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Description of System

xk+1 = fk(xk ,uk) +wk , k = 0, 1, 2, . . .

zk = hk(xk) + vk , k = 0, 1, 2, . . .

Filtering

The aim of the filtering is to find probability density function (pdf)
of the state xk conditioned by the measurements
zk = [z0, z1, . . . , zk ].

p(xk |zk) =?
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Solution of Filtering Problem
Bayesian Recursive Relations (BRR’s)

The solution of filtering problem is given by the BRR’s

p(xk |zk) =
p(xk |zk−1)p(zk |xk)∫
p(xk |zk−1)p(zk |xk)dxk

,

p(xk+1|zk) =
∫
p(xk |zk)p(xk+1|xk)dxk ,

where p(x0|z−1) = p(x0).

Solution of BRR’s
exact solution
approximative solution

local methods
global methods
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Local methods
Global methods

Characteristic of Local Methods
The local methods are based on the suitable approximation of the
system description so that the technique of Kalman Filter can be used
in the area of nonlinear systems.

Advantage and Disadvantage
Advantage is

simplicity of the solution of
the BRR’s.

Disadvantage is

impossibility to ensure the
convergence of the state
estimate.

Approaches in Local Estimation
Standard approach, e.g.

Extended Kalman Filter,
Second Order Filter

New derivative-free
approach, e.g.

Unscented Kalman Filter,
Divide Difference Filter
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Transformation of Random Variable
The basic feature of local filter is the way of transformation of
random variable through the nonlinear function.

Consider the random variables x, y which are related through
nonlinear function y = g(x).
The random variable x is given by first two moments, i.e. by

mean x̄
and covariance matrix Px .

The aim is to compute characteristics of random variable y,
i.e.

mean ȳ = E [y],
covariance matrix Py = E [(y − ȳ)(y − ȳ)T ]
and cross-covariance matrix Pxy = E [(x− x̄)(y − ȳ)T ].
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Unscented Transformation

The random variable x is approximated by the set of
deterministically chosen weighted points (so called
σ-points). The σ-point set computation is given

X0 = x̄,W0 = κ
nx+κ ,

Xi = x̄+ (
√
(nx + κ)Px)i , i = 1, . . . , nx ,

Xj = x̄− (
√
(nx + κ)Px)j−nx , j = nx + 1, . . . , 2nx ,

where Wi =Wj = 1
2(nx+κ) ,∀i , j .

Set of σ-points are transformed through the nonlinear
function, i.e.

Yi = g(Xi ),∀i .
Desired characteristics are computed according to

ȳ = E [y] ≈
∑2nx
i=0WiYi ,

Py = E [(y− ȳ)(y− ȳ)T ] ≈
∑2nx
i=0Wi (Yi − ȳ)(Yi − ȳ)T ,

Pxy = E [(x−x̄)(y−ȳ)T ] ≈
∑2nx
i=0Wi (Xi−x̄)(Yi−ȳ)T .
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Local methods
Global methods

Unscented Kalman Filter
Initialization: Initial condition is assumed p(x0|z−1) = N{x0 : x̂

′
0,P

′
0}.

Computation of predictive σ-point set {Xi ,k|k−1}, {Wi} from x̂
′
k , P

′
k .

Filtering step:
Predictive σ-points are transformed, i.e. Zi,k|k−1 = hk(Xi,k|k−1), ∀i .
The characteristics of the predictive measurement estimate, i.e. ẑ

′

k , P
′

z,k ,
and the cross-covariance matrix P

′

xz,k are calculated from the sets
{Xi,k|k−1} and {Zi,k|k−1}.
The computation of the filtering mean and covariance matrix is performed:

x̂k = x̂
′
k + P

′
xz,kP

′−1
z,k (zk − ẑ

′
k),

Pk = P
′
k − P

′
xz,kP

′−1
z,k P

′T
xz,k .

Computation of filtering σ-point set {Xi ,k|k} from x̂k , Pk .
Prediction step:

Filtering σ-points are transformed, i.e. Xi,k+1|k = fk(Xi,k|k), ∀i .
The predictive mean x̂

′

k+1 and covariance matrix P
′

k+1 is calculated
from the set of σ-points {Xi,k+1|k}.
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Local methods
Global methods

Characteristic of Global Methods
The global methods are mainly based on an appropriate approximation
of the description of the pdf’s.

Advantage and Disadvantage
Advantage is

certain convergence of the
state estimate.

Disadvantage is

growth of computational
demands towards local
methods.

Approaches in Global Estimation
Analytical approach, e.g.

Gaussian Sum Filter

Numerical approach, e.g.

Point-Mass Filter

Simulation approach, e.g.

Particle Filter
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Disadvantages of Unscented Kalman Filer And Gaussian Sum Filter

Unscented Kalman Filter (UKF)
The square root of state estimate covariance matrix is computed twice
at each time instant for the σ-point set calculation.
The Cholesky decomposition is often used which is quite computational
demanding and numerically unstable matrix operation.

Gaussian Sum Filter (GSF)
For design of the GSF the derivations of nonlinear functions in the state
and measurement equation are desired.

