

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Mining Linguistic Associations from Data Using LFLC

Antonín Dvořák, Vilém Novák, Irina Perfilieva

University of Ostrava Institute for Research and Applications of Fuzzy Modeling 30. dubna 22, 701 03 Ostrava 1, Czech Republic antonin.dvorak@osu.cz

Data – Algorithms – Decision making, Třešť, 11. 12. 2006

Outline

Associations Mining

- Introduction
- 2
- Evaluating linguistic expressions
- 3 Mining linguistic associations
 - GUHA quantifiers
 - Rule reduction
- Fuzzy transform 4
- 5 Associations using Fuzzy transform
- Linguistic fuzzy logic controller 6
- **Experiments** 7
 - Linguistic associations
 - NO₂ FT associations
- Future work 8

Introduction

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

- Evaluating expressions
- Linguistic associations GUHA quantifiers Rule reduction

FT

- Associations using FT
- LFLC
- Experiments Linguistic associations NO₂ FT associations

Future work

Method for finding linguistically characterized associations in large databases.

xample:

high profit and rather low cost

very high productivity and significantly large volume of sale

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Characteristic feature — evaluating linguistic expressions and predications

Introduction

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

- Evaluating expressions
- Linguistic associations GUHA quantifiers Rule reduction
- FT
- Associations using FT
- LFLC
- Experiments Linguistic associations NO₂ FT associations
- Future work

Method for finding linguistically characterized associations in large databases.

Example:

high profit and rather low cost

very high productivity and significantly large volume of sale

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Characteristic feature — evaluating linguistic expressions and predications

Introduction

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Method for finding linguistically characterized associations in large databases.

Example:

high profit and rather low cost

very high productivity and significantly large volume of sale

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Characteristic feature — evaluating linguistic expressions and predications

Methods

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Two methods:

numbers replaced by evaluating linguistic expressions

mining linguistic associations — **GUHA method** (P. Hájek, T. Havránek, 1968, 1978)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

technique of fuzzy transform

Methods

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Two methods:

numbers replaced by evaluating linguistic expressions

mining linguistic associations — **GUHA method** (P. Hájek, T. Havránek, 1968, 1978)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

technique of fuzzy transform

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Advantages:

Easy (at least easier) understandability

Use of logical properties for reduction of the number of associations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Vague meaning enables less strict interpretation

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Advantages:

- Easy (at least easier) understandability
- Use of logical properties for reduction of the number of associations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Vague meaning enables less strict interpretation

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Advantages:

- Easy (at least easier) understandability
- Use of logical properties for reduction of the number of associations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Vague meaning enables less strict interpretation

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Logical theory of their meaning

Atomic: small, medium, big (canonical words)

Fuzzy quantities: about twenty, roughly 100

- Simple: very small, more or less medium, roughly big, about thirty five, roughly one thousand
- Compound: very roughly small or medium
- Fuzzy IF-THEN rules: conditional linguistic statements

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Logical theory of their meaning

- Atomic: small, medium, big (canonical words)
- Fuzzy quantities: about twenty, roughly 100
- Simple: very small, more or less medium, roughly big, about thirty five, roughly one thousand
- Compound: very roughly small or medium
- Fuzzy IF-THEN rules: conditional linguistic statements

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Logical theory of their meaning

- <u>Atomic:</u> small, medium, big (canonical words)
- Fuzzy quantities: about twenty, roughly 100
- Simple: very small, more or less medium, roughly big, about thirty five, roughly one thousand
- Compound: very roughly small or medium
- Fuzzy IF-THEN rules: conditional linguistic statements

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Logical theory of their meaning

- Atomic: small, medium, big (canonical words)
- Fuzzy quantities: about twenty, roughly 100
- Simple: very small, more or less medium, roughly big, about thirty five, roughly one thousand
- Compound: very roughly small or medium

Fuzzy IF-THEN rules: conditional linguistic statements

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Logical theory of their meaning

- Atomic: small, medium, big (canonical words)
- Fuzzy quantities: about twenty, roughly 100
- Simple: very small, more or less medium, roughly big, about thirty five, roughly one thousand
- Compound: very roughly small or medium
- Fuzzy IF-THEN rules: conditional linguistic statements

Evaluating predications

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifier Rule reduction

FT

Association using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Evaluating linguistic predication

 $\langle noun \ phrase \rangle$ is ${\cal A}$

or

 $\mathcal{A} \left< \mathsf{noun \, phrase} \right>$

Example: (temperature of melted metal) is very high very high (temperature of melted metal)

$$\mathcal{C} := \bigwedge_{i \in I} (\mathcal{A}_i | X_i) \qquad \mathcal{D} := \bigvee_{i \in I} (\mathcal{B}_i | X_i)$$
$$\mathcal{E} := \bigvee_{j \in J} \mathcal{C}_j \qquad \qquad \mathcal{F} := \bigwedge_{j \in J} \mathcal{D}_j$$

 \wedge — linguistic conjunction ("and"), \vee — linguistic disjunction ("or")

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Evaluating predications

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Evaluating linguistic predication

