B_i^L(y) & \text{if } y \in (\inf(\operatorname{Supp}(B_i)), b_i^L], \\ 1 & \text{if } y \in (b_i^L, b_i^R), \\ B_i^R(y) & \text{if } y \in [b_i^R, \operatorname{Sup}(\operatorname{Supp}(B_i))), \end{cases}$$

Lemma 2

Let $A_i \in \mathcal{F}(X)$, i = 1, ..., n be continuous. Let $B_i \in \mathcal{F}(Y)$ be continuous, normal and strictly convex. Let \hat{R} be coherent.

Then each function $I\hat{R}_i$ and $S\hat{R}_i$ is continuous for all

 $x \in X \setminus \partial(\operatorname{Supp}(A_i)).$

Strict convexity plays an essential role in the proof.

Theorem 1

Let $A_i \in \mathcal{F}(X)$, i = 1, ..., n be continuous. Let $B_i \in \mathcal{F}(Y)$ be continuous, normal and strictly convex. Let \hat{R} be coherent. Then functions I \hat{R} and S \hat{R} are continuous for all

$$x \in X \setminus \bigcup_{i=1}^n \partial(\operatorname{Supp}(A_i)).$$

Corollary 2

Assumptions of Theorem 1 hold. Let $\text{Supp}(A_i) = X$ for all i = 1, ..., n.

Then the defuzzified output $MOM_Y(\hat{R}(x, \cdot))$ is a continuous function on *X*.

Alternative approach

Previous results - removing points of possible discontinuities

Remark

The combination of the Ruspinin condition

$$\sum_{i=1}^n A_i(x) = 1, \quad \forall x \in X$$

and the normality of antecedents A_i is a common requirement but also of a high theoretical and practical importance (interpolation).

Alternative approach aiming at the output axis *Y* should be investigated.

Alternative approach

Lemma 3

Assumptions of Lemma 2 hold (A_i - continuous; B_i - continuous, normal and strictly convex; \hat{R} - coherent) and $\overline{\text{Supp}(B_i)} = Y$. Then functions I \hat{R}_i and S \hat{R}_i are continuous on X for all

i = 1, ..., n.

Corollary 3

With the assumptions of Lemma 3

the defuzzified output $MOM_Y(\hat{R}(x, \cdot))$ is a continuous function.

Criterion for continuity of $I\hat{R}_i$ and $S\hat{R}_i$

Lemma 4

Assumptions of Lemma 2 hold (A_i - continuous; B_i - continuous, normal and strictly convex; \hat{R} - coherent)

Functions $I\hat{R}_i$ and $S\hat{R}_i$ are continuous **if and only if** at least one of the following conditions is fulfilled:

$$I Supp(A_i) = X$$

$$I \overline{\operatorname{Supp}(B_i)} = Y$$

Sufficient for continuity of $I\hat{R}$ and $S\hat{R}$

Corollary 4

Assumptions of Lemma 2 hold (A_i - continuous; B_i - continuous, normal and strictly convex; \hat{R} - coherent)

If for all i = 1, ..., n at least one of the following conditions is fulfilled:

$$I Supp(A_i) = X,$$

then the defuzzified output $MOM_Y(\hat{R}(x, \cdot))$ is a continuous function.

- Lemma 4 specified the necessary and sufficient conditions for the continuity of functions IR_{*i*} and SR_{*i*}.
- Corollary 4 stated the sufficient ones for the continuity of functions IR and SR.
- Specification of necessary and sufficient conditions for the continuity of IR and SR is more complicated. (Continuity of IR_i and SR_i is not needed.)

Theorem 2

Assumptions of Lemma 2 hold (A_i - continuous; B_i - continuous, normal and strictly convex; \hat{R} - coherent)

Functions I \hat{R} and S \hat{R} are continuous **if and only if** for all i = 1, ..., n at least one of the following conditions is fulfilled:

... to be continued

Theorem 2 ... continuation

... necessary and sufficient conditions

$$I Supp(A_i) = X,$$

- for all x ∈ ∂(Supp(A_i)) there exist k, ℓ ∈ {1,...,n} and there exists an ε > 0 open neighborhood of x (denoted by U_ε(x)) that

$$\mathrm{I}\hat{\mathrm{R}}_k(x')\geq \mathrm{I}\hat{\mathrm{R}}_i(x'), \quad x'\in\mathcal{U}_arepsilon(x)$$

and

$$\mathrm{S}\hat{\mathrm{R}}_\ell(x')\leq \mathrm{S}\hat{\mathrm{R}}_i(x'), \quad x'\in \mathcal{U}_arepsilon(x).$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

Results

- Theorem 2 specifies necessary and sufficient conditions for the continuity of IR and SR
- Obviously, these are only sufficient for the continuity of MOM_Y(R̂(x, ·))
- However, we have a clear idea, how to ensure the continuity based on practical sufficient conditions (specified by corollaries)

IRAFM in 2008	Introduction	Preliminaries	Results	Conclusions
Outline				

Introduction

3 Preliminaries

4 Results

Coherence

- useful property imposing the consistency of a linguistic description
- helps us to solve the continuity issue after the MOM defuzzification
- output after defuzzification is independent on the chosen residuation \rightarrow
- cannot be as easily defined and checked for the DNF as it is possible for the CNF

DNF and CNF

- DNF and CNF keep the same practical properties
- CNF is for real applications ignored
- most of the arguments against CNF are not correct and have been controverted (FUZZ-IEEE'07)
- continuity of the defuzzified output was among often repeated arguments for advantage of DNF

But...

Continuity

- automatic continuity of DNF + COG might be dangerous (in case of inconsistent rules)
- due to the coherence, consistency can be easily handled for CNF
- in case of coherent \hat{R} , the continuity can be enforced
- strict convex fuzzy sets with unlimited supports played a crucial role

IRAFM in 2008	Introduction	Preliminaries	Results	Conclusions
Thanksgi	ving			

Thanksgiving Thank You for Your Attention!

