Nuclear Medicine, Treatment of Thyroid Cancer and Mathematical Modelling

Ladislav Jirsa

ÚTIA, Academy of Sciences Praha, Czech Republic

> 9.12.2007 DAR, Liblice

Outline of Talk

Nuclear Medicine

- What is Nuclear Medicine
- Dosimetric Measurement
- Treatment of Thyroid Cancer

2 Modelling Tasks — Examples

- Estimation of Activity
- Estimation of Dose
- Advisory System

3 Conclusions

What is Nuclear Medicine Dosimetric Measurement Treatment of Thyroid Cancer

Nuclear Medicine

- a method for diagnosis, imaging and therapy
- connected with physiology (X-ray etc. shows anatomy)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

What is Nuclear Medicine Dosimetric Measurement Treatment of Thyroid Cancer

Nuclear Medicine

- a method for diagnosis, imaging and therapy
- connected with physiology (X-ray etc. shows anatomy)
- how it works:
 - a substance with radioactive atoms is got into an organism
 - chemically identical behaviour as a non-radioactive one
 - binding to a specific organ, emission of ionizing particles
 - detection of γ-particles: diagnosis, imaging
 - absorption of α or β -particles: targetted destruction

What is Nuclear Medicine Dosimetric Measurement Treatment of Thyroid Cancer

Nuclear Medicine

- a method for diagnosis, imaging and therapy
- connected with physiology (X-ray etc. shows anatomy)
- how it works:
 - a substance with radioactive atoms is got into an organism
 - chemically identical behaviour as a non-radioactive one
 - binding to a specific organ, emission of ionizing particles
 - detection of γ-particles: diagnosis, imaging
 - absorption of α or β -particles: targetted destruction
- low resolution in imaging but valuable information

What is Nuclear Medicine Dosimetric Measurement Treatment of Thyroid Cancer

Nuclear Medicine

- a method for diagnosis, imaging and therapy
- connected with physiology (X-ray etc. shows anatomy)
- how it works:
 - a substance with radioactive atoms is got into an organism
 - chemically identical behaviour as a non-radioactive one
 - binding to a specific organ, emission of ionizing particles
 - detection of γ-particles: diagnosis, imaging
 - absorption of α or β -particles: targetted destruction
- low resolution in imaging but valuable information

What is Nuclear Medicine Dosimetric Measurement Treatment of Thyroid Cancer

Dosimetric Measurement

scintillation probe

 γ -camera (matrix of probes)

・ロト ・四ト ・ヨト ・ヨト

What is Nuclear Medicine Dosimetric Measurement Treatment of Thyroid Cancer

Dosimetric Measurement

scintillation probe

 γ -camera (matrix of probes)

activity — mean number of radioactive changes per second [Bq]

What is Nuclear Medicine Dosimetric Measurement Treatment of Thyroid Cancer

Dosimetric Measurement

scintillation probe

 γ -camera (matrix of probes)

- activity mean number of radioactive changes per second [Bq]
- counts of particles are detected, Poisson random variable

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

What is Nuclear Medicine Dosimetric Measurement Treatment of Thyroid Cancer

Dosimetric Measurement

scintillation probe

 γ -camera (matrix of probes)

- activity mean number of radioactive changes per second [Bq]
- counts of particles are detected, Poisson random variable
- problem of radioactive background if source activity is low

What is Nuclear Medicine Dosimetric Measurement Treatment of Thyroid Cancer

Dosimetric Measurement

scintillation probe

γ-camera (matrix of probes)

- activity mean number of radioactive changes per second [Bq]
- counts of particles are detected, Poisson random variable
- problem of radioactive background if source activity is low
- calibration comparison of counts by standard (known) and measured source (background must be eliminated!)