 $\langle \text{noun phrase} \rangle$ is $\mathcal A$

or \mathcal{A}

 \mathcal{A} (noun phrase)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Example: (temperature of melted metal) is very high very high (temperature of melted metal)

$$\mathcal{C} := \bigwedge_{i \in I} (\mathcal{A}_i X_i) \qquad \mathcal{D} := \bigvee_{i \in I} (\mathcal{B}_i X_i)$$
$$\mathcal{E} := \bigvee_{j \in J} \mathcal{C}_j \qquad \qquad \mathcal{F} := \bigwedge_{j \in J} \mathcal{D}_j$$

 \wedge — linguistic conjunction ("and"), \vee — linguistic disjunction ("or")

Evaluating predications

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Evaluating linguistic predication

 $\langle noun phrase \rangle$ is \mathcal{A} or $\mathcal{A} \langle noun phrase \rangle$

Example: (temperature of melted metal) is very high very high (temperature of melted metal)

$$\mathcal{C} := \bigwedge_{i \in I} (\mathcal{A}_i X_i) \qquad \mathcal{D} := \bigvee_{i \in I} (\mathcal{B}_i X_i)$$
$$\mathcal{E} := \bigvee_{j \in J} \mathcal{C}_j \qquad \qquad \mathcal{F} := \bigwedge_{j \in J} \mathcal{D}_j$$

- \wedge linguistic conjunction ("and"),
- \bigvee linguistic disjunction ("or")

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifier Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Mathematical model of the meaning of evaluating expressions

Context, intension, extension

 $\blacksquare Intension of A$

$$A: W \longrightarrow \mathcal{F}(V).$$

■ Context: $\langle v_L, v_S, v_R \rangle \mapsto [v_L, v_R]$ ■ Extension of \mathcal{A} in a context $w \in W$ is a fuzzy set $A(w) \subseteq V$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Mathematical model of the meaning of evaluating expressions

Context, intension, extension

Intension of \mathcal{A}

$$A: W \longrightarrow \mathcal{F}(V).$$

■ Context: $\langle v_L, v_S, v_R \rangle \mapsto [v_L, v_R]$ ■ Extension of \mathcal{A} in a context $w \in W$ is a fuzzy set $A(w) \subset V$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● のへで

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Mathematical model of the meaning of evaluating expressions

Context, intension, extension

Intension of \mathcal{A}

$$A: W \longrightarrow \mathcal{F}(V).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Context: $\langle v_L, v_S, v_R \rangle \mapsto [v_L, v_R]$

■ *Extension* of A in a context $w \in W$ is a *fuzzy set* $A(w) \subseteq V$

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Mathematical model of the meaning of evaluating expressions

Context, intension, extension

Intension of \mathcal{A}

$$A: W \longrightarrow \mathcal{F}(V).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

• Context:
$$\langle v_L, v_S, v_R \rangle \mapsto [v_L, v_R]$$

Extension of \mathcal{A} in a context $w \in W$ is a fuzzy set $A(w) \subseteq V$

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Association: using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Hedges with narrowing and widening effect

extremely (Ex), significantly (Si), very (Ve), empty hedge, more or less (ML), roughly (Ro), quite roughly (QR), very roughly (VR).

 $\mathsf{Ex} \preceq \mathsf{Si} \preceq \mathsf{Ve} \preceq \langle \mathsf{empty} \ \mathsf{hedge} \rangle \preceq \mathsf{ML} \preceq \mathsf{Ro} \preceq \mathsf{QR} \preceq \mathsf{VR}$

Induced specificity ordering of evaluating expressions

$$\label{eq:lambda} \begin{split} \langle hedge \rangle_1 \langle atomic \ term \rangle \ \preceq \ \langle hedge \rangle_2 \langle atomic \ term \rangle \quad iff \\ \langle hedge \rangle_1 \ \preceq \ \langle hedge \rangle_2 \end{split}$$

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Hedges with *narrowing* and *widening* effect Concrete hedges: extremely (Ex), significantly (Si), very (Ve), empty hedge, more or less (ML), roughly (Ro), quite roughly (QR), very roughly (VR).

 $\mathsf{Ex} \preceq \mathsf{Si} \preceq \mathsf{Ve} \preceq \langle \mathsf{empty} \ \mathsf{hedge} \rangle \preceq \mathsf{ML} \preceq \mathsf{Ro} \preceq \mathsf{QR} \preceq \mathsf{VR}$

Induced specificity ordering of evaluating expressions

$$\label{eq:lastic_loss} \begin{split} \langle hedge \rangle_1 \langle atomic \ term \rangle \ \preceq \ \langle hedge \rangle_2 \langle atomic \ term \rangle \quad iff \\ \langle hedge \rangle_1 \ \preceq \ \langle hedge \rangle_2 \end{split}$$

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Hedges with *narrowing* and *widening* effect Concrete hedges: extremely (Ex), significantly (Si), very (Ve), empty hedge, more or less (ML), roughly (Ro), quite roughly (QR), very roughly (VR).

$\mathsf{Ex} \preceq \mathsf{Si} \preceq \mathsf{Ve} \preceq \langle \mathsf{empty} \ \mathsf{hedge} \rangle \preceq \mathsf{ML} \preceq \mathsf{Ro} \preceq \mathsf{QR} \preceq \mathsf{VR}$

Induced specificity ordering of evaluating expressions

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Hedges with *narrowing* and *widening* effect Concrete hedges: extremely (Ex), significantly (Si), very (Ve), empty hedge, more or less (ML), roughly (Ro), quite roughly (QR), very roughly (VR).

 $\mathsf{Ex} \preceq \mathsf{Si} \preceq \mathsf{Ve} \preceq \langle \mathsf{empty} \ \mathsf{hedge} \rangle \preceq \mathsf{ML} \preceq \mathsf{Ro} \preceq \mathsf{QR} \preceq \mathsf{VR}$

Induced specificity ordering of evaluating expressions

$$\label{eq:lastic_loss} \begin{split} \langle \text{hedge} \rangle_1 \langle \text{atomic term} \rangle \ \preceq \ \langle \text{hedge} \rangle_2 \langle \text{atomic term} \rangle \quad \text{iff} \\ \langle \text{hedge} \rangle_1 \ \preceq \ \langle \text{hedge} \rangle_2 \end{split}$$

Finding a suitable expression

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifier Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Given an element $u \in w$, transform it into a suitable *perception*

Suit : $\langle u, w \rangle \mapsto \mathcal{A}$

Suit(u, w) gives (intension of) an evaluating expression A such that the observation $u \in w$ is the *most specific and typical* for extension of A in the context w

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Finding a suitable expression

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifier: Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Given an element $u \in w$, transform it into a suitable *perception*

Suit : $\langle u, w \rangle \mapsto \mathcal{A}$

Suit(u, w) gives (intension of) an evaluating expression A such that the observation $u \in w$ is the most specific and typical for extension of A in the context w

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Data table

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations

GUHA quantifie Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

$f_{jj} \in \mathbb{R}.$

Mining linguistic knowledge from data

Data

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Mining pure linguistic associations

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations

GUHA quantifie Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

 $Ev_{ii} = \operatorname{Suit}(e_{X_i}(o_i), w_i).$

Convert the data into linguistic form

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Generally smaller size $(m' \ll m)$

Mining pure linguistic associations

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations

GUHA quantifie Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

$$Ev_{ji} = \operatorname{Suit}(e_{X_i}(o_j), w_i).$$

Convert the data into linguistic form

Generally smaller size ($m' \ll m$)

◆□> ◆□> ◆目> ◆目> ◆目> ◆□>

Linguistic associations

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations

GUHA quantifier: Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

$$\bigwedge_{i=1}^{p} (\mathcal{A}_i \ Y_i) \sim \bigwedge_{j=1}^{q} (\mathcal{B}_j \ Z_j)$$

After being assigned, linguistic predications $\mathcal{C},\,\mathcal{D}$ behave as logical data

For each object o_j , it is true (or not true) that the attribute X_i is evaluated by the expression A_{ji}

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Suit acts as special partition operator

Linguistic associations

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations

GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

$$\bigwedge_{i=1}^{p} (\mathcal{A}_i \; Y_i) \sim \bigwedge_{j=1}^{q} (\mathcal{B}_j \; Z_j)$$

After being assigned, linguistic predications $\mathcal{C},\,\mathcal{D}$ behave as logical data

For each object o_j , it is true (or not true) that the attribute X_i is evaluated by the expression A_{ii}

Suit acts as special partition operator

GUHA quantifiers

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Apply the standard GUHA quantifiers for mining associations

four-fold table

	\mathcal{D}	not ${\cal D}$
\mathcal{C}	а	b
not $\mathcal C$	С	d

■ \sqsubset_r^{γ} — binary multitudinal quantifier true, if $a > \gamma(a+b)$ and a > r γ – degree of confidence, r – degree of suppor

• \sim_x — symmetric associational quantifier true if ad > bc

(1)

GUHA quantifiers

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Apply the standard GUHA quantifiers for mining associations

four-fold table

$$\begin{array}{c|c} \mathcal{D} & \operatorname{not} \mathcal{D} \\ \mathcal{C} & \mathbf{a} & \mathbf{b} \\ \operatorname{not} \mathcal{C} & \mathbf{c} & \mathbf{d} \end{array}$$

(1)

- □ □ ^γ_r binary multitudinal quantifier true, if a > γ(a + b) and a > r γ − degree of confidence, r − degree of support
- ~_x symmetric associational quantifier true if ad > bc

GUHA quantifiers

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Apply the standard GUHA quantifiers for mining associations

four-fold table

$$\begin{array}{c|c} \mathcal{D} & \operatorname{not} \mathcal{D} \\ \mathcal{C} & \mathbf{a} & \mathbf{b} \\ \operatorname{not} \mathcal{C} & \mathbf{c} & \mathbf{d} \end{array}$$

(1)

- \sqsubset_r^{γ} binary multitudinal quantifier true, if $a > \gamma(a + b)$ and a > r γ – degree of confidence, r – degree of support
- \sim_x symmetric associational quantifier true if ad > bc

Linguistic associations (Cont.)

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Linguistic associations

 $\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}$

hypotheses about possible validity of fuzzy IF-THEN rules

 $\mathcal{R} := \mathsf{IF} \mathcal{C} \mathsf{THEN} \mathcal{D}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Linguistic associations (Cont.)

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Linguistic associations

 $\mathcal{C}\sqsubset_r^{\gamma}\mathcal{D}$

hypotheses about possible validity of fuzzy IF-THEN rules

 $\mathcal{R}:=~\mathsf{IF}~\mathcal{C}~\mathsf{THEN}~\mathcal{D}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Syntactic entailment

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT LFLC Experiments

Experiments Linguistic associations NO₂ FT associations

Future work

Reduction of number of mined linguistic associations

K — a set of mined linguistic associations

mining from the shortest and narrowest conjunctions
Syntactic entailment

f $\mathcal{A} \sqsubset_r^{\gamma} \mathcal{B}$ implies $\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}$ then

 $(\mathcal{A}\sqsubset_r^\gamma\mathcal{B})\vdash (\mathcal{C}\sqsubset_r^\gamma\mathcal{D})$

Syntactic entailment

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Reduction of number of mined linguistic associations

K — a set of mined linguistic associations

mining from the shortest and narrowest conjunctions

Syntactic entailment

if $\mathcal{A} \sqsubset^{\gamma}_{r} \mathcal{B}$ implies $\mathcal{C} \sqsubset^{\gamma}_{r} \mathcal{D}$ then

 $(\mathcal{A}\sqsubset_r^\gamma\mathcal{B})\vdash (\mathcal{C}\sqsubset_r^\gamma\mathcal{D})$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Syntactic entailment

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Reduction of number of mined linguistic associations

K — a set of mined linguistic associations

mining from the shortest and narrowest conjunctions Syntactic entailment

if $\mathcal{A} \sqsubset_r^{\gamma} \mathcal{B}$ implies $\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}$ then

$$(\mathcal{A} \sqsubset_r^{\gamma} \mathcal{B}) \vdash (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D})$$

Syntactic Entailment

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Theorem Let $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ be a linguistic predications. (a) If $\mathcal{D} \preceq \mathcal{D}'$ then $(\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}) \vdash (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}')$ Example: (big $X \sqsubset_r^{\gamma}$ small $Y) \vdash$ (big $X \sqsubset_r^{\gamma}$ roughly small Y) (b) $(\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}) \vdash (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D} \text{ OR } \mathcal{B})$ Example: (big $X \sqsubset_r^{\gamma}$ small $Y) \vdash$ (big $X \sqsubset_r^{\gamma}$ small Y OR medium Y) (c) $(\mathcal{A} \sqsubset_r^{\gamma} \mathcal{C}, \mathcal{B} \sqsubset_r^{\gamma} \mathcal{C}, \mathcal{A} \text{ AND } \mathcal{B} \sqsubseteq_s^{\gamma} \mathcal{C}) \vdash (\mathcal{A} \text{ OR } \mathcal{B} \sqsubset_r^{\gamma} \mathcal{C}),$ where $s \leq r$

・ロ・・聞・・聞・・聞・・ 日・

Syntactic Entailment

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Theorem Let $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ be a linguistic predications. (a) If $\mathcal{D} \preceq \mathcal{D}'$ then $(\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}) \vdash (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}')$ Example: (big $X \sqsubset_r^{\gamma}$ small $Y) \vdash$ (big $X \sqsubset_r^{\gamma}$ roughly small Y) (b) $(\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}) \vdash (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D} \text{ OR } \mathcal{B})$ Example: (big $X \sqsubset_r^{\gamma}$ small $Y) \vdash$ (big $X \sqsubset_r^{\gamma}$ small Y OR medium Y) (c) $(\mathcal{A} \sqsubset_r^{\gamma} \mathcal{C}, \mathcal{B} \sqsubset_r^{\gamma} \mathcal{C}, \mathcal{A} \text{ AND } \mathcal{B} \sqsubset_s^{\gamma} \mathcal{C}) \vdash (\mathcal{A} \text{ OR } \mathcal{B} \sqsubset_r^{\gamma} \mathcal{C}),$ where $s \leq r$

・ロ・・聞・・聞・・聞・・ 日・

Syntactic Entailment

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Theorem Let $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ be a linguistic predications. (a) If $\mathcal{D} \preceq \mathcal{D}'$ then $(\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}) \vdash (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}')$ Example: (big $X \sqsubset_r^{\gamma}$ small $Y) \vdash$ (big $X \sqsubset_r^{\gamma}$ roughly small Y) (b) $(\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}) \vdash (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D} \text{ OR } \mathcal{B})$ Example: (big $X \sqsubset_r^{\gamma}$ small $Y) \vdash$ (big $X \sqsubset_r^{\gamma}$ small Y OR medium Y) (c) $(\mathcal{A} \sqsubset_r^{\gamma} \mathcal{C}, \mathcal{B} \sqsubset_r^{\gamma} \mathcal{C}, \mathcal{A} \text{ AND } \mathcal{B} \sqsubset_s^{\gamma} \mathcal{C}) \vdash (\mathcal{A} \text{ OR } \mathcal{B} \sqsubset_r^{\gamma} \mathcal{C}),$ where $s \leq r$

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifier Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Let $H_1, H_2 \subset K$ — two sets of mined associations $H_1 \models H_2$.

Associations from H_1 are more informative than those from H_2 (the latter are less informative than the former)

Rule of strong entailment If $(A \sim B) \vdash (C \sim D)$ then $(A \sim B) \models (C \sim D)$

Rule of specificityLet $(\mathcal{A} \sqsubset_r^{\gamma} \mathcal{B}), (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}) \in K, \quad \mathcal{C} \preceq \mathcal{A} \text{ and } \mathcal{B} \preceq \mathcal{D}.$ Then $(\mathcal{A} \sqsubset_r^{\gamma} \mathcal{B}) \models (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D})$

Example

(big $X \sqsubset_r^{\gamma}$ small Y), (very big $X \sqsubset_r^{\gamma}$ roughly small Y) $\in K$ Then (big $X \sqsubset_r^{\gamma}$ small Y) \models (very big $X \sqsubset_r^{\gamma}$ roughly small Y)

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Let $H_1, H_2 \subset K$ — two sets of mined associations $H_1 \models H_2$.

Associations from H_1 are more informative than those from H_2 (the latter are *less informative* than the former)

1 Rule of strong entailment If $(A \sim B) \vdash (C \sim D)$ then $(A \sim B) \models (C \sim D)$.

Rule of specificity Let $(\mathcal{A} \sqsubset_r^{\gamma} \mathcal{B}), (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}) \in K, \quad \mathcal{C} \preceq \mathcal{A} \text{ and } \mathcal{B} \preceq \mathcal{D}.$ Then $(\mathcal{A} \sqsubset_r^{\gamma} \mathcal{B}) \models (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D})$

Example

(big $X \sqsubseteq_r^{\gamma}$ small Y), (very big $X \sqsubset_r^{\gamma}$ roughly small Y) \in K Then (big $X \sqsubset_r^{\gamma}$ small Y) \models (very big X \sqsubset_r^{γ} roughly small Y)

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifier Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Let $H_1, H_2 \subset K$ — two sets of mined associations $H_1 \models H_2$.

Associations from H_1 are *more informative* than those from H_2 (the latter are *less informative* than the former)

1 Rule of strong entailment If $(A \sim B) \vdash (C \sim D)$ then $(A \sim B) \models (C \sim D)$.

2 Rule of specificity Let $(\mathcal{A} \sqsubset_r^{\gamma} \mathcal{B}), (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}) \in \mathcal{K}, \quad \mathcal{C} \preceq \mathcal{A} \text{ and } \mathcal{B} \preceq \mathcal{D}.$ Then $(\mathcal{A} \sqsubset_r^{\gamma} \mathcal{B}) \models (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D})$

Example

(big $X \sqsubset_r^{\gamma}$ small Y), (very big $X \sqsubset_r^{\gamma}$ roughly small Y) $\in K$ Then (big $X \sqsubset_r^{\gamma}$ small Y) \models (very big $X \sqsubset_r^{\gamma}$ roughly small Y)

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifier Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Let $H_1, H_2 \subset K$ — two sets of mined associations $H_1 \models H_2$.

Associations from H_1 are more informative than those from H_2 (the latter are less informative than the former)

1 Rule of strong entailment If $(A \sim B) \vdash (C \sim D)$ then $(A \sim B) \models (C \sim D)$.

2 Rule of specificity Let $(\mathcal{A} \sqsubset_r^{\gamma} \mathcal{B}), (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D}) \in \mathcal{K}, \quad \mathcal{C} \preceq \mathcal{A} \text{ and } \mathcal{B} \preceq \mathcal{D}.$ Then $(\mathcal{A} \sqsubset_r^{\gamma} \mathcal{B}) \models (\mathcal{C} \sqsubset_r^{\gamma} \mathcal{D})$

Example:

(big $X \sqsubset_r^{\gamma}$ small Y), (very big $X \sqsubset_r^{\gamma}$ roughly small Y) $\in K$ Then (big $X \sqsubset_r^{\gamma}$ small Y) \models (very big $X \sqsubset_r^{\gamma}$ roughly small Y)

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

3 Rule of disjunction Let $H = \{A_j \sqsubset_r^{\gamma} C \mid j \in J\} \subset K, B := OR_{j \in J} A_j$ and $B \sqsubset_r^{\gamma} C \in K$. Then (a) $B \sqsubset_r^{\gamma} C \models H$, (b) $H \models B \sqsubset_r^{\gamma} C$.

Example: {(small $X \sqsubset_r^{\gamma}$ big Y), (medium $X \sqsubset_r^{\gamma}$ big Y) (small X OR medium $X \sqsubset_r^{\gamma}$ big Y))} $\subset K$

Then

 $\text{small X OR medium X} \sqsubset_r^{\gamma} \text{ big Y})) \models \\ \{(\text{small X} \sqsubset_r^{\gamma} \text{ big Y}), (\text{medium X} \sqsubset_r^{\gamma} \text{ big Y})\},$

 $[small X \sqsubset_r^{\gamma} big Y), (medium X \sqsubset_r^{\gamma} big Y)\} \models \\ (small X OR medium X \sqsubset_r^{\gamma} big Y))$

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

3 Rule of disjunction Let $H = \{A_j \sqsubset_r^{\gamma} C \mid j \in J\} \subset K, B := OR_{j \in J} A_j$ and $B \sqsubset_r^{\gamma} C \in K$. Then (a) $B \sqsubset_r^{\gamma} C \models H$, (b) $H \models B \sqsubset_r^{\gamma} C$.

Example: {(small $X \sqsubset_r^{\gamma}$ big Y), (medium $X \sqsubset_r^{\gamma}$ big Y), (small X OR medium $X \sqsubset_r^{\gamma}$ big Y))} $\subset K$

Then

small X OR medium X \sqsubset_r^{γ} big Y)) \models {(small X \sqsubset_r^{γ} big Y),(medium X \sqsubset_r^{γ} big Y)},

 $(small X \sqsubset_{r}^{\gamma} big Y), (medium X \sqsubset_{r}^{\gamma} big Y) \models \\ (small X OR medium X \sqsubset_{r}^{\gamma} big Y)^{\gamma}$

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

3 Rule of disjunction Let $H = \{A_j \sqsubset_r^{\gamma} C \mid j \in J\} \subset K, B := OR_{j \in J} A_j$ and $B \sqsubset_r^{\gamma} C \in K$. Then (a) $B \sqsubset_r^{\gamma} C \models H$, (b) $H \models B \sqsubset_r^{\gamma} C$.

Example: {(small $X \sqsubset_r^{\gamma}$ big Y), (medium $X \sqsubset_r^{\gamma}$ big Y), (small X OR medium $X \sqsubset_r^{\gamma}$ big Y))} $\subset K$

Then

 $(small X \bigcirc R medium X \sqsubset_r^{\gamma} big Y)) \models \\ \{(small X \sqsubset_r^{\gamma} big Y), (medium X \sqsubset_r^{\gamma} big Y)\},\$

 $\{(small \ X \sqsubset_r^{\gamma} big \ Y), (medium \ X \sqsubset_r^{\gamma} big \ Y)\} \models (small \ X OR medium \ X \sqsubset_r^{\gamma} big \ Y))\}$

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

4 Rule of empty predication

weak heating \Box_r^{γ} medium temperature of melted metal roughly medium heating \Box_r^{γ} medium temperature of melted metal more or less strong heating \Box_r^{γ} medium temperature of melted metal

hen

heating \Box_r^{γ} medium temperature of melted metal nore informative

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

4 Rule of empty predication

weak heating \Box_r^{γ} medium temperature of melted metal roughly medium heating \Box_r^{γ} medium temperature of melted metal more or less strong heating \Box_r^{γ} medium temperature of melted metal

then

heating \sqsubset_r^{γ} medium temperature of melted metal is more informative

Reduction

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Reduction of the set K

If $H_1, H_2 \in K$ and $H_1 \models H_2$ then derive a new set $K' = K - H_2$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Fuzzy transform

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

- Continuous function $f(x): w \longrightarrow \mathbb{R}$, $w = [v_L, v_R]$
- f(x) known at points x_1, \ldots, x_N
- equidistant nodes $x_{0,1}, \ldots, x_{0,n}$
- n fuzzy numbers Fn_{v,x0} (basic functions) covering of w (extensions of "approximately x₀")

Direct F-transform Values of f(x) transformed into *n*-tuple of components $[F_1, \ldots, F_n]$

$$F_{k} = \frac{\sum_{j=1}^{N} f(x_{j}) \operatorname{Fn}_{\nu, x_{0k}}(x_{j})}{\sum_{j=1}^{N} \operatorname{Fn}_{\nu, x_{0k}}(x_{j})}, \qquad k = 1, \dots, n.$$

Inverse F-transform Transform $[F_1, \ldots, F_n]$ back

$$f_{F,n}(\mathbf{x}) = \sum_{k=1}^{n} F_k \cdot \operatorname{Fn}_{\nu, \mathbf{x}_{0k}}(\mathbf{x}_j).$$

if *n* increases then $f_{F,n}(x_j)$ converges to $f(x_j)_{n} \to n \to \infty$

Associations using fuzzy transform

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Data (again):

	<i>X</i> ₁		X_i		Xn
<i>O</i> ₁	$e_{X_1}(o_1)$	• • •	$e_{X_i}(o_1)$	•••	$e_{X_n}(o_1)$
÷	÷	÷	÷	÷	÷
O j	$e_{X_1}(o_j)$	• • •	$e_{X_i}(o_j)$	• • •	$e_{X_n}(o_j)$
÷	÷	÷	÷	÷	÷
0 _m	$e_{X_1}(o_m)$	• • •	$e_{X_i}(o_m)$	• • •	$e_{X_n}(o_m)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

For each *X_i* specify:

- context *w*_i,
- a number *s*^{*i*} of nodes,
- set $D_i = \{y_{ik} \in w_i \mid k = 1, ..., s_i\}$ of nodes,
- fuzzy partition $\{\operatorname{Fn}_{w_i}(y_{ik}) \subseteq w_i \mid y_{ik} \in D_i\}.$

Associations using fuzzy transform

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Data (again):

	<i>X</i> ₁		X_i		Xn
0 ₁	$e_{X_1}(o_1)$	• • •	$e_{X_i}(o_1)$	•••	$e_{X_n}(o_1)$
÷	:	÷	÷	÷	÷
O j	$e_{X_1}(o_j)$	• • •	$e_{X_i}(o_j)$	• • •	$e_{X_n}(o_j)$
÷	÷	÷	÷	÷	÷
0 _m	$e_{X_1}(o_m)$	• • •	$e_{X_i}(o_m)$	• • •	$e_{X_n}(o_m)$

For each X_i specify:

- context w_i,
- a number s_i of nodes,

set
$$D_i = \{y_{ik} \in w_i \mid k = 1, ..., s_i\}$$
 of nodes,

• fuzzy partition $\{\operatorname{Fn}_{w_i}(y_{ik}) \subset w_i \mid y_{ik} \in D_i\}.$

Form of associations

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Antecedent: X_1, \ldots, X_p , Consequent: *Z*. $D = D_1 \times \cdots \times D_p$ — set of all *p*-tuples of nodes. $\bar{y} = \langle y_{1k_1}, \ldots, y_{pk_p} \rangle \in D$ — elements (vectors of nodes)

Form of associations:

 $X_1 ext{ is } \operatorname{Fn}(y_{1k_1})) \operatorname{AND} \cdots \operatorname{AND}(X_p ext{ is } \operatorname{Fn}(y_{pk_p}))$ $\stackrel{F}{\sim}_{r,\gamma} (ext{average } Z ext{ is } \mathcal{B}_{ar{y}}),$

Antecedent: Multidimensional fuzzy number

 $A_{\overline{y}}(\overline{e}_{\mathcal{Y}}(o_j)) = \operatorname{Fn}(y_{1k_1}, e_1(o_j)) \cdots \operatorname{Fn}(y_{pk_p}, e_p(o_j))$

Form of associations

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Antecedent: X_1, \ldots, X_p , Consequent: Z. $D = D_1 \times \cdots \times D_p$ — set of all *p*-tuples of nodes. $\bar{y} = \langle y_{1k_1}, \ldots, y_{pk_p} \rangle \in D$ — elements (vectors of nodes)

Form of associations:

$$X_1 \text{ is } \operatorname{Fn}(y_{1k_1})) \operatorname{AND} \cdots \operatorname{AND}(X_p \text{ is } \operatorname{Fn}(y_{pk_p}))$$

 $\stackrel{F}{\sim}_{r,\gamma} (\operatorname{average} Z \text{ is } \mathcal{B}_{\overline{y}}),$

Antecedent: Multidimensional fuzzy number

 $A_{\overline{y}}(\overline{e}_{\mathcal{Y}}(o_j)) = \operatorname{Fn}(y_{1k_1}, e_1(o_j)) \cdots \operatorname{Fn}(y_{pk_p}, e_p(o_j))$

Form of associations

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Antecedent: X_1, \ldots, X_p , Consequent: *Z*. $D = D_1 \times \cdots \times D_p$ — set of all *p*-tuples of nodes. $\bar{y} = \langle y_{1k_1}, \ldots, y_{pk_p} \rangle \in D$ — elements (vectors of nodes)

Form of associations:

$$X_1 \text{ is } \operatorname{Fn}(y_{1k_1})) \operatorname{AND} \cdots \operatorname{AND}(X_p \text{ is } \operatorname{Fn}(y_{pk_p}))$$

 $\stackrel{F}{\sim}_{r,\gamma} (\operatorname{average} Z \text{ is } \mathcal{B}_{\overline{y}}),$

Antecedent: Multidimensional fuzzy number

$$A_{\bar{y}}(\bar{e}_{\mathcal{Y}}(o_j)) = \operatorname{Fn}(y_{1k_1}, e_1(o_j)) \cdots \operatorname{Fn}(y_{\rho k_p}, e_{\rho}(o_j))$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Consequent

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Value of consequent Z:

$$\mathcal{F}_{\overline{y}} = \frac{\sum_{j=1}^{m} \mathcal{A}_{\overline{y}}(\overline{e}_{\mathcal{Y}}(o_j)) \cdot e_{Z}(o_j)}{\sum_{j=1}^{m} \mathcal{A}_{\overline{y}}(\overline{e}_{\mathcal{Y}}(o_j))}.$$

Perception of $F_{\bar{y}}$ in the context w_Z :

$$\mathcal{B}_{\overline{y}} = \operatorname{Suit}(F_{\overline{y}}, W_Z).$$

Result:

average Z is $\mathcal{B}_{\overline{y}}$.

うしん 明 ふぼやんぼやん しゃ

Consequent

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Value of consequent Z:

$$F_{\bar{y}} = \frac{\sum_{j=1}^{m} A_{\bar{y}}(\bar{e}_{\mathcal{Y}}(o_j)) \cdot e_{Z}(o_j)}{\sum_{j=1}^{m} A_{\bar{y}}(\bar{e}_{\mathcal{Y}}(o_j))}$$

Perception of $F_{\bar{y}}$ in the context w_Z :

$$\mathcal{B}_{\bar{y}} = \operatorname{Suit}(F_{\bar{y}}, w_Z).$$

Result:

average Z is $\mathcal{B}_{\overline{y}}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

٠

Consequent

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Value of consequent Z:

$$F_{\bar{y}} = \frac{\sum_{j=1}^{m} A_{\bar{y}}(\bar{e}_{\mathcal{Y}}(o_j)) \cdot e_{Z}(o_j)}{\sum_{j=1}^{m} A_{\bar{y}}(\bar{e}_{\mathcal{Y}}(o_j))}$$

Perception of $F_{\bar{y}}$ in the context w_Z :

$$\mathcal{B}_{\bar{y}} = \operatorname{Suit}(F_{\bar{y}}, W_Z).$$

Result:

average
$$Z$$
 is $\mathcal{B}_{\overline{y}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

٠

Purpose of LFLC2000 software

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

LFLC2000 (Linguistic Fuzzy Logic Controller) is an universal software system dedicated primarily for designing and testing of linguistic descriptions, i.e. systems of fuzzy IF-THEN rules.

Originated by Vilém Novák in 1990's. Developed in IRAFM, University of Ostrava.

LFLC offers unique methodology based on theoretical achievements from IRAFM members.

Data for testing

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FΤ

Associations using FT

LFLC

Experiments

Linguistic associations NO₂ FT associations

Future work

NO2 data, Oslo, Norway

- X_1 logarithm of the number of cars per hour,
- X_2 temperature 2 meter above ground (*degree C*),
- X_3 wind speed (*meters/second*),
- X_4 the temperature difference between 25 and 2 meters above ground (*degree C*),
- X_5 wind direction (degrees between 0 and 360),
- Z The response variable hourly values of the logarithm of the concentration of NO₂

NO₂ linguistic associations

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT association

Future work

A1. $(X_1 \text{ is } MLMe) \text{AND}(X_2 \text{ is } VeSm)$ $AND(X_3 \text{ is } MLSm) \sqsubset_{0.01}^{0.5} (Z \text{ is } MLMe)$ A2. $(X_1 \text{ is } VeBi) \text{AND}(X_2 \text{ is } MLSm)$ $AND(X_3 \text{ is } MLSm) \sqsubset_{0.01}^{0.5} (Z \text{ is } MLBi)$ A3. $(X_1 \text{ is } Bi) \text{AND}(X_2 \text{ is } -MLSm)$ $AND(X_3 \text{ is } MLMe) \sqsubset_{0.01}^{0.5} (Z \text{ is } MLBi)$ A4. $(X_1 \text{ is } Bi) \text{AND}(X_2 \text{ is } MLSm)$ $AND(X_3 \text{ is } MLMe) \sqsubset_{0.01}^{0.5} (Z \text{ is } MLBi)$

Reduction of A3 and A4 to

 $(X_1 \text{ is } Bi \text{ AND}(X_2 \text{ is } (MLSm \text{ OR -}MLSm))$ $\text{AND}(X_3 \text{ is } MLMe) \sqsubset_{0.01}^{0.5} (Z \text{ is } MLBi)$

F

NO₂ FT associations

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

B1. $(X_1 \text{ is } \operatorname{Fn}_{W_1}(7.65)) \operatorname{AND}(X_2 \text{ is } \operatorname{Fn}_{W_2}(1.25))$ $\operatorname{AND}(X_3 \text{ is } \operatorname{Fn}_{W_3}(0.3)) \stackrel{F}{\sim}_{0.1,0.2} (\operatorname{average} Z \text{ is } Bi)$ B2. $(X_1 \text{ is } \operatorname{Fn}_{W_1}(7.65)) \operatorname{AND}(X_2 \text{ is } \operatorname{Fn}_{W_2}(-5.37))$ $\operatorname{AND}(X_3 \text{ is } \operatorname{Fn}_{W_3}(3.5)) \stackrel{F}{\sim}_{0.1,0.2} (\operatorname{average} Z \text{ is } Me)$ D2. $(X_1 \text{ is } \operatorname{Fn}_{W_2}(7.65)) \operatorname{AND}(X_2 \text{ is } \operatorname{Fn}_{W_2}(-5.37))$

B3. $(X_1 \text{ is } \operatorname{Fn}_{w_1}(7.65)) \operatorname{AND}(X_2 \text{ is } \operatorname{Fn}_{w_2}(7.87))$ $\operatorname{AND}(X_3 \text{ is } \operatorname{Fn}_{w_3}(5.1)) \stackrel{F}{\sim}_{0.1,0.2} (\operatorname{average} Z \text{ is } QRBi)$

Conclusions & future work

Associations Mining

Dvořák, Novák, Perfilieva

Introduction

Evaluating expressions

Linguistic associations GUHA quantifiers Rule reduction

FT

Associations using FT

LFLC

Experiments Linguistic associations NO₂ FT associations

Future work

Future work

- Generalized quantifiers
- Automatic selection of variables
- Automatic selection of contexts
- Theoretical analysis of reduction rules
- Computational complexity of algorithms involved

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Testing on larger data files