Validation of the Urban Traffic Control System HRDS and Some Remarks about Queue Length Estimation

Jan Přikryl

Department of Adaptive Systems Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

Data – Algorithms – Decision Making, Loučeň, November 30 – December 2, 2008

- Basic Concepts and Quantities
- 2 HRDS (Urban Traffic Control System from UTIA)
 - State end of 2007
- 3 Development in 2008
 - Intersection controller
 - HRDS
 - Bugs
 - Model Defficiencies
 - Controller Defficiencies
 - 4 Simulated Validation Results
- Occupancy-Queue RelationHRDS
- 6 Conclusions

- Basic Concepts and Quantities
- 2 HRDS (Urban Traffic Control System from UTIA)
 - State end of 2007
- 3 Development in 2008
 - Intersection controller
 - HRDS
 - Bugs
 - Model Defficiencies
 - Controller Defficiencies
- 4 Simulated Validation Results
- Occupancy-Queue RelationHRDS
- 6 Conclusions

Introduction Quantities

Measured by inductive loops / video Intensity:

- number of vehicles passing a detector over some period
- typically [veh/hr] or [veh/ Δt]

Occupancy:

- percentage of the detection interval when detector occupied
- loop sampling rate 10Hz

Turning rate: percentage of the cars passing the stop-bar to a particular outgoing arm

Introduction Quantities

Saturation flow S:

- maximum flow at an arm
- determined by construction parameters, turning rate and opposite flow intensity
- typical value around 1900 veh/hr

Cycle length T_c :

- ratio of particular signals in a signal plan
- varies from 60 sec (night) to 120 sec

Green split:

• ratio of particular phases in a signal plan

Basic Concepts and Quantities

- 2 HRDS (Urban Traffic Control System from UTIA)
 - State end of 2007
- 3 Development in 2008
 - Intersection controller
 - HRDS
 - Bugs
 - Model Defficiencies
 - Controller Defficiencies
- 4 Simulated Validation Results
- Occupancy-Queue RelationHRDS
- 6 Conclusions

HRDS General

Initial assumptions:

- long arterials
- enough strategic detectors
- simple macroscopic approach

Goal: to have a simple adaptive traffic regulator that would

- optimise splits
- optimise cycle lengths
- not have too many knobs
- not be a black box from user's point of view

Intersection controllers maintain a degree of autonomy

System architecture

Jan Přikryl

Project state at the end of 2007

ELS3 intersection controller ported to win32.

Written APIs for

- communication between external controller and ELS3 (eh_api)
- communication between ELS3 and Aimsun (ea_api)

Successful initial demo of toolboxELS3 (Matlab + ELS3 + Aimsun) using intersection 5.068 (Praha-Smíchov, Zborovská \times V botanice).

Some work on interfacing toolboxELS3 to HRDS.

- Basic Concepts and Quantities
- HRDS (Urban Traffic Control System from UTIA)
 State end of 2007
- 3 Development in 2008
 - Intersection controller
 - HRDS
 - Bugs
 - Model Defficiencies
 - Controller Defficiencies
 - 4 Simulated Validation Results
- Occupancy-Queue RelationHRDS
- 6 Conclusions

ELS3 Controller

ELS3 modified to accept frame plans (*rahmenpläne*) and behave as close as Simens C400 as possible:

- initial wish from HRDS on phase lengths, e.g. [40, 20, 20]
- rotation of the plan to start at GSP
- switch to the plan when TX=GSP
- grant local dynamics to signal group
- send back the real length of signal groups, e.g. [37, 16, 16] or even [80, 0, 0].

Configuration tables and signal timing done at Eltodo DS.

ELS3 Controller

ELS3 modified to accept frame plans (*rahmenpläne*) and behave as close as Simens C400 as possible:

- initial wish from HRDS on phase lengths, e.g. [40, 20, 20]
- rotation of the plan to start at GSP
- switch to the plan when TX=GSP
- grant local dynamics to signal group
- send back the real length of signal groups, e.g. [37, 16, 16] or even [80, 0, 0].

Configuration tables and signal timing done at Eltodo DS. GSP

HRDS

No chance to generate cars and use ELS3 at the same time (limitation of the ASYNtoolbox):

- need to reshape the main loop of HRDS
- need for additional toolbox $\Rightarrow \texttt{toolboxVGS} + API \text{ DLLs} + Getram extension}$

toolboxVGS provides

- independent vehicle generation
- offline signal group control
- Aimsun statistics collection

Matlab is a <u>44</u> nightmare <u>44</u> when it comes to complex code changes ...

Sources of bugs General

Possible bug sources

- AIMSUN (hard to eliminate)
- ELS3 (need Eltodo to do it, but it's OK)
- AIMSUN-ELS3 API library
- HRDS-AIMSUN API library
- HRDS
- Matlab

ELS3 bugs

ELS3

- frame plan switching point unreachable
- switching blocked by invalid condition
- wrong assignment of detectors

Takes some time to diagnose bugs, quick workarounds These are just technicalities

API bugs Aimsun-ELS3 and HRDS-Aimsun interfaces

Written from scratch \Rightarrow not completely tested in 2007

Interfaces

- communication over SHM \Rightarrow many race conditions possible
- synchronisation problems
- data overflows
- bind too deep into Matlab kernel (crashes, freezes, ...)

Pathetic loadlibrary() interface (no structures possible, no decent support for 64bit code)

Every demonstration of a bug usually results in reboot.

イロト イポト イヨト イヨト

Problems with the model And attempts to address them

The model has been designed to control queues in saturated state \Rightarrow problems in free flow state

Experimental evidence of queue length model problems

- input intensity \equiv external disturbance
- wild guesses of queue lengths (integrator)
- no chance to use occupancy to correct queue length
- no chance to detect blocking at approaches to intersection
- abrupt intensity changes, 90s measurement period too long

Improved model \Rightarrow see poster presentation

Jan Přikryl

A B > A B >

Weak points of the controller And attempts to address them

Linear programming using model prediction up to *h* steps.

- no chance to address changes in saturation
- no chance to address uncertainty in intensity input
- constant weights

Queue Weight Selection

LP: arg min_x $\mathbf{w} \cdot \mathbf{x}^{T}$ with constant weights. Hence, large Δx_i will be favoured.

But: long queues can discharge quickly for high saturation flows.

 \Rightarrow Weight should depend on saturation flow.

- Basic Concepts and Quantities
- HRDS (Urban Traffic Control System from UTIA)
 - State end of 2007
- 3 Development in 2008
 - Intersection controller
 - HRDS
 - Bugs
 - Model Defficiencies
 - Controller Defficiencies

4 Simulated Validation Results

- Occupancy-Queue RelationHRDS
- 6 Conclusions

Simulated Validation at Zličín Calibration of Aimsun

Microscopic simulation model needs to be calibrated and validated

- driver behaviour
- turning rates
- section parameters

Iterative process:

- Set parameters
- 2 Load known inputs with known detector responses
- Simulate and evaluate

Manual tweaking - current errors up to 20%

Basics HRDS@2007 HRDS@2008 Validation OQ Conclu

Simulated Validation at Zličín Scheme of the network

Basics HRDS@2007 HRDS@2008 Validation OQ Conclu

Simulated Validation at Zličín Example of traffic jam

Basics HRDS@2007 HRDS@2008 Validation OQ Conclu

Simulated Validation at Zličín Queue Length

Comparing simulation using autonomous ELS3 vs. HRDS

Validation at Zličín Average Delay

- Basic Concepts and Quantities
- 2 HRDS (Urban Traffic Control System from UTIA)
 - State end of 2007
- 3 Development in 2008
 - Intersection controller
 - HRDS
 - Bugs
 - Model Defficiencies
 - Controller Defficiencies
- 4 Simulated Validation Results
- Occupancy-Queue RelationHRDS
- 6 Conclusions

HRDS

Occupancy-queue relation As modelled in HRDS

Linear, occupancy depends on previous occupancy and queue length:

$$O_{k+1} = \kappa O_k + \beta \xi_k + \lambda$$

with coefficients κ , β , and λ either estimated or pre-set.

Initial experiments in 2007 with Juš Kocijan.

HRDS

Occupancy-queue relation Gaussian Process Model

Aimsun simulation of a single-lane approach Detectors 5m apart, 3m long Influence of

- detector size (zero speed-zero occupancy)
- green length

Jan Přikryl

HRDS Validation

- Basic Concepts and Quantities
- HRDS (Urban Traffic Control System from UTIA)
 - State end of 2007
- 3 Development in 2008
 - Intersection controller
 - HRDS
 - Bugs
 - Model Defficiencies
 - Controller Defficiencies
- 4 Simulated Validation Results
- Occupancy-Queue RelationHRDS

Conclusions

- Another toolbox for HRDS
- Validated microscopic model
- No decisive data for the evaluation documentation
- Model changes, filter tuning (covariances)