What is Nuclear Medicine Dosimetric Measurement Treatment of Thyroid Cancer

Dosimetric Measurement

scintillation probe

γ-camera (matrix of probes)

- activity mean number of radioactive changes per second [Bq]
- counts of particles are detected, Poisson random variable
- problem of radioactive background if source activity is low
- calibration comparison of counts by standard (known) and measured source (background must be eliminated!)
- focus on treatment of thyroid diseases

What is Nuclear Medicine Dosimetric Measurement Treatment of Thyroid Cancer

Treatment Schedule after Thyroid Cancer Diagnosis

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Estimation of Activity Estimation of Dose Advisory System

Estimation of Activity: Deterministic Approach

- A = source activity, S = standard activity
- a = source impulses, s = standard impulses (without background)

Estimation of Activity Estimation of Dose Advisory System

Estimation of Activity: Deterministic Approach

- A = source activity, S = standard activity
- a = source impulses, s = standard impulses (without background)
- A = a/c, calibration coefficient c = s/S

Estimation of Activity Estimation of Dose Advisory System

Estimation of Activity: Deterministic Approach

- A = source activity, S = standard activity
- a = source impulses, s = standard impulses (without background)
- A = a/c, calibration coefficient c = s/S
- deterministic estimate A = S a/s

Estimation of Activity Estimation of Dose Advisory System

Estimation of Activity: Deterministic Approach

- A = source activity, S = standard activity
- a = source impulses, s = standard impulses (without background)
- A = a/c, calibration coefficient c = s/S
- deterministic estimate A = S a/s
- precision of this estimate = ?

Estimation of Activity Estimation of Dose Advisory System

Estimation of Activity: Bayesian Approach

• Data:
$$a, s(..n) = (s_1, ..., s_n), S(..n) = (S_1, ..., S_n)$$

< □ > < □ > < □ > < □ > < □ >

Estimation of Activity Estimation of Dose Advisory System

Estimation of Activity: Bayesian Approach

- Data: $a, s(..n) = (s_1, ..., s_n), S(..n) = (S_1, ..., S_n)$
- Model: f(a|c, A, s(..n), S(..n)) = P_a(cA), unknown parameters A, c

Estimation of Activity Estimation of Dose Advisory System

Estimation of Activity: Bayesian Approach

- Data: $a, s(..n) = (s_1, ..., s_n), S(..n) = (S_1, ..., S_n)$
- Model: f(a|c, A, s(..n), S(..n)) = P_a(cA), unknown parameters A, c
- Prior: $A \in (0, A_{max})$, bounds either hard (χ_A) or soft (α, β)

<ロ> <同> <同> < 回> < 回> < □> < □> <

Estimation of Activity Estimation of Dose Advisory System

Estimation of Activity: Bayesian Approach

- Data: $a, s(...n) = (s_1, ..., s_n), S(...n) = (S_1, ..., S_n)$
- Model: f(a|c, A, s(..n), S(..n)) = P_a(cA), unknown parameters A, c
- Prior: $A \in (0, A_{max})$, bounds either hard (χ_A) or soft (α, β)

• Posterior:
$$f(A|...) \propto \frac{A^{a+\alpha}}{(A+S(n))^{\beta+a+s(n)+1}}$$
, where $x(n) \equiv \sum_{i=1}^{n} x_i$

・ロ・ ・ 四・ ・ 回・ ・ 日・

Estimation of Activity Estimation of Dose Advisory System

Estimation of Activity: Bayesian Approach

- Data: $a, s(...n) = (s_1, ..., s_n), S(...n) = (S_1, ..., S_n)$
- Model: f(a|c, A, s(..n), S(..n)) = P_a(cA), unknown parameters A, c
- Prior: $A \in (0, A_{max})$, bounds either hard (χ_A) or soft (α, β)
- Posterior: $f(A|...) \propto \frac{A^{a+\alpha}}{(A+S(n))^{\beta+a+s(n)+1}}$, where $x(n) \equiv \sum_{i=1}^{n} x_i$

Moments for soft prior bounds:

- $\mathsf{E}[A|\alpha,\beta,a,\mathsf{S}(n),\mathsf{s}(n)] \equiv \hat{A} = \mathsf{S}(n)_{\frac{\alpha+a+1}{\beta+\mathsf{s}(n)-\alpha+1}}$
- $\operatorname{var}[A|\alpha,\beta,a,S(n),s(n)] = \hat{A}^2 \frac{\beta+a+s(n)}{(\alpha+a+1)(\beta+s(n)-\alpha-2)}$

Estimation of Activity Estimation of Dose Advisory System

Estimation of Activity: Bayesian Approach

- Data: $a, s(...n) = (s_1, ..., s_n), S(...n) = (S_1, ..., S_n)$
- Model: f(a|c, A, s(..n), S(..n)) = P_a(cA), unknown parameters A, c
- Prior: A ∈ (0, A_{max}), bounds either hard (χ_A) or soft (α, β)

• Posterior:
$$f(A|...) \propto \frac{A^{a+\alpha}}{(A+S(n))^{\beta+a+s(n)+1}}$$
, where $x(n) \equiv \sum_{i=1}^{n} x_i$

Moments for soft prior bounds:

•
$$\mathsf{E}[A|\alpha,\beta,a,S(n),s(n)] \equiv \hat{A} = S(n) \frac{\alpha+a+1}{\beta+s(n)-\alpha+1}$$

- $\operatorname{var}[A|\alpha,\beta,a,S(n),s(n)] = \hat{A}^2 \frac{\beta+a+s(n)}{(\alpha+a+1)(\beta+s(n)-\alpha-2)}$
- soft prior bounds: prior statistics α, β hard prior bounds: numerical evaluation of the moments

・ロ・ ・ 四・ ・ 回・ ・ 日・

Estimation of Activity Estimation of Dose Advisory System

Estimation of Activity: Bayesian Approach

- Data: $a, s(..n) = (s_1, ..., s_n), S(..n) = (S_1, ..., S_n)$
- Model: f(a|c, A, s(..n), S(..n)) = P_a(cA), unknown parameters A, c
- Prior: A ∈ (0, A_{max}), bounds either hard (χ_A) or soft (α, β)

• Posterior:
$$f(A|...) \propto \frac{A^{a+\alpha}}{(A+S(n))^{\beta+a+s(n)+1}}$$
, where $x(n) \equiv \sum_{i=1}^{n} x_i$

Moments for soft prior bounds:

•
$$E[A|\alpha, \beta, a, S(n), s(n)] \equiv \hat{A} = S(n) \frac{\alpha + a + 1}{\beta + s(n) - \alpha + 1}$$

- var[$A|\alpha,\beta,a,S(n),s(n)$] = $A^2 \frac{\beta+a+s(n)}{(\alpha+a+1)(\beta+s(n)-\alpha-2)}$
- soft prior bounds: prior statistics α, β hard prior bounds: numerical evaluation of the moments

Uncertainty does not significantly decrease with repeated calibration

Estimation of Activity Estimation of Dose Advisory System

Estimation of Dose

Dose [Gy] = energy absorbed in a unit mass, proportional to # of decays

Estimation of Activity Estimation of Dose Advisory System

Estimation of Dose

Dose [Gy] = energy absorbed in a unit mass, proportional to # of decays

• definition: D = dE/dm

• MIRD:
$$D = S\xi$$
, where $\xi = \int_{0}^{\infty} A(t) dt$ and S is known constant

Estimation of Activity Estimation of Dose Advisory System

Estimation of Dose

Dose [Gy] = energy absorbed in a unit mass, proportional to # of decays

- definition: D = dE/dm
- MIRD: $D = S\xi$, where $\xi = \int_{0}^{\infty} A(t) dt$ and S is known constant
- important for assessment of treatment impact and radiation risks

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Estimation of Activity Estimation of Dose Advisory System

Estimation of Dose

Dose [Gy] = energy absorbed in a unit mass, proportional to # of decays

- definition: D = dE/dm
- MIRD: $D = S\xi$, where $\xi = \int_{0}^{\infty} A(t) dt$ and S is known constant
- important for assessment of treatment impact and radiation risks