Goals of the Paper

To derive a numerical stable version of the UKF (so called Square
Root UKF (SRUKF)), where the square roots of state estimate
covariance matrixes are directly available.

To apply the SRUKF in the Gaussian sum framework to design
a derivative-free GSF (so called Sigma Point GSF (SPGSF)).
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Design of Square Root Unscented Kalman Filter
Design of Sigma Point Gaussian Sum Filter
Illustration Example

Design of Square Root Unscented Kalman Filter
The computation of means remains without any change.
The relations for computation of predictive covariance
matrixes of the state P

′
k and measurement P

′
z,k can be easily

transformed to square root form.
Consider the UKF relation for the predictive covariance matrix

P
′

k =
2nx∑
i=0

Wi (Xi,k|k−1 − x̂
′

k)(Xi,k|k−1 − x̂′k)T +Qk .

It can be rewritten to the form P
′

k = S
′

kS
′T
k , where

S
′

k = ht([
√
W0(X0,k|k−1−x̂

′

k), . . . ,
√
W2nx (X2nx ,k|k−1−x̂

′

k),SQ,k ]),

ht(·) is Householder triangularization and Qk = SQ,kSTQ,k is
state noise covariance matrix.

The Householder triangularization can be applied to
rectangular matrix M to obtain square matrix N so that the
equality MMT = NNT is fulfilled.
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Design of Square Root Unscented Kalman Filter (cont’d)

Transformation of the UKF relation for the filtering covariance
matrix come out from the relation

Pk = P
′
k − P

′
xz,kP

′−1
z,k P

′T
xz,k .

The square root form of the filtering covariance matrix can be
expressed as

Sk = ht([M
′
x ,k −KkM

′
z,k ,KkSR,k ]),

where Kk =M
′
x ,kM

′T
z,k(S

′
z,kS

′T
z,k)

−1 is Kalman gain,
P
′
z,k = S

′
z,kS

′T
z,k and Rk = SR,kSTR,k is measurement noise

covariance matrix.
Rectangular matrixes M

′
x ,k and M

′T
z,k consist of the predictive

σ-points sets {Xi ,k|k−1} and {Zi ,k|k−1}, respectively.
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Design of Sigma Point Gaussian Sum Filter
Initialization: Initial condition is assumed

p(x0|z−1) =
N0∑
j=1

w (j)k N{x0 : x̂
′(j)
0 ,S

′(j)
0 (S

′(j)
0 )

T}.

Filtering step: Multiple application of the filtering part of
the SRUKF for each pair x̂

′(j)
0 and S

′(j)
0 leads to filtering pdf

p(xk |zk) ≈
Nk∑
j=1

w (j)k N{xk : x̂
(j)
k ,S(j)k (S

(j)
k )
T}.

Number of Gaussians reduction.
Prediction step: Multiple application of the prediction part of
the SRUKF for each pair x̂(j)k and S

(j)
k leads to prediction pdf

p(xk+1|zk) ≈
Nk∑
j=1

w (j)k N{xk+1 : x̂
′(j)
k+1,S

′(j)
k+1(S

′(j)
k+1)

T}.
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System Specification

Nonlinear Non-Gaussian System

xk+1 = 0.5xk + 1+ sin(0.04πk) + wk , k = 0, 1, . . . , 60,

zk =
{
0.2x2k + vk , k ≤ 30,
0.5xk − 2+ vk , k > 30,

where

p(x0|z−1) = p(x0) =
∑5
j=1 0.2×N (x0 : j − 3, 10),

p(wk) = Ga(3, 2) ≈ p̂(wk) = 0.29×N (wk : 2.14, 0.72)+
+ 0.18×N (wk : 7.45, 8.05)+
+ 0.53×N (wk : 4.31, 2.29),∀k,

p(vk) = N (vk : 0, 10−5),∀k.
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Numerical Results
The estimation performance of the Sigma Point Gaussian
Sum Filter (SPGSF) is compared with the “standard”
Gaussian Sum Filter (GSF), with the generic Particle Filter
(PF) and with the Gaussian Mixture Sigma Point Particle
Filter (GMSPPF) in the following table.

Algorithm MSE Time(s)
PF 1.9262 3.28

GMSPPF 0.0156 4.90
GSF 0.0253 0.91
SPGSF 0.0149 2.08

The estimation performance of the Square Root Unscented
Kalman Filter (SRUKF) is naturally the same as the
“standard” Unscented Kalman Filter (UKF). However, the
computational demands of the SRUKF are about 10%
reduced towards the UKF.
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Conclusion Remarks
The problem of nonlinear derivative-free filters was considered.
The square root version of the UKF, called Square Root
Unscented Kalman Filter, was derived

to ensure the positive definiteness of covariance matrixes,
to reduce computational demands.

The derivation technique of the SRUKF can be easily
extended to the all versions of the UKF which differ in σ-point
computation only.

The SRUKF was put into the Gaussian sum framework to
design the derivative-free global Sigma Point Gaussian Sum
Filter.
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