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Both too “strong”:
Classical logic: monotonicity, no uncertainty, etc.
Classical probability theory: no imprecision, etc.

Promising synthesis: framing human inference by
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Main goal: building a competence theory of human
reasoning
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Claudia is 100% certain:

If the donated blood belongs to the blood group 0,

then the donated blood is Rhesus-positive.

Claudia is 100% certain:

The donated blood belongs to blood group 0.

How certain should Claudia be that a recent donated blood is

Rhesus-positive?
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The solution is either a point percentage or a percentage
between two boundaries (from at least . . . to at most . . .):

Claudia is at least . . . . . .% and at most . . . . . .% certain, that
the donated blood is Rhesus-positive.
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|—————————————–|
0 25 50 75 100 %
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Results
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.7 .5 .35 .85 .43 .55 .15 .65 .41 .54
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1 1 .00 1 .37 .85 .00 1 .01 .53
.7 .2 .20 .44 .19 .42 .56 .80 .52 .76
.7 .5 .15 .65 .25 .59 .35 .85 .33 .65

good overall agreement between the normative bounds and the

mean responses
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Conjugacy

All participants inferred a probability (interval) of a
conclusion P (C) ∈ [z′, z′′] and the probability of the
associated negated conclusion, P (¬C).

(Premise 1, Premise 2) (1, 1) (.7, .9) (.7, .5) (.7, .2)

MODUS PONENS 100% 53% 50%
DENYING THE ANTECEDENT 67% 30% 0%

. . . percentages of participants satisfying both
z′
C

+ z′′
¬C

= 1 and z′
¬C

+ z′′
C

= 1
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from A ⊃ B infer (A ∧ C) ⊃ B

In probability logic
from P (B|A) = x infer P (B|A ∧ C) ∈ [0, 1]

CAUTIOUS MONOTONICITY

from P (B|A) = x and P (C|A) = y

infer P (C|A ∧ B) ∈ [max(0, (x + y − 1)/x),min(y/x, 1)]
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Example 3: CONTRAPOSITION

In logic
from A ⊃ B infer ¬B ⊃ ¬A

from ¬B ⊃ ¬A infer A ⊃ B

In probability logic
from P (B|A) = x infer P (¬A|¬B) ∈ [0, 1]

from P (¬A|¬B) = x infer P (B|A) ∈ [0, 1]

but

P (A ⊃ B)=P (¬B ⊃ ¬A)
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Example 4: HYPOTHETICAL SYLLOGISM

In logic
from A ⊃ B and B ⊃ C infer A ⊃ C

In probability logic
from P (B|A) = x and P (C|B) = y infer P (C|A) ∈ [0, 1]

cut
from P (B|A) = x and P (C|A∧B) = y

infer P (C|A) ∈ [xy, 1 − y + xy]
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Concluding remarks

Framing human inference by coherence based probability logic

investigating nonmonotonic conditionals in agrument forms

interpreting the if–then as high conditional probability

coherence based

competence theory (“Mental probability logic”)

Good overall agreement of human reasoning and basic

predicitons

esp. MODUS PONENS, conjugacy, forward & affirmative

understanding of probabilistically non-informative PREMISE

STRENGTHENING and CONTRAPOSITION

TRANSITIVITY converstationally implies CUT
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Towards a process model of human
conditional inference
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Logical validity vs. soundness

MP NMP DA NDA

P1: A ⊃ B A ⊃ B A ⊃ B A ⊃ B

P2: A A ¬A ¬A

C: B ¬B ¬B B

L-valid:
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Logical validity vs. soundness

MP NMP DA NDA

P1: A ⊃ B A ⊃ B A ⊃ B A ⊃ B

P2: A A ¬A ¬A

C: B ¬B ¬B B

L-valid: yes no no no
V (C) t f ? ?

V (C) denotes the truth value of the conclusion C under the
assumption that the valuation-function V assigns t to each

premise.

– p. 40



Probabilistic argument forms

Probabilistic versions of the
MP NMP DA NDA

P1: P (B|A) = x P (B|A) = x P (B|A) = x P (B|A) = x

P2: P (A) = y P (A) = y P (¬A) = y P (¬A) = y

C: P (B) = z P (¬B) = z P (¬B) = z P (B) = z

(1−x)(1−y)

1−(y−xy) (1−x)(1−y) 1−(1−x)(1−y)

The “IF A, THEN B” is interpreted as a conditional probability,
P (B|A).

– p. 41



Probabilistic argument forms
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MP NMP DA NDA

P1: P (B|A) = x P (B|A) = x P (B|A) = x P (B|A) = x

P2: P (A) = y P (A) = y P (¬A) = y P (¬A) = y

C: P (B) = z P (¬B) = z P (¬B) = z P (B) = z

z′ xy y − xy (1−x)(1−y) x(1 − y)

z′′ 1−(y−xy) 1−xy 1−x(1−y) 1−(1−x)(1−y)

z = f(x, y) and z ∈ [z′, z′′]
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Probabilistic argument forms

Probabilistic versions of the
MP NMP DA NDA

P1: P (B|A) = x P (B|A) = x P (B|A) = x P (B|A) = x

P2: P (A) = y P (A) = y P (¬A) = y P (¬A) = y

C: P (B) = z P (¬B) = z P (¬B) = z P (B) = z

z′ xy y − xy (1−x)(1−y) x(1 − y)

z′′ 1−(y−xy) 1−xy 1−x(1−y) 1−(1−x)(1−y)

. . . by conjugacy: P (¬C) = 1 − P (C)
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Probabilistic argument forms

Probabilistic versions of the
MP NMP DA NDA

P1: P (B|A) = x P (B|A) = x P (B|A) = x P (B|A) = x

P2: P (A) = y P (A) = y P (¬A) = y P (¬A) = y

C: P (B) = z P (¬B) = z P (¬B) = z P (B) = z

Chater, Oaksford, et. al: Subjects’ endorsement rate depends only

on the conditional probability of the conclusion given the categorical

premise, P (C|P2)

the conditional premise is ignored

the relation between the premise(s) and the conclusion is

uncertain
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Probabilistic argument forms

Probabilistic versions of the
MP NMP DA NDA

P1: P (B|A) = x P (B|A) = x P (B|A) = x P (B|A) = x

P2: P (A) = y P (A) = y P (¬A) = y P (¬A) = y

C: P (B) = z P (¬B) = z P (¬B) = z P (B) = z

Mental probability logic: most subjects infer coherent probabilities

from the premises

the conditional premise is not ignored

the relation between the premise(s) and the conclusion is

deductive
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Results—Certain Premises(Pfeifer & Kleiter, 2003∗, 2005a∗∗, 2006)

Condition lower bound upper bound
(Task B7) M SD M SD ni

CUT1 95.05 22.14 100 0.00 20
CUT2 93.75 25.00 93.75 25.00 16
RW 95.00 22.36 100 0.00 20
OR 99.63 1.83 99.97 0.18 30
CM∗ 100 0.00 100 0.00 19
AND∗∗ 75.30 43.35 90.25 29.66 40
M∗ 41.25 46.63 92.10 19.31 20
TRANS1 95.00 22.36 100 0.00 20
TRANS2 95.00 22.36 100 0.00 20
TRANS3 77.95 37.98 94.74 15.77 19
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Inference from imprecise premises –
“Silent bounds”
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“Silent” bounds

A probability bound b of a premise is silent iff b is irrelevant
for the probability propagation from the premise(s) to the
conclusion.
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MODUS PONENS task with silent bound (Bauerecker, 2006)

Claudia works at blood donation services. She investigates
to which blood group the donated blood belongs and
whether the donated blood is Rhesus-positive.
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MODUS PONENS task with silent bound (Bauerecker, 2006)

Claudia works at blood donation services. She investigates
to which blood group the donated blood belongs and
whether the donated blood is Rhesus-positive.

Claudia is 60% certain: If the donated blood belongs to the blood
group 0, then the donated blood is Rhesus-positive.

Claudia knows that donated blood belongs with exactly 75%
certainty to the blood group 0.

How certain should Claudia be that a recent donated blood
is Rhesus-positive?
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Results: Mean Responses(Bauerecker, 2006)

Task Premise Coherent Response
1 2 LB UB LB UB

MP .60 .75-1∗ .45 .70 .45 .72
.60 .75 .45 .70 .47 .60

NMP .60 .75-1∗ .30 .55 .17 .46
.60 .75 .30 .55 .23 .42

Participants inferred higher intervals in the MP tasks:
participants are sensitive to the complement
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Task Premise Coherent Response
1 2 LB UB LB UB

MP .60 .75-1∗ .45 .70 .45 .72
.60 .75 .45 .70 .47 .60

NMP .60 .75-1∗ .30 .55 .17 .46
.60 .75 .30 .55 .23 .42

Participants inferred higher intervals in the MP tasks:
participants are sensitive to the complement

Participants inferred wider intervals in the tasks with the
silent bound, 1∗: they are sensitive to silent bounds (i.e.,
they neglect the irrelevance of 1∗)

More than half of the participants inferred coherent
intervals
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Frege’s 1879 axioms for the propositional calculus

X ⊃ (Y ⊃ X)

[X ⊃ (Y ⊃ Z)] ⊃ [(X ⊃ Y ) ⊃ (X ⊃ Z)]

[X ⊃ (Y ⊃ Z)] ⊃ [Y ⊃ (X ⊃ Z)]

(X ⊃ Y ) ⊃ (¬Y ⊃ ¬X)

¬¬X ⊃ X

X ⊃ ¬¬X
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