Typical data
$$\mathcal{D}_n \equiv \{(t_i, A_i)\}_{i=1}^n$$

i	time ti [days]	estd. activity A _i [MBq]
1	0.823	6.899
2	3.799	1.711

ヘロト ヘヨト ヘヨト

Estimation of Activity Estimation of Dose Advisory System

Estimation of Dose

Dose [Gy] = energy absorbed in a unit mass, proportional to # of decays

- definition: D = dE/dm
- MIRD: $D = S\xi$, where $\xi = \int_{0}^{\infty} A(t) dt$ and S is known constant
- important for assessment of treatment impact and radiation risks

Typical data
$$\mathcal{D}_n \equiv \{(t_i, A_i)\}_{i=1}^n$$

i	time ti [days]	estd. activity A _i [MBq]
1	0.823	6.899
2	3.799	1.711

Typically, n = 2 - 4

Estimation of Dose I: Identification of A(t)

• Data: $\mathcal{D}_n \equiv \{(t_i, A_i)\}_{i=1}^n$, where n = 2 - 4 (very few!)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Estimation of Dose I: Identification of A(t)

- Data: $\mathcal{D}_n \equiv \{(t_i, A_i)\}_{i=1}^n$, where n = 2 4 (very few!)
- Model: $\ln A(t) = k_1 + k_2 \ln(ct) + k_3 (ct)^{2/3} \ln(ct) - \frac{t}{T_p} \ln 2 + \epsilon_t \equiv \psi'_t k - \lambda t + \epsilon_t$

Estimation of Dose I: Identification of A(t)

- Data: $\mathcal{D}_n \equiv \{(t_i, A_i)\}_{i=1}^n$, where n = 2 4 (very few!)
- Model: $\ln A(t) = k_1 + k_2 \ln(ct) + k_3 (ct)^{2/3} \ln(ct) - \frac{t}{T_p} \ln 2 + \epsilon_t \equiv \psi'_t k - \lambda t + \epsilon_t$

•
$$f(\ln A(t)|t,k) = \mathcal{N}(\psi'_t k - \lambda t, r)$$

Estimation of Dose I: Identification of A(t)

- Data: $\mathcal{D}_n \equiv \{(t_i, A_i)\}_{i=1}^n$, where n = 2 4 (very few!)
- Model: $\ln A(t) = k_1 + k_2 \ln(ct) + k_3 (ct)^{2/3} \ln(ct) - \frac{t}{T_p} \ln 2 + \epsilon_t \equiv \psi'_t k - \lambda t + \epsilon_t$

•
$$f(\ln A(t)|t,k) = \mathcal{N}(\psi'_t k - \lambda t, r)$$

- Prior information:
 - *I_c*: physical properties of *A*(*t*) → hard prior constraints *χ_k* (linear matrix inequality)

Estimation of Dose I: Identification of A(t)

- Data: $\mathcal{D}_n \equiv \{(t_i, A_i)\}_{i=1}^n$, where n = 2 4 (very few!)
- Model: $\ln A(t) = k_1 + k_2 \ln(ct) + k_3 (ct)^{2/3} \ln(ct) - \frac{t}{T_p} \ln 2 + \epsilon_t \equiv \psi'_t k - \lambda t + \epsilon_t$

•
$$f(\ln A(t)|t,k) = \mathcal{N}(\psi'_t k - \lambda t, r)$$

- Prior information:
 - *I_c*: physical properties of *A*(*t*) → hard prior constraints *χ_k* (linear matrix inequality)
 - \mathcal{I}_0 : information merged from patient data archive (based on information sharing among multiple participants) \rightarrow prior statistics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Estimation of Dose I: Identification of A(t)

- Data: $\mathcal{D}_n \equiv \{(t_i, A_i)\}_{i=1}^n$, where n = 2 4 (very few!)
- Model: $\ln A(t) = k_1 + k_2 \ln(ct) + k_3 (ct)^{2/3} \ln(ct) - \frac{t}{T_p} \ln 2 + \epsilon_t \equiv \psi'_t k - \lambda t + \epsilon_t$

