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ABSTRACT

We consider minimum φ-divergence estimators θ̂φ
n of parameters θ of arbitrary dominated

models µθ � λ on the real line, based on finite quantizations of i.i.d. observations X1, . . . , Xn

from these models. The quantizations are represented by finite interval partitions Pn =

(An1, . . . , Anmn
) of the real line where mn is allowed to increase to infinity for n → ∞.

The models with densities fθ = dµθ/dλ are assumed to be regular in the sense that they

admit finite Fisher informations Jθ. At the first place we have in mind continuous models

dominated by the Lebesgue measure λ. Due to the quantizations, θ̂φ
n are discrete–model
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estimators for which the desirable properties (computation complexity, robustness, etc.) can

be controlled by a suitable choice of functions φ. We formulate conditions under which

these estimators are consistent and efficient in the original models µθ in the sense that
√
n(θ̂φ

n − θ)
L→ N(0,J −1

θ ) as n→ ∞.

1. INTRODUCTION

It is well known that quantizations of continuous data by fixed partitions of observation

spaces reduce in all nontrivial situations the efficiency of statistical inference achievable in

the original continuous model. In case of point estimators, the loss of efficiency can be

measured by the asymptotic relative inefficiency (the ratio of asymptotic variances achieved

in the original and quantized model, see e.g. p. 51 in Serfling (1980)). Many authors (see

e.g. Ghurye and Johnson (1981), Zografos et al. (1986), Ryu (1993) and Tsairidis et al.

(1997)) studied quantizations by fixed infinite partitions, where the loss of efficiency can be

sufficiently small provided the partition of the whole observation space is sufficiently fine.

The situation with finite partitions is different - they cannot be uniformly fine on all

parts of the observation space. For example, a finite partition of the real line always leaves

two infinite intervals unpartitioned. Therefore the asymptotic relative inefficiency of estima-

tors based on fixed finite partitions of any given size is typically unbounded. However, in

Menéndez et al. (2001) we have shown that the adaptive (sample-dependent) partitions of

the real line of size m defined by m − 1 sample quantiles lead to bounded inefficiencies of

a wide class of estimators, and that the losses of efficiency can be sufficiently small if m is

sufficiently large. The estimators were of a minimum distance type, minimizing φ-divergence

between theoretical and empirical distributions obtained in the quantized discrete models.

The maximum likelihood estimator (MLE) based on the quantized data is included in this

class.

Remind that the classes of point estimators minimizing the φ−divergence between the-

oretical and empirical distributions were systematically studied by Vajda (1984 a, b, c, d).

Special attention was payed to the estimators which minimize the so-called power diver-

gences introduced independently by Cressie and Read (1984). For special divergences or
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special models the minimum φ−divergence estimators were studied later more deeply by

Liese and Vajda (1987), Read and Cressie (1988), Vajda (1989), Voss (1992) and other au-

thors. The asymptotic theory for the models obtained by quantizations of continuous models

of a fixed size was summarized in the above cited paper of Menéndez et al. (2001).

Computations based on sample-dependent partitions may be complicated if we work

repeatedly with different samples of the same sample size n. Moreover, independently of

how large m is, the full efficiency in the original continuous model cannot be unachieved

in this manner. In this paper we are interested in the problem whether partitions of finite

sizes mn depending on the sample size n but not on the sample itself, and increasing to

infinity with n→ ∞, can guarantee for the estimators studied in Menéndez et al. (2001) the

efficiency in the original continuous model. More precisely, we are interested in whether the

corresponding estimators θ̂n of the true parameters θ ∈ Θ ⊂ Rd are consistent in the sense

θ̂n
P→ θ as n→ ∞ (1)

and asymptotically normal in the sense

√
n
(
θ̂n − θ

)
L→ N

(
0,J −1

θ

)
as n→ ∞ (2)

where Jθ is the Fisher information matrix in the underlying continuous model. As to the

partitions, we are interested in the sizes mn growing slowly in the sense m2
n/n→ 0 as n→ ∞.

We present relatively simple and intuitively appealing conditions on the model under

which we prove (1) and (2) for all the minimum φ−divergence estimators studied in Menéndez

et al. (2001), and also for the estimators minimizing the more general φ−disparity introduced

in Meneńdez et al. (1998). Verification of the conditions may not be as simple as the

conditions themselves, but it is possible as we illustrate by examples. Our results thus

enable efficient estimation in the continuous models by using discrete-models estimators

which may be computationally simpler, or to which we are restricted if we are facing a data

compression based on finite quantization.

As to the applications of our results, let us mention that any of the estimators θ̂n under

consideration can replace the MLE based on the nonquantized observations X1, ..., Xn from
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the original continuous model, used in Watson (1959) and other references cited there for

efficient estimation of nuisance parameters θ in the classical Pearson goodness-of-fit statistics

with a fixed number of cells. These estimators can also be used for efficient estimation

of nuisance parameters θ in the class of Moore-Spruil goodness-of-fit test statistics based

on observations quantized into mn cells assumed in the present paper, e.g. in the Rao-

Robson-Nikulin statistics or the Dzhaparidze-Nikulin statistics (see Rao and Robson (1974),

Dzhaparidze and Nikulin (1974) and Moore and Spruil (1975)).

As far as we know, general results similar to those in the present paper have not been

established in the previous literature. Some results are known for particular estimators in

particular models. For example, Drost (1989) studied the Moore-Spruil statistics with the

location and scale nuisance parameters θ = (µ, σ) ∈ Θ = R× (0,∞), and he mentions on p.

1289 that the results (1) and (2) were proved by Bickel (1982) for the MLE θ̂n = (µ̂n, σ̂n)

based on the observations quantized into increasing numbers mn of cells similarly as in the

present paper.

The exposition is divided into three sections. In Section 2 we introduce continuous mod-

els of parametric estimation and their discrete counterparts obtained by quatization of the

observation space. To avoid unnecessary technicalities, we restrict ourselves to real obser-

vations and parameters. We introduce a class of estimators of a minimum divergence type

(minimum φ-disparity estimators) for quantized continuous models and study the conditions

on models and quantizations needed in Section 3. In Section 3 we prove the consistency

(1.1) and the asymptotic normality (1.2) for the estimators introduced in Section 2. Section

4 contains examples illustrating practical applicability of the results of previous sections.

2. BASIC CONCEPTS AND AUXILIARY RESULTS

We consider a continuous bowl shaped function φ : [0,∞) 7−→ R, decreasing on the

subdomain [0, 1] in the nonstrict sense φ (t1) ≥ φ (t2) if 0 ≤ t1 ≤ t2 ≤ 1, and increasing

in a similar nonstrict sense on [1,∞) . We assume that φ (1) = 0 and that φ (t) is twice

continuously differentiable in a neighborhood of t = 1 with the second derivative φ′′ (1) 6= 0.

