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ABSTRACT: In the paper, generalized quantifiers de-
fined on four-fold tables corresponding to pairs of attributes
are investigated from the fuzzy logic point of view. Using
the notion of strictness, the method of construction of the
logically nearest Σ-double implicational and Σ-equivalence
quantifiers to a given implicational quantifier is described.
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1 Introduction

The notion of generalized observational quantifiers was in-
troduced in the framework of logical theory of the GUHA
method of mechanized hypothesis formation [5], [6]. It
should be stressed that this method is one of the earliest
methods of data mining. The method was during years de-
veloped and various procedures were implemented e.g. in
the systems PC-GUHA [7], Knowledge Explorer [3], and
4FT-Miner [15]. Further investigations of its mathematical
and logical foundations can be found e.g. in [9], [14].

In the paper, several classes of the most widely used
four-fold table quantifiers with truth values in the unit in-
terval are investigated. Such type of quantifications of ru-
les derived from databases is used in various methods of
knowledge discovery in databases (see e.g. [16]). On the
other hand, there is a connection between four-fold table
quantifiers and measures of resemblance or similarity ap-
plied on Boolean vectors [2].

In Section 2, basic notions and classes of quantifiers
are defined, and the notion of their strictness is introdu-
ced. In Section 3, this notion is used for description of
the method which provides a logically strong one-to-one
correspondence between classes of implicational and so
called Σ-double implicational quantifiers. An analogical
construction is used in Section 4 to introduce similar corre-
spondence between classes of Σ-double implicational and
Σ-equivalence quantifiers.

2 Four-fold table generalized quanti-
fiers

Assume having a data file and consider two Boolean (bi-
nary, dichotomic) attributes ϕ and ψ. A four-fold table
< a,b,c,d > corresponding to these attributes is composed
from numbers of objects in data satisfying four different
Boolean combinations of attributes:

ψ ¬ψ
ϕ a b
¬ϕ c d

a - satisfying ϕ and ψ,
b - satisfying ϕ and ¬ψ,
c - satisfying ¬ϕ and ψ,
d - satisfying ¬ϕ and ¬ψ.

To avoid degenerated situations, we shall assume, that
all marginals of the four-fold table are non-zero:

a+b > 0, c+d > 0, a+c > 0, b+d > 0.
Various relations between ϕ and ψ can be measured in

given data by different four-fold table generalized quanti-
fiers∼ (a,b,c,d) which will be understood here as functions
with values in the interval [0,1].

Definition 1
Four-fold table generalized quantifier ∼ is a [0,1]-valued
function defined for all four-fold tables < a,b,c,d >.

We shall write ∼ (a,b) if the value of the quantifier ∼
depends only on a,b; ∼ (a,b,c) if the value of the quantifier
∼ depends only on a,b,c; ∼ (a,b,c,d) if the value of the
quantifier ∼ depends on all a,b,c,d. For brevity, we shall
call in this paper ”four-fold table generalized quantifiers”
simply ”quantifiers”.

The most general class of quantifiers originally intro-
duced in two-valued logic in [5] and called there associ-
ational is reflecting the following property: If the four-fold
table < a,b,c,d > represents the behaviour of the derived
attributes ϕ and ψ in given data, then numbers a,d are sup-
porting correlation of ϕ and ψ but numbers b,c are against.
This property can be formulated in fuzzy logic approach
by: The higher is a,d and the smaller are b,c, the better or
at least not worse is truth-value of association of ϕ and ψ
in given data.
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The most common examples of such assocional quan-
tifiers are following ones:

Example 1
Quantifier ⇒� of basic implication (or confidence of as-
sociation rules, see [1]):

⇒� (a,b) = a
a+b .

Quantifier ⇔� of basic double implication (Jaccard
1900, [2]):

⇔� (a,b,c) = a
a+b+c .

Quantifier ≡� of basic equivalence (Kendall, Sokal-
Michener 1958, [2]):

≡� (a,b,c,d) = a+d
a+b+c+d .

Properties of basic quantifiers are in the core of defi-
nitions of several useful classes of quantifiers (introduced
originally in two-valued logic in [5], [6]) which can be
naturally given in fuzzy logic as follows:

Definition 2
Let a,b,c,d,a′,b′,c′,d′ mean frequencies from arbitrary
pairs of four-fold tables < a,b,c,d > and < a′,b′,c′,d′ >.

(1) A quantifier ∼ (a,b) is implicational if always
a′ ≥ a, b′ ≤ b implies ∼ (a′,b′)≥ ∼ (a,b).

(2) A quantifier ∼ (a,b,c) is Σ-double implicational if
always a′ ≥ a, b′+c′ ≤ b+c implies ∼ (a′,b′,c′)≥ ∼
(a,b,c).

(3) A quantifier∼ (a,b,c,d) is Σ-equivalence if always
a′+d′ ≥ a+d, b′+ c′ ≤ b+ c implies ∼ (a′,b′,c′,d′) ≥
∼ (a,b,c,d).

Let us prove the following auxiliary propositions con-
nected to these classes of quantifiers.

Lemma 1
A quantifier ⇔∗ is Σ-double implicational iff the following
conditions hold:

(i) if b′+c′ = b+c then
⇔∗ (a,b′,c′) =⇔∗ (a,b,c),
(ii) the quantifier ⇒∗ defined by
⇒∗ (a,b) =⇔∗ (a,b,0)
is implicational.

PROOF: For Σ-double implicational quantifiers, (i), (ii) are
clearly true. Let ⇔∗ is a quantifier satisfying (i), (ii), and
a′ ≥ a,b′+c′ ≤ b+c. Then

⇔∗ (a′,b′,c′) =⇔∗ (a′,b′+c′,0) =⇒∗ (a′,b′+c′)≥
⇒∗ (a,b+c) =⇔∗ (a,b+c,0) =⇔∗ (a,b,c). �

Lemma 2
A quantifier≡∗ is Σ-equivalence iff the following conditions
hold:

(i) if a′+d′ = a+d, b′+c′ = b+c then
≡∗ (a′,b′,c′,d′) = ≡∗ (a,b,c,d),
(ii) the quantifier ⇔∗ defined by
⇔∗ (a,b,c) = ≡∗ (a,b,c,0)
is Σ-double implicational.

PROOF: For Σ-equivalence quantifiers, (i), (ii) are clearly
true. Let ≡∗ is a quantifier satisfying (i), (ii), and a′+d′ ≥
a+d,b′+c′ ≤ b+c. Then

≡∗ (a′,b′,c′,d′) = ≡∗ (a′ + d′,b′,c′,0) = ⇔∗ (a′ +
d′,b′,c′) ≥ ⇔∗ (a + d,b,c) = ≡∗ (a + d,b,c,0) = ≡∗
(a,b,c,d). �

We shall use the notion of strictness to state relations
between different quantifiers:

Definition 3
A quantifier ∼1 is less strict than a quantifier ∼2

(or ∼2 is more strict than ∼1)
if for all four-fold tables < a,b,c,d >
∼1 (a,b,c,d)≥ ∼2 (a,b,c,d).

From the fuzzy logic point of view, it means that in all
models (data) the formula ϕ ∼1 ψ is at least so true as the
formula ϕ∼2 ψ, i.e. the deduction rule ϕ∼2ψ

ϕ∼1ψ is correct.

Example 2
⇔� is more strict than ⇒�, and less strict than ≡�.

3 Least strict Σ-double implicational
quantifier corresponding to given
implicational quantifier

Let ⇒∗ be an implicational quantifier. There is a natural
task to construct some Σ-double implicational quantifier
⇔∗ such that from formula ϕ ⇔∗ ψ logically follow both
implications ϕ ⇒∗ ψ, ψ ⇒∗ ϕ, i.e. deduction rules ϕ⇔∗ψ

ϕ⇒∗ψ ,
ϕ⇔∗ψ
ψ⇒∗ϕ are correct. Such a quantifier ⇔∗ should be as less
strict as possible to be near to ⇒∗.

Following two theorems show how to construct the logi-
cally nearest Σ-double implicational quantifier from a given
implicational quantifier and vice versa.

Theorem 1
Let ⇒∗ be an implicational quantifier and ⇔∗ be the
quantifier constructed from ⇒∗ for all four-fold tables
< a,b,c,d > by the formula

⇔∗ (a,b,c) =⇒∗ (a,b+c).
Then⇔∗ is the Σ-double implicational quantifier which

is the least strict from the class of all Σ-double implicational
quantifiers ∼ more strict than ⇒∗.

Remark. Let us mention that this means the following:
(1) deduction rules ϕ⇔∗ψ

ϕ⇒∗ψ , ϕ⇔∗ψ
ψ⇒∗ϕ are correct;

(2) if ∼ is a Σ-double implicational quantifier such that
deduction rules ϕ∼ψ

ϕ⇒∗ψ , ϕ∼ψ
ψ⇒∗ϕ are correct,

then∼ is more strict than⇔∗, i.e. also ϕ∼ψ
ϕ⇔∗ψ is correct.

PROOF: Since ⇒∗ is an implicational quantifier, ⇔∗ is a
Σ-double implicational quantifier; moreover,

⇔∗ (a,b,c) =⇒∗ (a,b+c)≤⇒∗ (a,b) for all four-fold
tables < a,b,c,d >

so ⇔∗ is more strict than ⇒∗.



Let ∼ is a Σ-double implicational quantifier more strict
than ⇒∗. Then we obtain

∼ (a,b,c) = ∼ (a,b + c,0) ≤ ⇒∗ (a,b + c) = ⇔∗

(a,b,c) for all four-fold tables < a,b,c,d >

which means that ∼ is more strict than ⇔∗. �

Example 3
For the basic implication⇒� (a,b) = a

a+b , the basic double
implication⇔� (a,b,c) = a

a+b+c is the least strict Σ-double

implicational quantifier satisfying deduction rules ϕ⇔∗ψ
ϕ⇒�ψ ,

ϕ⇔∗ψ
ψ⇒�ϕ .

Theorem 2
Let ⇔∗ be a Σ-double implicational quantifier and ⇒∗ be
the quantifier constructed from ⇔∗ for all four-fold tables
< a,b,c,d > by the formula

⇒∗ (a,b) =⇔∗ (a,b,0).
Then ⇒∗ is the implicational quantifier which is the

most strict from the class of all implicational quantifiers ∼
less strict than ⇔∗.

Remark. Let us mention that this means the following:
(1) deduction rules ϕ⇔∗ψ

ϕ⇒∗ψ , ϕ⇔∗ψ
ψ⇒∗ϕ are correct;

(2) if∼ is an implicational quantifier such that deduction
rules ϕ⇔∗ψ

ϕ∼ψ , ϕ⇔∗ψ
ψ∼ϕ are correct,

then ∼ is less strict than ⇒∗, i.e. also ϕ⇒∗ψ
ϕ∼ψ is correct.

PROOF: Since ⇔∗ is a Σ-double implicational quantifier,
⇒∗ is an implicational quantifier; moreover, using 1

⇔∗ (a,b,c) = ⇔∗ (a,b+ c,0) ≤ ⇔∗ (a,b,0) = ⇒∗

(a,b) for all four-fold tables < a,b,c,d >

so ⇒∗ is less strict than ⇔∗.
Let ∼ is an implicational quantifier less strict than ⇔∗.
Then we obtain
∼ (a,b) ≥ ⇔∗ (a,b,0) = ⇒∗ (a,b) for all four-fold

tables < a,b,c,d >

which means that ∼ is less strict than ⇒∗. �

4 Most strict Σ-equivalence quan-
tifier corresponding to given Σ-
double implicational quantifier

This section will be a clear analogy with the previous one:
Let ⇔∗ be an Σ-double implicational quantifier. There

is a natural task to construct some Σ-equivalence ≡∗ such
that the formula ϕ ≡∗ ψ logically follows both from the
formula ϕ⇔∗ ψ, and from the formula ¬ϕ⇔∗ ¬ψ, i.e. de-
duction rules ϕ⇔∗ψ

ϕ≡∗ψ , ¬ϕ⇔∗¬ψ
ϕ≡∗ψ are correct. Such a quantifier

≡∗ should be as strict as possible to be near to ⇔∗.
Following theorems show how to construct the logically

nearest Σ-equivalence quantifier from a given Σ-double im-
plicational quantifier and vice versa. The proofs of these
theorems are very similar to the above ones.

Theorem 3
Let ⇔∗ be a Σ-double implicational quantifier and ≡∗ be
the quantifier constructed from ⇔∗ for all four-fold tables
< a,b,c,d > by the formula

≡∗ (a,b,c,d) =⇔∗ (a+d,b,c).
Then ≡∗ is the Σ-equivalence which is the most strict

from the class of all Σ-equivalences ∼ less strict than ⇔∗.

Remark. Let us mention that this means the following:
(1) deduction rules ϕ⇔∗ψ

ϕ≡∗ψ , ¬ϕ⇔∗¬ψ
ϕ≡∗ψ are correct;

(2) if ∼ is a Σ-equivalence such that deduction rules
ϕ⇔∗ψ
ϕ∼ψ , ¬ϕ⇔∗¬ψ

ϕ∼ψ are correct, then∼ is less strict than≡∗, i.e.

also ϕ≡∗ψ
ϕ∼ψ is correct.

PROOF: Since ⇔∗ is a Σ-double implicational quantifier,
≡∗ is a Σ-equivalence; moreover

≡∗ (a,b,c,d) = ⇔∗ (a+ d,b,c) ≥ ⇔∗ (a,b,c) for all
four-fold tables < a,b,c,d >

so ≡∗ is less strict than ⇔∗.
Let ∼ is a Σ-equivalence less strict than ⇔∗. Then we

obtain
∼ (a,b,c,d) = ∼ (a+ d,b,c,0) ≥ ⇔∗ (a+ d,b,c) =

≡∗ (a,b,c,d) for all four-fold tables < a,b,c,d >
which means that ∼ is less strict than ≡∗. �

Example 4
For the basic double implication ⇔� (a,b,c) = a

a+b+c ,

the basic equivalence ≡� (a,b,c,d) = a+d
a+b+c+d , is the

most strict Σ-equivalence satisfying deduction rules ϕ⇔�ψ
ϕ≡∗ψ ,

¬ϕ⇔�¬ψ
ϕ≡∗ψ .

Theorem 4
Let ≡∗ be an Σ-equivalence quantifier and ⇔∗ be the
quantifier constructed from ≡∗ for all four-fold tables
< a,b,c,d > by the formula

⇔∗ (a,b,c) = ≡∗ (a,b,c,0).
Then⇔∗ is the Σ-double implicational quantifier which

is the least strict from the class of all Σ-double implicational
quantifiers ∼ more strict than ≡∗.

Remark. Let us mention that this means the following:
(1) deduction rules ϕ⇔∗ψ

ϕ≡∗ψ , ¬ϕ⇔∗¬ψ
ϕ≡∗ψ are correct;

(2) if ∼ is a Σ-double implicational quantifier such that
deduction rules ϕ∼ψ

ϕ≡∗ψ , ¬ϕ∼¬ψ
ϕ≡∗ψ are correct,

then ∼ is more strict than ⇔∗, i.e. also ϕ∼ψ
ϕ≡∗ψ is correct.

PROOF: Since ≡∗ is a Σ-equivalence, ⇔∗ is a Σ-double
implicational quantifier; moreover,

≡∗ (a,b,c,d) = ≡∗ (a+ d,b,c,0) ≥ ≡∗ (a,b,c,0) =
⇔∗ (a,b,c)

for all four-fold tables < a,b,c,d > so⇔∗ is more strict
than ≡∗.

Let ∼ is a Σ-double implicational quantifier more strict
than ≡∗. Then we obtain

∼ (a,b,c) ≤ ≡∗ (a,b,c,0) = ⇔∗ (a,b,c) for all four-
fold tables < a,b,c,d >

which means that ∼ is more strict than ⇔∗. �



5 Conclusions

The theorems proved in the paper show that implicatio-
nal, Σ-double implicational, and Σ-equivalence quantifiers
compose logically affiliated triads ⇒∗, ⇔∗, ≡∗, where

⇒∗ is some implicational quantifier,
⇔∗ is the least strict Σ-double implicational quantifier

corresponding to ⇒∗, and
≡∗ is the most strict Σ-equivalence quantifier correspon-

ding to ⇔∗.
Following deduction rules are correct for such triads of

quantifiers:

ϕ⇔∗ ψ
ϕ⇒∗ ψ

,
ϕ⇔∗ ψ
ψ⇒∗ ϕ

,
ϕ⇔∗ ψ
ϕ≡∗ ψ

,
¬ϕ⇔∗ ¬ψ

ϕ≡∗ ψ
.

The best known example is the triad of basic quantifiers
⇒�, ⇔�, ≡�:

⇒� (a,b) = a
a+b ,

⇔� (a,b,c) = a
a+b+c ,

≡� (a,b,c,d) = a+d
a+b+c+d .

Let us stress that to each given implicational quantifier
such triad can be constructed. This can naturally extend
the methodological approach used to the particular quan-
tifier’s definition for covering all three types of relations
(implication, double implication, equivalence).

There are some other research tasks concerning various
classes of four-fold table generalized quantifiers and their
possible relations to fuzzy logic. Several results on this to-
pic are included in [12], [13]. A general research idea is
to represent useful four-fold table generalized quantifiers
by fuzzy formulae and apply fuzzy logic methodology for
dealing with them.

This research has been supported by grant 1M0572 of
the Ministry of Education, Youth and Sports of the Czech
Republic.
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