•
$$f(\ln A(t)|t,k) = \mathcal{N}(\psi'_t k - \lambda t, r)$$

- Prior information:
 - *I_c*: physical properties of *A*(*t*) → hard prior constraints *χ_k* (linear matrix inequality)
 - \mathcal{I}_0 : information merged from patient data archive (based on information sharing among multiple participants) \rightarrow prior statistics
- Conjugate pdf f(k, r | D): Gauss-inverse-Wishart

Estimation of Dose I: Identification of A(t)

- Data: $\mathcal{D}_n \equiv \{(t_i, A_i)\}_{i=1}^n$, where n = 2 4 (very few!)
- Model: $\ln A(t) = k_1 + k_2 \ln(ct) + k_3 (ct)^{2/3} \ln(ct) - \frac{t}{T_p} \ln 2 + \epsilon_t \equiv \psi'_t k - \lambda t + \epsilon_t$

•
$$f(\ln A(t)|t,k) = \mathcal{N}(\psi'_t k - \lambda t, r)$$

- Prior information:
 - *I_c*: physical properties of *A*(*t*) → hard prior constraints *χ_k* (linear matrix inequality)
 - \mathcal{I}_0 : information merged from patient data archive (based on information sharing among multiple participants) \rightarrow prior statistics
- Conjugate pdf f(k, r | D): Gauss-inverse-Wishart
- Marginal posterior pdf $f(k|\mathcal{D}, \mathcal{I}_c, \mathcal{I}_0)$: Student

Estimation of Activity Estimation of Dose Advisory System

Estimation of Dose II: Numerical Simulation of $f(\xi|...)$

Construction of $f(\xi | \mathcal{D}, \mathcal{I}_c, \mathcal{I}_0)$:

・ロト ・ 四ト ・ ヨト ・ ヨト

Estimation of Dose II: Numerical Simulation of $f(\xi|...)$

Construction of $f(\xi | \mathcal{D}, \mathcal{I}_c, \mathcal{I}_0)$:

• generate a sample k_i from $f(k|\mathcal{D}, \mathcal{I}_c, \mathcal{I}_0)$ (Langevin diffusion)

<ロ> <同> <同> < 回> < 回> < □> < □> <

э

Estimation of Dose II: Numerical Simulation of $f(\xi|...)$

Construction of $f(\xi | \mathcal{D}, \mathcal{I}_c, \mathcal{I}_0)$:

• generate a sample k_i from $f(k|\mathcal{D}, \mathcal{I}_c, \mathcal{I}_0)$ (Langevin diffusion)

• calculate numerically
$$\xi_i = \int_{0}^{\infty} A(t|k_i) dt$$

<ロ> <同> <同> < 回> < 回> < □> < □> <

Estimation of Dose II: Numerical Simulation of $f(\xi|...)$

Construction of $f(\xi | \mathcal{D}, \mathcal{I}_c, \mathcal{I}_0)$:

• generate a sample k_i from $f(k|\mathcal{D}, \mathcal{I}_c, \mathcal{I}_0)$ (Langevin diffusion)

• calculate numerically
$$\xi_i = \int_{0}^{\infty} A(t|k_i) dt$$

• repeat until the stopping criterion is reached

Estimation of Dose II: Numerical Simulation of $f(\xi|...)$

Construction of $f(\xi | \mathcal{D}, \mathcal{I}_c, \mathcal{I}_0)$:

• generate a sample k_i from $f(k|\mathcal{D}, \mathcal{I}_c, \mathcal{I}_0)$ (Langevin diffusion)

• calculate numerically
$$\xi_i = \int_{0}^{\infty} A(t|k_i) dt$$

• repeat until the stopping criterion is reached

Estimation of Dose II: Numerical Simulation of $f(\xi|...)$

Construction of $f(\xi | \mathcal{D}, \mathcal{I}_c, \mathcal{I}_0)$:

• generate a sample k_i from $f(k|\mathcal{D}, \mathcal{I}_c, \mathcal{I}_0)$ (Langevin diffusion)

• calculate numerically
$$\xi_i = \int_{0}^{\infty} A(t|k_i) dt$$

• repeat until the stopping criterion is reached

Estimation of Dose II: Numerical Simulation of $f(\xi|...)$

Construction of $f(\xi | \mathcal{D}, \mathcal{I}_c, \mathcal{I}_0)$:

• generate a sample k_i from $f(k|\mathcal{D}, \mathcal{I}_c, \mathcal{I}_0)$ (Langevin diffusion)

• calculate numerically
$$\xi_i = \int_{0}^{\infty} A(t|k_i) dt$$

• repeat until the stopping criterion is reached

Empirical $f(\xi)$ approximated by log-normal with sufficient precision

Estimation of Activity Estimation of Dose Advisory System

Advisory System for Individual Therapy

Response of organism to administered activity is individual

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Advisory System for Individual Therapy

Response of organism to administered activity is individual How much activity to administer for therapy, so that

• the tumour is destroyed

Nuclear Medicine Estimation of Activity Modelling Tasks — Examples Conclusions

Estimation of Dose Advisory System

Advisory System for Individual Therapy

Response of organism to administered activity is individual How much activity to administer for therapy, so that

- the tumour is destroyed
- secondary radiation risks are minimized

Advisory System for Individual Therapy

Response of organism to administered activity is individual How much activity to administer for therapy, so that

- the tumour is destroyed
- secondary radiation risks are minimized

Off-line stage, processing of archive data of all patients:

 Nuclear Medicine
 Estimation of Activ

 Modelling Tasks — Examples
 Estimation of Dose

 Conclusions
 Advisory System

Advisory System for Individual Therapy

Response of organism to administered activity is individual How much activity to administer for therapy, so that

- the tumour is destroyed
- secondary radiation risks are minimized

Off-line stage, processing of archive data of all patients:

select a marker of the treatment success

Advisory System for Individual Therapy

Response of organism to administered activity is individual How much activity to administer for therapy, so that

- the tumour is destroyed
- secondary radiation risks are minimized

Off-line stage, processing of archive data of all patients:

- select a marker of the treatment success
- the goal: optimize the marker with minimum therapeutic activity

・ロト ・ 一日 ト ・ 日 ト

Advisory System for Individual Therapy

Response of organism to administered activity is individual How much activity to administer for therapy, so that

- the tumour is destroyed
- secondary radiation risks are minimized

Off-line stage, processing of archive data of all patients:

- select a marker of the treatment success
- the goal: optimize the marker with minimum therapeutic activity
- analyze a selected set of variables for a probabilistic mixture

Advisory System for Individual Therapy

Response of organism to administered activity is individual How much activity to administer for therapy, so that

- the tumour is destroyed
- secondary radiation risks are minimized

Off-line stage, processing of archive data of all patients:

- select a marker of the treatment success
- the goal: optimize the marker with minimum therapeutic activity
- analyze a selected set of variables for a probabilistic mixture
- use the goal to generate the "advisory mixture"

Advisory System for Individual Therapy

Response of organism to administered activity is individual How much activity to administer for therapy, so that

- the tumour is destroyed
- secondary radiation risks are minimized

Off-line stage, processing of archive data of all patients:

- select a marker of the treatment success
- the goal: optimize the marker with minimum therapeutic activity
- analyze a selected set of variables for a probabilistic mixture
- use the goal to generate the "advisory mixture"

On-line stage:

Advisory System for Individual Therapy

Response of organism to administered activity is individual How much activity to administer for therapy, so that

- the tumour is destroyed
- secondary radiation risks are minimized

Off-line stage, processing of archive data of all patients:

- select a marker of the treatment success
- the goal: optimize the marker with minimum therapeutic activity
- analyze a selected set of variables for a probabilistic mixture
- use the goal to generate the "advisory mixture"

On-line stage:

 substitute diagnostic data for a particular patient to the advisory mixture

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Advisory System for Individual Therapy