Obviously, under these assumptions φ is nonnegative and φ′′ (1) > 0.
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If ψ : [0,∞) 7→ R is convex, twice continuously differentiable in a neighborhood of 1 with

ψ′′ (1) 6= 0, then

φ (t) = ψ (t) − ψ′ (1) (t− 1) − ψ (1) (3)

satisfies the assumptions of the present paper. For example, the convex functions ψa (t) =

tα/α (α− 1) , α ∈ (0,∞) − {1} , lead to the class

φα (t) =
tα − α (t− 1) − 1

α (α− 1)
, α ∈ (0,∞) − {1} , (4)

with the corresponding limits

φ1 (t) = t ln t− t+ 1 and φ0 (t) = − ln t+ t− 1, (5)

assumed to be continuously extended to t = 0. We see that all φα with α > 0 satisfy the

assumptions of the paper while φ0 does not so because φ0(t) = ∞ at t = 0. Examples of

nonconvex φ : [0,∞) → R satisfying our assumptions are

φ (t) = 1 − 2t

1 + t2
(6)

or

φα (t) = 1 − exp
{
−α (t− 1)2} , α > 0. (7)

For the functions φ under consideration and discrete probability distributions p =

(p1, ..., pm) , q = (q1, ..., qm), where q dominates p in the usual sense qj = 0 ⇒ pj = 0, and

where 1 < m <∞, we consider the φ−disparities

Dφ (p; q) =
m∑

j=1

qjφ

(
pj

qj

)
with 0φ

(
0

0

)
= 0. (8)

Such measures of disparity between discrete distributions have been suggested by Lindsay

(1994). In a rigorous systematic manner, they were introduced and studied by Menéndez et

al. (1998). Since φ (t) ≥ 0, the φ−disparities are well defined by (8) and finite for all p, q

under consideration. Obviously, Dφ (p; q) ≥ 0 with the equality if and only if p = q.

If φ is convex then the φ−disparities Dφ (p; q) are the φ−divergences of Csiszár (1963,

1967). Let us mention that the φ−divergences are defined for arbitrary convex functions

5



φ : (0,∞) → R which are strictly convex at t = 1 (i.e. not necessarily twice differentiable at

t = 1 with φ′′(1) > 0) and satisfy the norming condition φ (1) = 0. For example,

V (p; q) =
m∑

j=1

|pj − qj| (9)

is such a divergence, called total variation of p and q and defined by φ (t) = |t− 1| . The

φ−divergences have been systematically studied by Liese and Vajda (1987). We shall refer

there for the details needed in this paper. The basic property of all φ−divergences, the

reflexivity Dφ (p; q) ≥ 0 with the equality if and only if p = q, is well known.

The functions φα, α ∈ R, specified by the formulas of (4), (5) are convex, thus defining

φα−divergences denoted in the present paper by Iα (p; q) , i.e.,

Iα (p; q) =





m∑
j=1

pj ln (pj/qj) if α = 1,
(

m∑
j=1

pα
j q

1−α
j − 1

)
/ [α (α− 1)] if α 6= 0, α 6= 1,

m∑
j=1

qj ln (qj/pj) if α = 0,

(10)

where q/0 is assumed to be ∞ for q > 0. As stated above, Iα (p; q) are φα−disparities for

α > 0.

Let us now consider two arbitrary divergence measuresD (p; q) , D̃ (p; q) which are reflex-

ive in the previously mentioned sense. We say that the D̃−divergence measure is topologically

stronger than the D−divergence measure if for arbitrary sequences of discrete distributions

pn = (pn1, ..., pnmn
) and qn = (qn1, ..., qnmn

) , 1 < mn <∞,

lim
n→∞

D̃ (pn; qn) = 0 implies lim
n→∞

D (pn; qn) = 0. (11)

In what follows we shall need the following result, where it is taken into account that there

are φ−divergences which are not φ-disparities and vice versa.

Proposition 2.1. All φ−divergences Dφ (p; q) are topologically stronger than the total

variation V (p; q) , and also all φ-disparities Dφ (p; q) are topologically stronger than the

total variation.
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Proof. The first assertion has been proved in Vajda (1972) (see also Proposition 9.49 in

Vajda (1989)). To prove the second assertion, take into account that, by the definition of

φ−disparity, there exists ε > 0 such that

inf
t∈[1−ε,1+ε]

φ′′ (t) = c̃ > 0 and inf
t/∈(1−ε,1+ε)

φ (t) = ˜̃c > 0.

Let c = min
{
c̃, ˜̃c
}
> 0 and suppose that

lim
n→∞

Dφ (pn; qn) = 0. (12)

Put

An = {1 ≤ j ≤ mn : |1 − pnj/qnj| I (qnj > 0) > ε}

and

Bn = {1 ≤ j ≤ mn : |1 − pnj/qnj| I (qnj > 0) < ε}

where I denotes the indicator function. Then (12) and the Taylor theorem for φ (t) with

φ (1) = φ′ (1) = 0 imply for all pn and qn under consideration,

Dφ (pn; qn) =
∑

j∈An

qnjφ
(

pnj

qnj

)
+
∑

j∈Bn

qnjφ
(

pnj

qnj

)

≥ c

[
∑

j∈An

qnj + 1
2

∑
j∈Bn

qnj

(
pnj

qnj
− 1
)2
]

= c

[
1 −Qn + 1

2

∑
j∈Bn

qnj

(
1 − pnj

qnj

)2
]
,

where

Qn =
∑

j∈Bn

qnj.

If Qn is zero then Dφ (pn; qn) ≥ c. Hence, by (12), Qn is positive for all n large enough with

limn→∞ Qn = 1 and, by Jensen’s inequality for the convex function ψ (t) = t2,

∑
j∈Bn

qnj

(
1 − pnj

qnj

)2

≥ 1
Qn

(
∑

j∈Bn

qnj

∣∣∣1 − pnj

qnj

∣∣∣
)2

≥
(
∑

j∈Bn

|pnj − qnj|
)2

.
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Therefore, taking into account (12), we obtain that

βn
4
=
∑

j∈Bn

|pnj − qnj| → 0 as n→ ∞.

This means that if we put

Pn =
∑

j∈Bn

pnj

then limn→∞ Qn = 1, together with the obvious inequality Qn ≤ βn + Pn, implies that also

limn→∞ Pn = 1. Further, the inequality obtained above under the assumption Qn > 0 can

be written in the form

Dφ (pn; qn) ≥ c
[
1 −Qn + (V (pn; qn) − αn)2 /2

]
, (13)

where 0 ≤ αn ≤ V (pn; qn) is defined by the equation αn + βn = V (pn; qn) . Since

0 =
∑

j /∈An∪Bn

qnj =
∑

j /∈An∪Bn

pnj,

it holds

αn =
∑

j∈An

|pnj − qnj| ≤
∑

j∈An

pnj +
∑

j∈An

qnj = 2 − Pn −Qn,

i.e. the limit relations established under (12) for Pn and Qn imply that limn→∞ αn = 0.

Therefore we see from (13) that (12) implies the desired relation

lim
n→∞

V (pn; qn) = 0.

�

In this paper we study the classical statistical model with i.i.d. observations X1, ..., Xn

distributed by µθ0
from a family {µθ : θ ∈ Θ} of probability measures on Borel subsets of the

real line R. The family is supposed to be dominated by a σ−finite measure λ on R, leading

to the densities

fθ =
dµθ

dλ
, θ ∈ Θ, (14)

on R. For simplicity we assume that Θ is an open subset of R. We also assume that the

family {µθ : θ ∈ Θ} is regular in the sense that all measures are concentrated on a common
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support

S = {x ∈ R : fθ (x) > 0} , θ ∈ Θ, (15)

i.e. that they are measure-theoretically equivalent. Further, the densities fθ (x) are assumed

to be differentiable in θ for λ−almost all x ∈ S, with the derivatives

ḟθ (x) =
d

dθ
fθ (x) (16)

satisfying the Fisher information regularity condition

0 < Jθ
4
=

∫
ḟ 2

θ

fθ

dλ <∞, θ ∈ Θ. (17)

We are interested in the estimation of the unknown true parameter θ0 on the basis of

observations Xn = (X1, ..., Xn) for increasing sample sizes n = 1, 2, .... Our approach is

specific in that it is restricted to nonsufficient statistics p̂n of the observations, obtained by

quantizations of the observation components Xi, 1 ≤ i ≤ n. The quantizations are admitted

to depend on sample sizes n, and they are represented by measurable partitions

Pn = {Anj : 1 ≤ j ≤ mn} , n ∈ N, (18)

of the convex envelope of the support S defined in (15). It is assumed that m1 ≤ m2 ≤ ...

are finite and

lim
n→∞

mn = ∞. (19)

The support S as well as the partition sets Anj are usually intervals.

The partitions (18) lead to discrete statistical models {pn (θ) : θ ∈ Θ} where

pn (θ) =

(
pnj (θ)

4
= µθ (Anj) =

∫

Anj

fθdλ, 1 ≤ j ≤ mn

)
, (20)

and to discrete empirical distributions

p̂n =
(
p̂nj

4
= µ̂n (Anj) : 1 ≤ j ≤ mn

)
, µ̂n =

1

n

n∑

i=1

δXi
, (21)

obtained from the empirical probability measure µ̂n defined on the Borel subsets of R. These

distributions represent the empirical evidence available in the discrete models, resulting from

the original empirical evidence represented by µ̂n.
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We see that p̂n is dominated by pn (θ0) (and, due to the measure - theoretic equivalence

of µθ0
and µθ , by any pn (θ) , θ ∈ Θ) in the sense specified in the definition of φ-disparity.

Hence the φ-disparities Dφ (p̂n,pn (θ)) are well-defined by (8) and finite for all θ ∈ Θ. We

shall assume without loss of generality that

pnj (θ) > 0 for all 1 ≤ j ≤ mn and θ ∈ Θ. (22)

It is clear from the definition (8) that Dφ (p̂n,pn (θ)) is continuous (or differentiable) in θ if

all pnj (θ) are continuous (differentiable) in θ.

Transformations µ̂n 7→ p̂n defined by the quantizations Pn are usually not statistically

sufficient for the original model {µθ : θ ∈ Θ}. Consequently, the estimation procedures

available in the discrete model {pn(θ) : θ ∈ Θ} are less efficient than those available in the

original model. Possible exceptions are the cases where λ is a counting measure supported

by a set of isolated points sj ∈ R, 1 ≤ j ≤ m, and each set Anj ∈ Pn, 1 ≤ j ≤ m ≤ mn,

covers only one support point sj. In this case the original and the transformed model are

statistically equivalent. We are interested only in the cases where this is not true. For

example, if {µθ : θ ∈ Θ} is discrete as presented above, then we are interested only in the

situations where m = ∞ (e.g., the original model is geometric or Poisson) and Pn is a

finite partition with the last set Anmn
covering all points sj, j ≥ mn. Then {pn (θ) : θ ∈ Θ}

consists of mn-dimensional reductions of the infinitely dimensional probability vectors from

the original family {µθ : θ ∈ Θ} . But in the typical situation which we have in mind, the

dominating λ is the Lebesgue measure (or absolutely continuous with respect to the Lebesgue

measure), so that the original model is continuous in the common sense.

We study the φ-disparity estimators θ̂n = θ̂φ
n of the true parameter θ0 ∈ Θ, defined as

measurable functions of the empirical evidence p̂n satisfying a.s. the condition

Dφ

(
p̂n; pn

(
θ̂n

))
= min

θ∈Θ
Dφ (p̂n; pn (θ)) . (23)

In the rest of this section we formulate assumptions about the original model {µθ : θ ∈ Θ}
≡ {fθ : θ ∈ Θ} and partitions Pn which are useful for the characterization of properties of

φ-disparity estimators in the next section.
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(A1) The components of discrete distributions pn (θ) are twice continuously differentiable in

θ, with the first derivatives

ṗn (θ) =

(
ṗnj (θ)

4
=

d

dθ
pnj (θ) : 1 ≤ j ≤ mn

)

satisfying the relation

ṗnj (θ) =

∫

Anj

ḟθdλ, θ ∈ Θ.

In what follows we need also the Fisher informations Jθ,n for the discrete models {pn (θ) : θ ∈ Θ} ,

Jn,θ =
mn∑

j=1

(ṗnj (θ))2

pnj (θ)
, θ ∈ Θ. (24)

Proposition 2.2. The assumption Jθ < ∞ introduced by (17) implies the absolute

λ−integrability of the derivatives ḟθ, so that the integrals considered in (A1) are well defined

and finite. Further, under (A1) the conditions

mn∑

j=1

ṗnj (θ) = 0 and

∫

S

ḟθdλ = 0 (25)

are equivalent and

0 ≤ Jn,θ ≤ Jθ. (26)

Proof. By the Schwarz inequality,

∫

S

∣∣∣ḟθ

∣∣∣ dλ =

∫

S

√
fθ

(∣∣∣ḟθ

∣∣∣ /
√
fθ

)
dλ ≤

√
Jθ

which proves the absolute integrability. Under the absolute integrability, (A1) implies

mn∑

j=1

ṗnj (θ) =

∫

S

ḟθdλ

irrespectively of whether mn is finite or not. The right-hand inequality in (26) follows under

(A1) by using the Jensen inequality, see e.g. Vajda (1973). �
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(A2) The discrete distributions pn (θ) satisfy the limit relation

lim
n→∞

Jn,θ0
= Jθ0

for the Fisher informations Jn,θ0
and Jθ0

defined by (24) and (17).

Next we give a sufficient condition for (A2) jointly with a condition for an analogous

property of the φ−divergences. Note that the φ−divergences satisfy a similar inequality

0 ≤ Dφ (pn (θ) ; pn (θ0)) ≤ Dφ (µθ, µθ0
)

4
=

∫

S

fθ0
φ

(
fθ

fθ0

)
dλ (27)

as the Fisher informations in (26) (cf. Liese and Vajda (1987)).

Proposition 2.3. Let all sets Anj in the partitions Pn be intervals and, for every θ ∈ Θ,

lim
n→∞

max
1≤j≤mn

pnj (θ) = 0. (28)

Then all φ−divergences satisfy the relation

lim
n→∞

Dφ (pn (θ) ; pn (θ0)) = Dφ (µθ, µθ0
) (29)

and (A1) implies (A2).

Proof. See Theorem 3 and Corollary 1 in Vajda (2002). �

Remark 2.1. The condition (28) of Proposition 2.3 holds for all θ ∈ Θ if the dominating

measure λ satisfies the relation

lim
n→∞

max
1≤j≤mn

λ (Anj) = 0.

In particular, it holds if

λ (S) <∞ and λnj =
λ (Anj)

λ (S)
=

1

mn

(cf. (19)). (30)

Since all measures µθ, θ ∈ Θ, are assumed to be measure-theoretically equivalent, we shall

consider also the special case of (30) where

λ = µθ0
, pnj (θ0) =

1

mn

. (31)

Now we formulate an assumption about partitions Pn additional to (19).
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(A3) The partitions satisfy the conditions

lim
n→∞

mn = ∞, lim
n→∞

m2
n

n
= 0 (32)

and

0 < liminfn→∞mn min
1≤j≤mn

pnj (θ0) ≤ limsupn→∞mn max
1≤j≤mn

pnj (θ0) <∞.

This assumption has important consequences. In the following proposition, and in the rest

of the paper, we say that the second derivative φ′′ (t) of a φ−function is Lipschitz at t = 1

if, for all t from a neighborhood of 1, |φ′′ (t) − φ′′ (1)| ≤ const. |t− 1| . Obviously, φ′′ (t)

is Lipschitz at t = 1 if the third derivative φ′′′ (t) exists in a neighborhood of t = 1. This

condition is satisfied by all the concrete examples of φ-functions given above such that φ′′ (t)

at t = 1 exists.

Proposition 2.4. If (A3) holds then, asymptotically for n→ ∞,

‖p̂n − pn (θ0)‖ = Op

(
1/
√
n
)

(33)

and, for all φ−disparities with φ′′ (t) Lipschitz at t = 1,

Dφ (p̂n; pn (θ0)) = Op

(mn

n

)
. (34)

Proof. By Theorem 2 of Györfi and Vajda (2001), under (A3) (without the restriction on

max pnj (θ0)) the mentioned φ−disparities satisfy the asymptotic law

n

2
√
mn

(
Dφ (p̂n; pn (θ0))

φ′′ (1)
− mn

n

)
L→ N (0, 1) as n→ ∞.

Thus (A3) implies (34). For the disparity I2n
4
= I2 (p̂n,pn (θ0)) defined by (10) for α = 2,

this means that

2I2n =
mn∑

j=1

(p̂nj − pnj (θ0))
2

pnj (θ0)
= Op

(mn

n

)
.
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But the restriction on max pnj (θ0) in (A3) implies that there exists C < ∞ such that, for

all sufficiently large n,

2I2n >
mn

C
‖pn − pn (θ0)‖2 .

This together with (34) implies (33). �

3 CONSISTENCY AND ASYMPTOTIC NORMALITY

Let us start with the consistency of φ-disparity estimators θ̂n = θ̂φ
n. Our proof of consis-

tency is based on the following assumption employing the total variation distance (9).

(A4) The true parameter θ0 is identifiable in the family of models {pn (θ) : θ ∈ Θ} , n ∈ N,

in the sense that a sequence θn ∈ Θ satisfies the relation

lim
n→∞

V (pn (θn) ,pn (θ0)) = 0

only if limn→∞ θn = θ0.

In discrete models {p (θ) : θ ∈ Θ} not depending on the sample size n, and continuous in the

sense that θ → θ0 implies V (p (θ) ,p (θ0)) → 0, the true parameter is usually considered to

be identifiable if for all sufficiently small ε > 0

inf
|θ−θ0|>ε

V (p (θ) ,p (θ0)) > 0.

Then, in particular, V (p (θ) ,p (θ0)) > 0 for θ 6= θ0, i.e. the mapping θ 7→ p (θ) is one-to-one

and continuous (in the Euclidean and total variation topology). Further, V (p (θn) ,p (θ0)) →
0 implies |θn − θ0| < ε for small ε > 0 and all sufficiently large n. If θnk

→ θ∗ ∈ Θ then the

triangle inequality implies that V (p (θ∗) ,p (θ0)) is bounded above by a sequence tending to

zero, which contradicts the assumption θ∗ 6= θ0. This means that also the inverse mapping

p (θ) 7→ θ is continuous.

Let us now consider the original model {µθ : θ ∈ Θ} where Θ = (a, b) ⊆ R. Further,

consider a sequence of interval partitions Pn of the support S of {µθ : θ ∈ Θ} such that for

all θ ∈ Θ and

V (µθ, µθ0
) =

∫
|fθ − fθ0

| dλ (cf. (27) for f(t) = |t− 1|)
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it holds

ρn (θ, θ0)
4
= V (pn (θ) ,pn (θ0)) → ρ (θ, θ0)

4
= V (µθ, µθ0

) (35)

as n → ∞ (see Proposition 2.3 for sufficient conditions), and suppose that ρ (θ, θ0) 6= 0

for θ 6= 0 and ρ (θ, θ0) → 0 if θ → θ0. Similarly as in the discrete case, the identifiability

condition

inf
|θ−θ0|>ε

ρ (θ, θ0) > 0 (36)

for all sufficiently small ε > 0 implies that the mapping θ 7→ µθ is one-to-one and continuous,

and also that the inverse mapping µθ 7→ θ is continuous (in the same topologies as considered

above). Unfortunately, if n→ ∞ then, in general, ρn(θn, θ0) → 0 does not imply ρ(θn, θ0) →
0 so that (35) and (36) are not sufficient conditions for (A4). The problem is that if (35)

and (36) hold then ρn(θn, θ0) → 0 does not necessarily mean that all but finitely many θn

are in a neighborhood of θ0. The next two propositions present two possible solutions of this

problem.

In the following proposition, we consider the standard two-point compactifications of

intervals and the functions ρ and ρn introduced in (35).

Proposition 3.1. Let [a, b] ⊆ [−∞,∞] be the two-point compactification of Θ = (a, b) ⊆ R,

and let there exist probability measures µa, µb such that the extended family {µθ : θ ∈ [a, b]}
is continuous in the sense that

lim
θ→θ∗

ρ (θ, θ∗) = 0 for every θ∗ ∈ [a, b] .

If ρ (θ, θ∗) 6= 0 for all pairs θ 6= θ∗ from [a, b], and the functions ρn satisfy (35), then (A4)

holds.

Proof. Let θn be a sequence for which ρn (θn, θ0) → 0, let θ∗ ∈ [a, b] be its condensation

point and θnk
a subsequence tending to θ∗. By the triangle inequality and the inequality (27)

for the total variation,

ρn (θ∗, θ0) ≤ ρn (θ∗, θnk
) + ρn (θnk

, θ0)

≤ ρ (θ∗, θnk
) + ρn (θnk

, θ0) .

15



The first term tends to zero due to the assumed continuity of the extended family of proba-

bility measures and the second term tends to zero by assumption. This together with (35)

implies ρ (θ∗, θ0) = 0, i.e. the identity θ∗ = θ0. �

In concrete examples, the functions ρ(θ, θ0) of (35) are usually nonincreasing (decreasing)

on the interval (a, θ0] and nondecreasing (increasing) on [θ0, b), with ρ(θ0, θ0) = 0. The next

proposition assumes that the functions ρn(θ, θ0) of (35) are nonincreasing on (a, θ0] and

nondecreasing on [θ0, b). Then for every θ1 ∈ (θ0, b), θ2 ∈ (a, θ0)

min {ρn(θ1, θ0), ρn(θ2, θ0)} ≥ ρn(θ0, θ0) = 0

and

min {ρ(θ1, θ0), ρ(θ2, θ0)} ≥ ρ(θ0, θ0) = 0. (37)

Obviously, under (35) and the assumption ρ(θ, θ0) 6= 0 for θ 6= θ0, this piecewise monotonicity

of ρn(θ, θ0) implies (36).

Proposition 3.2. Let the above defined function ρ (θ, θ0) be continuous in θ ∈ (a, b) ⊆ S,

and let ρ (θ, θ0) 6= 0 for θ 6= θ0. If the functions ρn (θ, θ0) satisfy (35) and are nondecreasing

on the subinterval [θ0, b) and nonincreasing on (a, θ0] , then (A4) holds.

Proof. Let θn1
be the first element of the sequence θn which falls into the interval (θ0, b)

and, similarly, θn2
the first element from (a, θ0). A simplication for the case that the whole

sequence θn is in the intervals (a, θ0] or (θ0, b] is obvious. By (35) and (27) for the total

variation,

ρn(θni
, θ0) −→ ρ(θni

, θ0) ≥ ρni
(θni

, θ0), i ∈ {1, 2}.

Therefore (37) and the assumed monotonicity of the functions ρn imply the existence of n0

such that for n > n0

ρn (θ, θ0) ≥
1

2
(ρn1

(θn1
, θ0) + ρ (θn1

, θ0))
4
= ρ∗ > 0

if θ ∈ [θn1
, b) and

ρn (θ, θ0) ≥
1

2
(ρn2

(θn2
, θ0) + ρ (θn2

, θ0))
4
= ρ∗ > 0

16



if θ ∈ (a, θn2
] . Since at the same time there exists ñ0 such that for n > ñ0

ρn (θn, θ0) < min {ρ∗, ρ∗} ,

it follows that θn ∈ [θn1
, θn2

] for n > max {n0, ñ0} . The convergence θn → θ0 now follows

from the assumption ρn (θn, θ0) → 0 by using the compactness of [θn1
, θn2

] and the triangle

inequality, similarly as demonstrated above. �

Remark 3.1. Propositions 3.1 and 3.2 used only the metric properties of functions ρn

and ρ (reflexivity, symmetry and triangle inequality), and also the inequalities ρn ≤ ρ and

convergence ρn → ρ as n→ ∞, guaranteed for the total variation by (27) and (29). All these

properties are shared by the divergence measure H (p, q) =
√
I1/2 (p, q)/2 or H (µθ, µθ0

) =
√
I1/2 (µθ, µθ0

)/2 (see (10) and (27), called Hellinger distance. Thus all what was so far said

in this section remains valid with the total variation replaced by the Hellinger (or any other

metric) distance. This observation is useful because, e.g., the monotonicity (unimodality) of

functions ρn (θ, θ0) assumed in Proposition 3.1 is usually more easily verified for distances

different from the total variation. Note that the Hellinger distance H is not one-one related

with the total variation V : The bounds

1 −
√

1 − (V/2)2 ≤ H2 ≤ V/2

obtained in Remark 2.38 of Liese and Vajda (1987) are attained in the whole range 0 ≤ V ≤ 2.

�

In the rest of this section, all asymptotic relations are considered for n→ ∞. Next follows

our first main result.

Theorem 3.1. If the assumptions (A3) and (A4) hold then all φ−disparity estimators

θ̂n = θ̂φ
n are consistent in the sense that θ̂n − θ0 = op (1) as n→ ∞.

Proof. By Proposition 2.4 and (A3), Dφ(p̂n; pn(θ0)) = op(1). By the definition of θ̂n in (23),

Dφ(p̂n; pn(θ̂n)) ≤ Dφ(p̂n; pn(θ0))

17



so that also Dφ(p̂n; pn(θ̂n)) = op(1). By Proposition 2.1, this implies that

V (p̂n; pn(θ0)) + V (p̂n; pn(θ̂n)) = op(1).

Hence, by the triangle inequality and symmetry for the total variation, V (pn(θ̂n),pn(θ0)) =

op(1). Now the desired relation θ̂n = θ0 + op(1) follows from (A4). �

Our next aim is the asymptotic normality of φ−disparity estimators. The following

proposition studies the model {pn (θ) : θ ∈ Θ} with fixed n. Thus we drop for a while the

subscript n, i.e. we consider {p (θ) = (p1 (θ) , ..., pm (θ)) : θ ∈ Θ} , where p (θ) are discrete

distributions from the simplex

∆m =
{

p = (p1, ..., pm) : pj ≥ 0,
∑

pj = 1
}
⊂ �m

and

�m = {p̃ = (p̃1, ..., p̃m) : 0 ≤ p̃j ≤ 1}

is the unit cube in Rm. The Euclidean norm ‖.‖ defines a topology on �m and a relative

topology on ∆m. The relative interior ∆o
m of ∆m consists of the vectors p ∈∆m with all

coordinates pj positive. It is contained in the interior �
o
m of �m (more precisely, ∆o

m =

∆m ∩ �
o
m).

In the proposition that follows we consider for p (θ) = pn (θ) with a fixed n and p̃ ∈ �m

the φ−disparities Dφ (p̃; p (θ)) defined in accordance with (2.6), and their derivatives

Ḋφ (p̃; p (θ)) =
d

dθ
Dφ (p̃; p (θ)) , D̈φ (p̃; p (θ)) =

d

dθ
Ḋφ (p̃; p (θ)) . (38)

If (A1) holds and φ (t) is differentiable at all t > 0 then Ḋφ (p̃; p (θ)) is well defined for all

θ ∈ Θ (cf.(22)) and satisfies the formula

Ḋφ (p̃; p (θ)) =
m∑

j=1

[
φ

(
p̃j

pj (θ)

)
− p̃j

pj (θ)
φ′
(

p̃j

pj (θ)

)]
ṗj (θ) . (39)

If, moreover, φ is twice differentiable at all t > 0 then also D̈φ (p̃; p (θ)) is well defined for

all θ ∈ Θ.
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Proposition 3.3. Let φ (t) be twice continuously differentiable at all t > 0 and let (A1),

(A2) hold. If n is large enough then the Fisher information

Jn,θ0
=

m∑

j=1

ṗj (θ0)
2

pj (θ0)

is positive and there exists a positive radius r = rn such that the open ball

B = Bn=
{
p̃∈�

0
m : ‖p̃−p (θ0)‖ < r

}

supports a Θ-valued function ψ (p̃) = ψn (p̃) satisfying for all p̃∈B the relations

Ḋφ (p̃; p (ψ (p̃))) = 0 (40)

and

D̈φ (p̃; p (ψ (p̃))) > 0. (41)

Furthermore, the function ψ : B 7→ Θ is unique and continuously partially differentiable on

B.

Proof. By (2.15) and (A2), Jn,θ0
is positive for all sufficiently large n. Put for brevity

p0 = (p10, ..., pm0)
4
= p (θ0) .

The function defined for p̃ = (p̃1, ..., p̃m)∈�m and θ ∈ Θ by

Φ (p̃, θ) = Φ (p̃1, ..., p̃m, θ)
4
= Ḋφ (p̃; p (θ))

is coordinatewise differentiable on the open set �
o
m×Θ. Denote the corresponding derivatives

by Φ̇1, ..., Φ̇m, Φ̇m+1, i.e. let

Φ̇j (p̃, θ) =
∂

∂p̃j

Φ (p̃, θ) , Φ̇m+1 (p̃, θ) =
∂

∂θ
Φ (p̃, θ) = D̈φ (p̃; p (θ)) (cf. (38)). (42)

Since φ (1) = φ′ (1) = 0 (cf. the definition of the disparity function φ (t)), it follows from

(39) that Φ (p0, θ0) = 0. Differentiating (39) by θ and substituting p̃=p0, θ = θ0, we obtain

that

Φ̇m+1 (p0, θ0) = φ′′ (1)Jn,θ0
> 0, (43)
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where the inequality follows from the assumptions φ′′ (1) > 0 and Jn,θ0
> 0. Hence we proved

that Ḋφ (p0; p (θ0)) = 0, D̈φ (p0; p (θ0)) > 0, so that the existence of the desired r > 0 and

the existence, uniqueness and the continuous differentiability of ψ : B →Θ follow from the

implicit function theorem (see e.g. p. 148 in Fleming (1977)). �

In addition to the assumptions (A1)-(A4) of Section 2, we shall need the following im-

portant assumption.

(A5) The φ-disparity estimator θ̂n is for n→ ∞ asymptotically linear in the sense that

θ̂n = θ0 +
1

Jn,θ0

mn∑

j=1

ṗnj (θ0)

pnj (θ0)
(p̂nj − pnj (θ0)) + op

(
1/
√
n
)
.

We see that if (A1), (A2) hold then the expressions in (A5) are well defined for all sufficiently

large n so that this assumption is meaningful.

In order to find a sufficient condition for (A5), we apply Proposition 3.3 under the

condition

lim
n→∞

P (‖p̂n − pn (θ0)‖ ≥ rn) = 0 (44)

imposed on the empirical distribution p̂n and the radius r = rn. By Proposition 2.4, this

condition holds under (A3) if

lim
n→∞

√
nrn = ∞. (45)

Proposition 3.4. Let (A4) and the assumptions of Proposition 3.3 hold. If the radius

r = rn of Proposition 3.3 and the empirical distribution p̂n fulfil the asymptotic condition

(44) then (A5) holds for the φ−disparity estimator θ̂n.

Proof. By (44), the event p̂n ∈ Bn takes place with a probability tending to 1 for n → ∞.

Hence it suffices to prove the asymptotic linearity formula under the condition p̂n ∈ Bn.

The proof is based on the observation that, by (40) and (41), ψ (pn (θ0)) is an argmin of

Ψ1n (θ)
4
= Dφ (pn (θ0) ,pn (θ)) on Θ, and ψ (p̂n) is an argmin of Ψ2n (θ)

4
= Dφ (p̂n,pn (θ)) .
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This means that we can assume that

ψ (pn (θ0)) = θ0 and ψ (p̂n) = θ̂n. (46)

Indeed, it follows from (A4) that θ 6= θ0 implies pn (θ) 6= p (θ0) for all but finitely many

n. This means that θ0 is the unique argmin of Ψ1n (θ) for all but finitely many n, and

θ̂n is by definition an argmin of Ψ2n (θ) on Θ for all n. Therefore the equalities of (3.12)

hold. Now, with (46) in mind, we expand for a fixed n the function ψ (p̃) of the variable

p̃= (p̃1, ..., p̃m) ∈ Bn around the point q = (q1, ..., qm)
4
= pn (θ0). To this end are needed the

continuous partial derivatives

ψ̇j (p̃) =
∂

∂p̃j

ψ (p̃) , 1 ≤ j ≤ mn

we obtain the asymptotic formula

ψ (p̃) = ψ (q) +
mn∑

j=1

ψ̇j (q) (pj − qj) + o (‖p̃−q‖) (47)

for ‖p̃−q‖ → 0. The derivatives can be evaluated by means of Φ̇j (p̃, θ) , 1 ≤ j ≤ mn + 1,

defined by (42), using the identity (40). Namely, by applying the derivatives ∂/∂p̃j on both

sides of (40), we get the equations

Φ̇j (p̃, ψ (p̃)) + Φmn+1
(p̃, ψ (p̃)) ψ̇j (p̃) = 0, 1 ≤ j ≤ mn,

valid for all p̃ ∈ Bn. Hence for all j under consideration in (3.13),

ψ̇j (q) = − Φ̇j (q, ψ (q))

Φ̇mn+1
(q, ψ (q))

= − Φ̇j (q, θ0)

Φ̇mn+1
(q, θ0)

(cf. (46)

where, by (43),

Φ̇mn+1
(q, θ0) = −φ′′ (1)Jn,θ0

.

By (42),

Φ̇j (q, θ0) =

(
∂

∂pj

Φ (p̃, θ0)

)
�

p=q

21



where Φ (p̃, θ) are given for all (p̃, θ) ∈ Bn × Θ by (39). Evaluating the derivatives, we find

that

Φ̇j (q, θ0) = −φ′′ (1) ṗnj (θ0) qj.

By (17), the assumption (A2) implies Jn,θ0
> 0 for all sufficiently large n. Therefore, for all

these n,

ψ̇j (q) =
1

Jn,θ0

ṗnj (θ0)

qj
=

1

Jn,θ0

ṗnj (θ0)

pnj (θ0)
.

Inserting these derivatives in (47), and substituting there q by pn (θ0) and p̃ by p̂n, we obtain

with the help of (46) the asymptotic linear formula of (A5). By (33), (A3) guarantees that

this substitution satisfies for n → ∞ the convergence ‖p̂n−pn (θ0)‖ → 0 assumed in (47).

In fact, it guarantees more, namely ‖p̂n−pn (θ0)‖ = Op (1/
√
n) , which gives (A5) its final

form. �

The method used above to establish the asymptotic linearity formula, based on the

implicit function theorem, is more easily applicable in situations where the discrete model

{p (θ) : θ ∈ Θ} does not depend on the sample size n. Indeed, in this case the condition

(44) needs no verification, as dn = d > 0 is constant and ‖p̂n−q (θ0)‖ = op (1) . Cox (1984)

was probably the first who used this method in such a situation. He studied the MLE, i.e.

the minimum φ0−divergence estimator where φ0 is given by (5). In Chapter 5 of Pardo

(1997), this method was applied to all minimum φ−divergence estimators in discrete models

{p (θ) : θ ∈ Θ} .
The asymptotic linearity formula of (A5) enables to prove the asymptotic normality of

all φ−disparity estimators. To this end we need to add the following condition on partitions

to those considered in (A3). This condition is based on the assumption (A1).

(A6) The partitions Pn satisfy the relation

lim
n→∞

mn∑

j=1

(
|ṗnj (θ0)|√
pnj (θ0)

)3

= 0.
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We present a sufficient condition for (A6).

Proposition 3.5. If (A1) is satisfied and

lim
n→∞

max
1≤j≤mn

ṗnj (θ0)
2

pnj (θ0)
= 0 (48)

then (A6) holds.

Proof. Under (A1),

(
|ṗnj (θ0)|√
pnj (θ0)

)3

≤ ṗnj (θ0)
2

pnj (θ0)
max

1≤j≤mn

|ṗnj (θ0)|√
pnj (θ0)

,

so that, by (26),
mn∑

j=1

(
|ṗnj (θ0)|√
pnj (θ0)

)3

≤ Jθ0
max

1≤j≤mn

|ṗnj (θ0)|√
pnj (θ0)

,

where Jθ0
was assumed in (17) to be finite. �

Theorem 3.2. Let the assumptions (A1) - (A3) and (A5), (A6) be satisfied. Then for all

φ−disparity functions with the second derivative φ′′ (t) Lipschitz at t = 1, the φ−disparity

estimators θ̂n = θ̂φ
n are asymptotically normal in the sense that

√
n
(
θ̂n − θ0

)
L→ N

(
0,J −1

θ0

)
as n→ ∞,

where Jθ0
is the Fisher information (17).

Proof. Put for brevity pn = (pn1, ..., pnmn
)

4
= pn (θ0) , ṗn = (ṗn1, ..., ṗnmn

)
4
= ṗn (θ0) and

J = Jθ0
. By (A2) and (A5), it suffices to prove that

√
n

mn∑

j=1

ṗnj

pnj

(p̂nj − pnj)
L→ N (0,J ) as n→ ∞. (49)

By the Proposition on pp. 311-313 of Beirlant et al. (1994), (49) holds if the independent

random variables

wnj =
Ynj

n

4
=

Poisson (npnj)

n
, 1 ≤ j ≤ mn,
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lead to the sums

Zn
4
=

√
n

mn∑

j=1

ṗnj

pnj

(wnj − pnj) and
Nn − n√

n

4
=

√
n

mn∑

j=1

(wnj − pnj)

satisfying for every t, u ∈ R the limit law

tZn + u
Nn − n√

n

L→ N
(
0, t2J+u2

)
as n→ ∞,

i.e. if
√
n

mn∑

j=1

(
ṗnj

pnj

t+ u

)
(wnj − pnj)

L→ N
(
0, t2J+u2

)
as n→ ∞. (50)

By the Liapunov theorem (p. 127 in Rao (1973)), (50) holds if for n→ ∞

σ2
n

4
= var

[
√
n

mn∑

j=1

(
ṗnj

pnj

t+ u

)
(wnj − pnj)

]
→ t2J+u2 (51)

and

µ3
n

4
=

mn∑

j=1

E

∣∣∣∣
√
n

(
ṗnj

pnj

t+ u

)
(wnj − pnj)

∣∣∣∣
3

→ 0. (52)

As is easy to verify, σ2
n = t2Jn,θ0

+u2, so that (51) follows from (A2). Further,

µ3
n = n−3/2

mn∑

j=1

|ṗnjt+ pnju|3
p3

nj

E |Ynj − npnj|3

where

E |Ynj − npj|3 ≤
[
E (Ynj − npnj)

2E (Ynj − npnj)
4]1/2

=
[
npnj

(
3n2p2

nj + npnj

)]1/2

≤
√

3 (npnj)
3/2 .

Consequently,

µ3
n ≤

√
3

mn∑
j=1

∣∣∣ ṗnjt+pnju√
pnj

∣∣∣
3

≤ k
mn∑
j=1

[(
|ṗnj |√

pnj

)3

+
(√

pnj

)3
]
,
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where we used the inequality |x+ y|3 ≤ 4
(
|x|3 + |y|3

)
obtained from Jensen’s inequality for

the convex ψ (t) = |t|3 , and k = 4
√

3 max
{
|t|3 , |u|3

}
. The desired relation (52) thus follows

from (A6) and from the inequality

mn∑

j=1

(√
pnj

)3 ≤
(

max
1≤j≤mn

pnj

)1/2 mn∑

j=1

pnj,

by taking into account that the condition imposed on max1≤j≤mn
pnj in (A3) and the as-

sumption (9) imply that max1≤j≤mn
pnj → 0 for n→ ∞ . �

4. EXAMPLES

Assumptions (A1)-(A6) can be satisfied by appropriate sequences of partitions in common

statistical models where an a priori knowledge enables to localize the true parameter θ0 to

a compact set Θc ⊂ Θ. It usually suffices to the consider interval partitions of R by the

cutpoints xn,j ; 1 ≤ j ≤ mn which are quantiles of the distribution Fθc
(x) = µθc

((−∞, x))

of orders mn for a fixed θc ∈ Θc. For example, let us look at the quite restrictive condition

(A3). If the parameter θ0 coincides with θc then pn (θ0) defined by (20) is uniform so that

mnpnj (θ0) = 1 for all 1 ≤ j ≤ mn and (A3) holds. If θ0 is not too far away from θc then

in most models (A3) still holds. As an illustration consider θc = 0 in the logistic location

model where

Fθ (x) =
1

1 + e−x+θ
and xnj = ln

j

mn − j
.

Then

xn,1 = ln
1

mn − 1
and pn,1 (θ0) =

1

1 + (mn − 1) eθ0

so that for mn → ∞

lim
n→∞

mnpn,1 (θ0) = e−θ0 for every θ0 ∈ R.

Similarly

xn,mn−1 = ln (mn − 1) and pn,mn
(θ0) =

eθ0

mn − 1 + eθ0

so that for mn → ∞
lim

n→∞
mnpn,mn

(θ0) = eθ0 for every θ0 ∈ R.
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More generally, for every θ0 ∈ R it holds

e−|θ0| ≤ lim
n→∞

mn min
1≤j≤mn

pnj (θ0) ≤ lim
n→∞

mn max
1≤j≤mn

pnj (θ0) ≤ e|θ0|

when mn satisfies (32) so that (A3) holds for θ0 from any bounded subset Θ ⊂ R.

Verification of the assumptions (A1), (A2) and (A6) is usually easy but verification of

(A4) and (A5) involves extensive technicalities. The next example is selected with the aim to

reduce these technicalities to the level allowing to demonstrate verification of all assumptions

(A1)-(A6) on a reasonably limited space. It deals with a parameter estimation of spectral

density based on independent observations of frequencies distributed by this density.

Let {µθ : θ ∈ Θ} with Θ = (−1, 1) be the statistical model with distribution functions

and densities

Fθ (x) =
1

2π
I [0,2π)(x) (x+ θ sin x) and fθ (x) =

1

2π
I [0,2π)(x) (1 + θ cosx) (53)

where I is the indicator function. Further, let us consider for mn assumed in (A3) the

uniform partitions Pn of the observation space [0, 2π) into the intervals Anj = [xn,j−1, xnj) ,

1 ≤ j ≤ mn defined by the cutpoints

0 = xn,0 < xnj =
2πj

mn

< xnmn
= 2π (54)

of the observation space [0, 2π). The resulting discrete models pn (θ) = (pnj (θ) : 1 ≤ j ≤ mn)

are given by the formula

pnj (θ) =
1

mn

+ θcnj for cnj =
sinxnj − sinxn,j−1

2π
=

∫

Anj

d

dθ
fθ (x) dx. (55)

Finally, let θ̂n be the MLE which minimizes the I1−divergence

I1 (p̂n; pn (θ)) =
mn∑

j=1

p̂nj ln p̂nj −
mn∑

j=1

p̂nj ln pnj (θ) , θ ∈ (−1, 1) (56)

(cf.(10)) when the vector of observed relative frequencies is p̂n = (p̂nj : 1 ≤ j ≤ mn) .

By the mean value theorem and the monotonicity of cos x, we get from (55)

cosxnj < mncnj < cos xn,j−1 for xnj, xn,j−1 ∈ [0, π] (57)
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and

cosxn,j−1 < mncnj < cos xnj for xnj, xn,j−1 ∈ [π, 2π] . (58)

By differentiating with respect to θ, we obtain from (55) and (56)

ṗnj (θ) = cnj, p̈nj (θ) = 0 (59)

and

İ1 (p̂n; pn (θ)) = −
mn∑

j=1

p̂nj
mncnj

1 + θmncnj

, Ï1 (p̂n; pn (θ)) =
mn∑

j=1

p̂nj

(
mncnj

1 + θmncnj

)2

. (60)

Finally, from (53) and (59) we obtain the Fisher informations

Jθ =
1

2π

∫ 2π

0

cos2 x

1 + θ cos x
dx =





1−
√

1−θ2

θ2
√

1−θ2
if θ 6= 0

1
2

if θ = 0
(61)

where Jθ ≥ J0 = 1/2 for all θ ∈ (−1, 1), and

Jn,θ = mn

mn∑

j=1

c2nj

1 + θmncnj

=
1

mn

mn∑

j=1

(mncnj)
2

1 + θmncnj

. (62)

From (59) and (55) we see that (A1) holds. By (61), Jθ is an integral of a function

continuous on the integration domain [0, 2π]. By (62) and (57), (58), Jn,θ are Riemann sums

for this integral so that (A2) holds for every θ0 ∈ (−1, 1) . By (55) and (57), (58),

mnpnj (θ) = 1 + θcnj ∈ (1 − |θ| , 1 + |θ|) (63)

for every θ ∈ (−1, 1) , every 1 ≤ j ≤ mn and every n. This implies the validity of the

assumption (A3) for all θ0 ∈ (−1, 1) . Let us now turn attention to (A4). By (9) and (55),

for every θn, θ0 ∈ (−1, 1)

Vn
∆
= V (pn (θn) ; pn (θ0)) =

mn∑

j=1

|(θn − θ0) cnj| .

Suppose for simplicity that mn = 4kn for an integer kn. Then cnj > 0 for 1 ≤ j ≤ kn so that

Vn = 4 |θn − θ0|
kn∑

j=1

cnj ≥ 4 |θn − θ0|
1

mn

kn∑

j=1

cos xnj
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where the inequality follows from (57). By (54), xn,kn
= π/2, so that on the right hand side

are Riemann sums of the integral
π/2∫
0

cos xdx = 1. Therefore,

Vn = 4 |θn − θ0| (1 + o (1)) as n→ ∞

which implies (A4) for all θ0 ∈ (−1, 1) . Further, by (55) and (59),

mn∑

j=1

(
|ṗnj (θ)|√
pnj (θ)

)3

=
mn∑

j=1

( √
mn |cnj|√

1 + θmncnj

)3

=
Rn (θ)√
mn

where, by (57) and (58),

Rn (θ) =
1

mn

mn∑

j=1

(
|mncnj|√
1 + θmncnj

)3

are Riemann sums of the Riemann integral

1

2π

∫ 2π

0

( |cosx|√
1 + θ cos x

)3

dx ≤ 1

2π

1

(1 − |θ|)3/2

∫ 2π

0

|cosx|3 dx <∞.

Therefore (A6) holds for all θ0 ∈ (−1, 1).

It remains to prove (A5). Let θ, θ0 ∈ (−1, 1) be arbitrary and θ0 fixed. By (33) and

(A3), the empirical distributions p̂n satisfy the relation

lim
n→∞

P (‖p̂n − pn (θ0)‖ ≥ rn) = 0 for rn =
1 − |θ0|
2mn

. (64)

In other words, the sequence rn and the empirical distribution p̂n fulfil (44) as assumes

Proposition 3.4. Since (A4) was proved above and the function φ1(t) = t ln t− t− 1 defining

the I1− divergence is twice continuously differentiable at any t > 0, the remaining assump-

tions of Proposition 3.3 hold as well. Thus, by Propositions 3.3 and 3.4, it suffices to prove

for each sufficiently large n the existence of a function ψ = ψn for which (40) and (41)

hold on the ball Bn of radius rn defined by (64). If p̃n = (p̃nj : 1 ≤ j ≤ mn) ∈ Bn, i.e.

if ‖p̃n − pn (θ0)‖ < rn, then (63) implies for α = (1 − |θ0|)/2, β = 3/2 + |θ0| /2 and all

1 ≤ j ≤ mn that
α

mn

≤ p̃nj ≤
β

mn

. (65)
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Hence, by putting p̂n = p̃n in the definition of Ï1 (p̂n; pn (θ)) in (60), and by (57), (58), we

obtain that each p̃n ∈ Bn fulfils the relations

Ï1 (p̃n; pn (θ)) ≥ α
(1+|θ0|)2

1
mn

mn∑
j=1

(mncn)2

= α
(1+|θ0|)2

(
1
2π

∫ 2π

0
cos2 xdx+ o (1)

)
as n→ ∞

= α
2(1+|θ0|)2 + o (1) as n→ ∞.

(66)

This means that if n is large enough then İ1 (p̃n; pn (θ)) is strictly increasing in the variable

θ ∈ (−1, 1) . Next we prove that for each p̃n ∈ Bn it holds

lim
θ↓−1

lim
n→∞

İ1 (p̃n; pn (θ)) = −∞, (67)

lim
θ↑1

lim
n→∞

İ1 (p̃n; pn (θ)) = ∞. (68)

Indeed, by (60) and (65), p̃n ∈ Bn implies

− β

mn

mn∑

j=1

mncnj

1 + θmncnj

≤ İ1 (p̃n; pn (θ)) ≤ − α

mn

mn∑

j=1

mncnj

1 + θmncnj

where, by (57) and (58),

− 1

mn

mn∑

j=1

mncnj

1 + θmncnj

= − 1

2π

∫ 2π

0

cos x

1 + θ cos x
dx+ o (1) as n→ ∞.

It is easy to verify that the last integral as a function of θ ∈ (−1, 1) tends to ∞ or −∞ if

θ ↓ −1 or θ ↑ 1. Thus (67) and (68) follow from the last formula. The strict monotonicity

of Ḋφ1
(p̃n; pn (θ)) = İ1 (p̃n; pn (θ)) together with (66), (67) implies that, for all sufficiently

large n and all p̃n ∈ Bn, there exist unique solutions ψn (p̃n) of the likelihood equation

İ1 (p̃n; pn (θ)) = 0 in the variable θ, i.e. that the functions ψn satisfy (40) for all p̃ = p̃n ∈ Bn

and p(θ) = pn (θ). By (66), these functions satisfy in the same sense also (41). This

completes the proof of (A5).

Now, using Theorems 3.1 and 3.2, we can close the analysis of the continuous model

(53) by the statement that the MLE θ̂n of the true parameter θ0 ∈ (−1,−1), based on
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data finitely quantized by the uniformly distributed values xn,1, ..., xn,mn−1 given by (54) is

consistent, and also efficient and asymptotically normal in this model in the sense

√
n
(
θ̂n − θ0

)
L→ N (0, 1/Jθ0

) as n→ ∞,

where Jθ0
is given by (61).
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