Response of organism to administered activity is individual How much activity to administer for therapy, so that

- the tumour is destroyed
- secondary radiation risks are minimized

Off-line stage, processing of archive data of all patients:

- select a marker of the treatment success
- the goal: optimize the marker with minimum therapeutic activity
- analyze a selected set of variables for a probabilistic mixture
- use the goal to generate the "advisory mixture"

On-line stage:

- substitute diagnostic data for a particular patient to the advisory mixture
- call the advisory procedure to generate an individual recommendation of activity

Estimation of Activity Estimation of Dose Advisory System

GUI for the Advisory System

🕽 p(UIA,data)		-		×
Main data	Graph by activity	Legend	Numeric presentation	8000.00
Program recommendati Doctor's decision	on 3659 MBq 3800 MBq	Pa	atient ID 2750	
Please select how program recomendation was close	Cnotatall Cfar Cn	ear 🖲 very near 🔿	as mine	
Doctor's not	some note here		E	
A Max				
			<u>×</u>	
Min Accum.		Save	Load <u>C</u> lose	
(Martine and Control of Control				2000.00
0				0.5
Probability D.: 0.00136	34000 Accumula	ition: 0.15660	Activity: 3222.2	

・ロト ・四ト ・ヨト ・ヨト

크

Estimation of Activity Estimation of Dose Advisory System

Results of the Initial Version

Only dosimetric data included in mixture processing

relative difference	cases
<10 %	31 %
<15 %	46 %
>50 %	15%

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Estimation of Activity Estimation of Dose Advisory System

Results of the Initial Version

Only dosimetric data included in mixture processing

relative difference	cases
<10 %	31 %
<15 %	46 %
>50 %	15%

 successful if the decision independent of medical and biochemical quantities

Estimation of Activity Estimation of Dose Advisory System

Results of the Initial Version

Only dosimetric data included in mixture processing

relative difference	cases
<10 %	31 %
<15 %	46 %
>50 %	15%

- successful if the decision independent of medical and biochemical quantities
- higher differences if other than dosimetric information necessary

・ロト ・ 一日 ト ・ 日 ト

Estimation of Activity Estimation of Dose Advisory System

Results of the Initial Version

Only dosimetric data included in mixture processing

relative difference	cases
<10 %	31 %
<15 %	46 %
>50 %	15%

- successful if the decision independent of medical and biochemical quantities
- higher differences if other than dosimetric information necessary
- in majority, lower activities recommended

Estimation of Activity Estimation of Dose Advisory System

Results of the Initial Version

Only dosimetric data included in mixture processing

relative difference	cases
<10 %	31 %
<15 %	46 %
>50 %	15%

- successful if the decision independent of medical and biochemical quantities
- higher differences if other than dosimetric information necessary
- in majority, lower activities recommended
- other than medical data are being gathered for off-line processing

 nuclear medicine generates uncertain data and requires adequate methods for their processing

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Conclusion

- nuclear medicine generates uncertain data and requires adequate methods for their processing
- Bayes:
 - precision of estimates provides more information for medical decision
 - prior information reduces uncertainty

Conclusion

- nuclear medicine generates uncertain data and requires adequate methods for their processing
- Bayes:
 - precision of estimates provides more information for medical decision
 - prior information reduces uncertainty
- GIGO principle

Conclusion

- nuclear medicine generates uncertain data and requires adequate methods for their processing
- Bayes:
 - precision of estimates provides more information for medical decision
 - prior information reduces uncertainty
- GIGO principle
- nearly-finished:
 - systemization of all data to extend the set for processing
 - learning with dropouts in data records

Conclusion

- nuclear medicine generates uncertain data and requires adequate methods for their processing
- Bayes:
 - precision of estimates provides more information for medical decision
 - prior information reduces uncertainty
- GIGO principle
- nearly-finished:
 - systemization of all data to extend the set for processing
 - learning with dropouts in data records
- numerically nontrivial implementation

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト