Human reasoning about uncertain conditionals

Pfeifer, N., \& Kleiter, G. D.
Department of Psychology, University of Salzburg (Austria)

http://www.users.sbg.ac.at/~pfeifern/

Motivation

- Traditional normative framework in psychology:
- Deductive reasoning: classical logic
- Judgment: classical probability theory

Motivation

- Traditional normative framework in psychology:
- Deductive reasoning: classical logic
- Judgment: classical probability theory
- Both too "strong":
- Classical logic: monotonicity, no uncertainty, etc.
- Classical probability theory: no imprecision, etc.

Motivation

- Traditional normative framework in psychology:
- Deductive reasoning: classical logic
- Judgment: classical probability theory
- Both too "strong":
- Classical logic: monotonicity, no uncertainty, etc.
- Classical probability theory: no imprecision, etc.
- Promising synthesis: framing human inference by coherence based probability logic

Motivation

- Traditional normative framework in psychology:
- Deductive reasoning: classical logic
- Judgment: classical probability theory
- Both too "strong":
- Classical logic: monotonicity, no uncertainty, etc.
- Classical probability theory: no imprecision, etc.
- Promising synthesis: framing human inference by coherence based probability logic
- Main goal: building a competence theory of human reasoning

Contents

- Probabilistic approaches in the literature
- Mental probability logic
- Example 1: Modus ponens
- Studies on nonmonotonic conditionals
- Example 2: Premise strengthening
- Example 3: Contraposition
- Example 4: Hypothetical syllogism

Probabilistic approaches to human deductive reasoning

Postulated interpretation of the "IF A, THEN B "

$$
P(A \supset B)
$$

Probabilistic approaches to human deductive reasoning

Postulated interpretation of the "IF A, then B "

$$
P(A \supset B)
$$

Probabilistic extension of the mental model theory

Johnson-Laird et al.

Probabilistic approaches to human deductive reasoning

Postulated interpretation of the "IF A, then B "

Paradoxes of the material implication:
e.g., from if A, then B infer if A and C, then B

Probabilistic extension of the mental model theory Johnson-Laird et al.

Probabilistic approaches to human deductive reasoning

Postulated interpretation of the "IF A, then B "

$$
P(A \supset B)
$$

Theoretical problems:
Paradoxes of the material implication: e.g., from if A, then B infer if A and C, then B

The material implication is not a genuine conditional

$$
(A \supset B) \Leftrightarrow \quad(\neg A \vee B)
$$

Probabilistic extension of the mental mode/ theory Johnson-Laird et al.

Probabilistic approaches to human deductive reasoning

Postulated interpretation of the "IF A, then B "

$$
P(A \supset B)
$$

$P(B \mid A)$

Probabilistic extension of the mental mode/ theory Johnson-Laird et al.

Probabilistic approaches to human deductive reasoning

Postulated interpretation of the "IF A, THEN B "

$$
P(A \supset B)
$$

$P(B \mid A)$
Theoretical problems solved:
No paradoxes of the material implication: If $P(B \mid A)=x$, then $P(B \mid A \wedge C) \in[0,1]$,

Probabilistic extension of the mental model theory Johnson-Laird et al.

Probabilistic approaches to human deductive reasoning

Postulated interpretation of the "IF A, then B "

$$
P(A \supset B) \quad P(B \mid A)
$$

Theoretical problems solved:
No paradoxes of the material implication: If $P(B \mid A)=x$, then $P(B \mid A \wedge C) \in[0,1]$, But: if $P(A \supset B)=x$, then $P(A \wedge C \supset B) \in[x, 1]$

Probabilistic extension of the mental model theory Johnson-Laird et al.

Probabilistic approaches to human deductive reasoning

Postulated interpretation of the "IF A, then B "

$$
P(A \supset B) \quad P(B \mid A)
$$

Theoretical problems solved:
No paradoxes of the material implication: If $P(B \mid A)=x$, then $P(B \mid A \wedge C) \in[0,1]$, But: if $P(A \supset B)=x$, then $P(A \wedge C \supset B) \in[x, 1]$

The conditional event $B \mid A$ is a genuine conditional

Probabilistic extension
of the mental model theory
Johnson-Laird et al.

Probabilistic approaches to human deductive reasoning

Probabilistic extension of the mental mode/ theory

Johnson-Laird et al.

Probabilistic approaches to human deductive reasoning

Probabilistic extension of the mental mode/ theory

Johnson-Laird et al.

Probabilistic approaches to human deductive reasoning

Postulated interpretation of the "IF A, then B "

$$
P(A \supset B)
$$

Probabilistic relation between premise(s) and conclusion Chater, Oaksford et al. Liu et al.

Empirical Result:
$P(B \mid A)$ best predictor for "if A, then B "
Evans, Over et al.
Oberauer et al.
Liu

Probabilistic extension of the mental model theory Johnson-Laird et al.

Deductive relation between premise(s) and conclusion

Mental probability logic
Pfeifer \& Kleiter

Mental probability logic

- investigates If A, then B as nonmontonic conditionals in a probability logic framework
- A, normally B iff $\quad P(B \mid A)=$ high

Mental probability logic

- investigates If A, then B as nonmontonic conditionals in a probability logic framework
- A, normally B iff $\quad P(B \mid A)=$ high
- competence theory

Mental probability logic

- investigates If A, then B as nonmontonic conditionals in a probability logic framework
- A, normally B iff $\quad P(B \mid A)=$ high
- competence theory
- premises are evaluated by point values, intervals or second order probability distributions

Mental probability logic

- investigates If A, then B as nonmontonic conditionals in a probability logic framework
- A, normally B iff $\quad P(B \mid A)=$ high
- competence theory
- premises are evaluated by point values, intervals or second order probability distributions
- the uncertainty of the conclusion is inferred deductively from the uncertainty of the premises

Mental probability logic

- investigates If A, then B as nonmontonic conditionals in a probability logic framework
- A, normally B iff $\quad P(B \mid A)=$ high
- competence theory
- premises are evaluated by point values, intervals or second order probability distributions
- the uncertainty of the conclusion is inferred deductively from the uncertainty of the premises
- coherence

Coherence

- de Finetti, Lad, Walley, Scozzafava, Coletti, Gilio

Coherence

- de Finetti, Lad, Walley, Scozzafava, Coletti, Gilio
- degrees of belief

Coherence

- de Finetti, Lad, Walley, Scozzafava, Coletti, Gilio
- degrees of belief
- complete algebra is not required

Coherence

- de Finetti, Lad, Walley, Scozzafava, Coletti, Gilio
- degrees of belief
- complete algebra is not required
- conditional probability, $P(B \mid A)$, is primitive

Coherence

- de Finetti, Lad, Walley, Scozzafava, Coletti, Gilio
- degrees of belief
- complete algebra is not required
- conditional probability, $P(B \mid A)$, is primitive
- imprecision

Example 1: MODUS PONENS

- In logic
from A and $A \supset B$ infer B

Example 1: MODUS PONENS

- In logic
from A and $A \supset B$ infer B
- In probability logic
from $P(A)=x$ and $P(B \mid A)=y$
infer $P(B) \in[x y, x y+(1-x)]$

Example 1: MODUS PONENS

- In logic
from A and $A \supset B$ infer B
- In probability logic
from $P(A)=x$ and $P(B \mid A)=y$
infer $P(B) \in[\underbrace{x y}_{\text {at least }}, \underbrace{x y+(1-x)}_{\text {at most }}]$

Probabilistic MODUS PONENS

from $P(A)=x$ and $P(B \mid A)=y$ infer $P(B)$

Probabilistic MODUS PONENS

from $P(A)=x$ and $P(B \mid A)=y$ infer $P(B)$

Probabilistic modus ponens

from $P(A)=x$ and $P(B \mid A)=y$ infer $P(B)$

Probabilistic MODUS PONENS

from $P(A)=x$ and $P(B \mid A)=y$ infer $P(B)$

Probabilistic modus ponens

from $P(A)=x$ and $P(B \mid A)=y$ infer $P(B)$

Probabilistic modus ponens

from $P(A)=x$ and $P(B \mid A)=y$ infer $P(B)$

Probabilistic modus ponens

from $P(A)=x$ and $P(B \mid A)=y$ infer $P(B)$

Probabilistic modus ponens

from $P(A)=.7$ and $P(B \mid A)=.9$ infer $P(B)$

Probabilistic modus ponens

from $P(A)=.9$ and $P(B \mid A)=.7$ infer $P(B)$

$$
\underbrace{63}_{\text {if } q=0} \leq P(B) \leq \underbrace{73}_{\text {if } q=1}
$$

Probabilistic modus ponens

from $P(A)=1$ and $P(B \mid A)=1$ infer $P(B)$

$$
\underbrace{1}_{i f}=P(B)=\underbrace{1}_{i f=0}
$$

Probabilistic modus ponens

Logically valid-probabilistically informative

Example task: мооus ponens

Claudia works at the blood donation services. She investigates to which blood group the donated blood belongs and whether the donated blood is Rhesus-positive.

Example task: modus ponens

Claudia works at the blood donation services. She investigates to which blood group the donated blood belongs and whether the donated blood is Rhesus-positive.

Claudia is 100\% certain:
If the donated blood belongs to the blood group 0 , then the donated blood is Rhesus-positive.
Claudia is 100% certain:
The donated blood belongs to blood group 0 .

Example task: modus ponens

Claudia works at the blood donation services. She investigates to which blood group the donated blood belongs and whether the donated blood is Rhesus-positive.

Claudia is 100% certain:
If the donated blood belongs to the blood group 0 , then the donated blood is Rhesus-positive.
Claudia is 100% certain:
The donated blood belongs to blood group 0 .
How certain should Claudia be that a recent donated blood is Rhesus-positive?

Response Modality

The solution is either a point percentage or a percentage between two boundaries (from at least . . . to at most . . .):

Response Modality

The solution is either a point percentage or a percentage between two boundaries (from at least . . . to at most . . .):

Claudia is at least\% and at most\% certain, that the donated blood is Rhesus-positive.

Within the bounds of:

Results

Premise 12	coherent LB. UB.	response LB. UB.	coherent Lb. UB.	response LB. UB.
	MOdus ponens		NEGATED MODUS PONENS	
11	$1{ }^{1} 1$	1	. 00.00	. 00.00
. $7 \quad .9$. $63 \quad .73$. 62.69	. 27.37	. 35.42
. $7 \quad .5$. $35 \quad .85$. 43.55	. 15.65	. 41.54
	denying the ANTECEDENT		NEGATED DENYING THE ANTECEDENT	
1	. 001	. 37.85	. 00	. 01.53
. 7.2	. $20 \quad .44$. 19.42	. $56 \quad .80$. 52.76
. 7.5	. 15.65	. $25 \quad .59$	$\begin{array}{ll}.35 & .85\end{array}$. 33.65

Results

			UB.	resp	onse UB.				UB.
$\begin{aligned} & 1 \\ & .7 \\ & .7 \end{aligned}$	1.9.	MODUS PONENS				NEGATED MODUS PONENS			
		1.63.35		1	1	. 00	. 00	. 00	. 00
			73	. 62	. 69	. 27	. 37	. 35	. 42
			.35 . 85	. 43	. 55	. 15	. 65	. 41	. 54
		DENYING THE ANTECEDENT				NEGATED DENYING THE ANTECEDENT			
1	1	. 00	1	. 37	. 85	. 00	1	. 01	. 53
. 7	. 2	. 20	. 44	. 19	. 42	. 56	. 80	. 52	. 76
. 7	. 5	. 15	. 65	. 25	. 59	. 35	. 85	. 33	. 65

"certain" modus ponens tasks: all participants inferred correctly "1" or "0"

Results

			UB.		UB.				
$\begin{aligned} & 1 \\ & .7 \\ & .7 \end{aligned}$	$\begin{aligned} & 1 \\ & .9 \\ & .5 \end{aligned}$	MODUS PONENS				NEGATED MODUS PONENS			
		$\begin{array}{rr} 1 & 1 \\ .63 & .73 \\ .35 & .85 \end{array}$		$\begin{array}{cc} 1 & 1 \\ .62 & .69 \\ .43 & .55 \end{array}$		$\begin{array}{ll} .00 & .00 \\ .27 & .37 \\ .15 & .65 \end{array}$		$\begin{array}{ll} .00 & .00 \\ .35 & .42 \\ .41 & .54 \end{array}$	
$\begin{array}{ll} 1 & 1 \\ .7 & .2 \\ .7 & .5 \end{array}$		DENYING THE ANTECEDENT				NEGATED DENYING the Antecedent			
		. 00	1	. 37	. 85	. 00	1	. 01	. 53
		. 20	. 44	. 19	. 42	. 56	. 80	. 52	. 76
		. 15	. 65	. 25	. 59	. 35	. 85	. 33	. 65

"certain" denying the antecedent tasks: most participants inferred intervals close to $[0,1]$

Results

			UB.		UB.				ub.
$\begin{aligned} & 1 \\ & .7 \\ & .7 \end{aligned}$	$\begin{aligned} & 1 \\ & .9 \\ & .5 \end{aligned}$	MODUS PONENS				NEGATED MODUS PONENS			
		$\begin{array}{rr}1 & 1 \\ .63 & .73 \\ .35 & .85\end{array}$		$\begin{array}{cc} 1 & 1 \\ .62 & .69 \\ .43 & .55 \end{array}$		$\begin{array}{ll} .00 & .00 \\ .27 & .37 \\ .15 & .65 \end{array}$		$\begin{array}{ll} .00 & .00 \\ .35 & .42 \\ .41 & .54 \end{array}$	
1.2.		DENYING THE ANTECEDENT				NEGATED DENYING the antecedent			
		. 00	1	. 37	. 85	. 00	1	. 01	. 53
		. 20	. 44	. 19	. 42	. 56	. 80	. 52	. 76
		. 15	. 65	. 25	. 59	. 35	. 85	. 33	. 65

good overall agreement between the normative bounds and the mean responses

Conjugacy

All participants inferred a probability (interval) of a conclusion $P(\mathfrak{C}) \in\left[z^{\prime}, z^{\prime \prime}\right]$ and the probability of the associated negated conclusion, $P(\neg \mathfrak{C})$.

Conjugacy

All participants inferred a probability (interval) of a conclusion $P(\mathfrak{C}) \in\left[z^{\prime}, z^{\prime \prime}\right]$ and the probability of the associated negated conclusion, $P(\neg \mathfrak{C})$.

(Premise 1, Premise 2)	$(1,1)$	$(.7, .9)$	$(.7, .5)$	$(.7, .2)$
MODUS PONENS	100%	53%	50%	
DENYING THE ANTECEDENT	67%		30%	0%

.... percentages of participants satisfying both

$$
z_{\mathfrak{C}}^{\prime}+z_{\neg \mathfrak{C}}^{\prime \prime}=1 \text { and } z_{-\mathfrak{C}}^{\prime}+z_{\mathfrak{C}}^{\prime \prime}=1
$$

Results: Interval Responses

MODUS PONENS with negated conclusions:

19

27

Results: Interval Responses

MODUS PONENS with negated conclusions:

19

more observed responses are coherent than expected (assuming a random interval generator)

Example 2: PREMISE STRENGTHENING

- In logic
from $A \supset B$ infer $(A \wedge C) \supset B$

Example 2: premise strengthening

- In logic
from $A \supset B$ infer $(A \wedge C) \supset B$
- In probability logic
from $P(B \mid A)=x$ infer $P(B \mid A \wedge C) \in[0,1]$

Example 2: PREMISE STRENGTHENING

- In logic
from $A \supset B$ infer $(A \wedge C) \supset B$
- In probability logic
from $P(B \mid A)=x$ infer $P(B \mid A \wedge C) \in[0,1]$
- cautious monotonicity
from $P(B \mid A)=x$ and $P(C \mid A)=y$
infer $P(C \mid A \wedge B) \in[\max (0,(x+y-1) / x), \min (y / x, 1)]$

Results - premise strengthening (Example Task 1)

lower bound responses
upper bound responses

$$
\left(n_{1}=20\right)
$$

Results - cautious monotoncitry (c.momen matw)

lower bound responses
upper bound responses

$$
\left(n_{2}=19\right)
$$

Example 3: contraposition

- In logic
from $A \supset B$ infer $\neg B \supset \neg A$
from $\neg B \supset \neg A$ infer $A \supset B$

Example 3: contraposition

- In logic
from $A \supset B$ infer $\neg B \supset \neg A$
from $\neg B \supset \neg A$ infer $A \supset B$
- In probability logic
from $P(B \mid A)=x$ infer $P(\neg A \mid \neg B) \in[0,1]$
from $P(\neg A \mid \neg B)=x$ infer $P(B \mid A) \in[0,1]$

Example 3: contraposition

- In logic
from $A \supset B$ infer $\neg B \supset \neg A$
from $\neg B \supset \neg A$ infer $A \supset B$
- In probability logic
from $P(B \mid A)=x$ infer $P(\neg A \mid \neg B) \in[0,1]$
from $P(\neg A \mid \neg B)=x$ infer $P(B \mid A) \in[0,1]$
- but

$$
P(A \supset B)=P(\neg B \supset \neg A)
$$

Results CONTRAPOSITION $\left(n_{1}=0,0, n_{2}=40\right)$

Affirmative-negated: Lower Bound

Negated-affirmative: Lower Bound

Affirmative-negated: Upper Bound

Negated-affirmative: Upper Bound

Example 4: HYPOTHETICAL SYLLOGISM

- In logic
from $A \supset B$ and $B \supset C$ infer $A \supset C$

Example 4: HYPOTHETICAL SYLLOGISM

- In logic
from $A \supset B$ and $B \supset C$ infer $A \supset C$
- In probability logic
from $P(B \mid A)=x$ and $P(C \mid B)=y$ infer $P(C \mid A) \in[0,1]$

Example 4: HYPOTHETICAL SYLLOGISM

- In logic
from $A \supset B$ and $B \supset C$ infer $A \supset C$
- In probability logic
from $P(B \mid A)=x$ and $P(C \mid B)=y$ infer $P(C \mid A) \in[0,1]$
- cut
from $P(B \mid A)=x$ and $P(C \mid A \wedge B)=y$
infer $P(C \mid A) \in[x y, 1-y+x y]$

Concluding remarks

- Framing human inference by coherence based probability logic
- investigating nonmonotonic conditionals in agrument forms
- interpreting the if-then as high conditional probability
- coherence based
- competence theory ("Mental probability logic")

Concluding remarks

- Framing human inference by coherence based probability logic
- investigating nonmonotonic conditionals in agrument forms
- interpreting the if-then as high conditional probability
- coherence based
- competence theory ("Mental probability logic")
- Good overall agreement of human reasoning and basic predicitons
- esp. modus ponens, conjugacy, forward \& affirmative
- understanding of probabilistically non-informative premise strengthening and contraposition
- transitivity converstationally implies cut

Towards a process model of human conditional inference

Propositional graph: Notation

MODUS PONENS

$$
P(B)=\text { ? }
$$

MODUS PONENS

$$
P(B)=\text { ? }
$$

MODUS PONENS

$$
\begin{gathered}
P(B)=\text { ? } \\
\text { forward } \\
\text { affirmative }
\end{gathered}
$$

MODUS PONENS

modus tollens

$$
P(\neg A)=?
$$

MODUS PONENS

$$
\begin{aligned}
& (1-x)^{\prime}=\max \left\{1-\frac{z}{y}, \frac{z-y}{1-y}\right\} \\
& \begin{array}{c}
A \\
y \\
B \\
, \neg^{B}-z
\end{array}
\end{aligned}
$$

mODUS TOLLENS

$$
P(\neg A)=?
$$

MODUS PONENS

$$
P(B)=?
$$

forward affirmative

$$
(1-x)^{\prime}=\max \left\{1-\frac{z}{y}, \frac{z-y}{1-y}\right\}
$$

$$
\stackrel{A}{\square}
$$

mODUS TOLLENS
$P(\neg A)=$?
backward negated

MODUS PONENS

$$
P(B)=?
$$

forward affirmative
mODUS TOLLENS
$P(\neg A)=$?
backward negated

AFFIRMING THE CONSEQUENT

$$
P(A)=?
$$

MODUS PONENS

$$
P(B)=?
$$

forward affirmative

$$
\left(\begin{array}{c}
(1-x)^{\prime}=\max \left\{1-\frac{z}{y}, \frac{z-y}{1-y}\right\} \\
A \\
y \downarrow \\
B \\
\\
\\
\\
\hline-1-z
\end{array}\right)
$$

mODUS TOLLENS
$P(\neg A)=$?
backward negated

AFFIRMING THE CONSEQUENT

$$
P(A)=?
$$

MODUS PONENS
$P(B)=$?
forward
affirmative

$$
\left(\begin{array}{c}
(1-x)^{\prime}=\max \left\{1-\frac{z}{y}, \frac{z-y}{1-y}\right\} \\
A \\
y \downarrow \\
B \\
\\
\\
\\
\\
\hline 1-1-z
\end{array}\right)
$$

mODUS TOLLENS
$P(\neg A)=$?
backward negated

AFFIRMING THE CONSEQUENT

$$
P(A)=?
$$

backward affirmative

Logical validity vs. soundness

MP	
$P_{1}:$	$A \supset B$
$P_{2}:$	A
$:$	B

Logical validity vs. soundness

	MP	NMP
$P_{1}:$	$A \supset B$	$A \supset B$
$P_{2}:$	A	A
$:$	B	$\neg B$

Logical validity vs. soundness

	MP	NMP	DA	NDA
$P_{1}:$	$A \supset B$	$A \supset B$	$A \supset B$	$A \supset B$
$P_{2}:$	A	A	$\neg A$	$\neg A$
$:$	B	$\neg B$	$\neg B$	B

Logical validity vs. soundness

	MP	NMP	DA	NDA
$P_{1}:$	$A \supset B$	$A \supset B$	$A \supset B$	$A \supset B$
$P_{2}:$	A	A	$\neg A$	$\neg A$
$\mathfrak{C}:$	B	$\neg B$	$\neg B$	B
L-valid:	yes	no	no	no

Logical validity vs. soundness

	MP	NMP	DA	NDA
$P_{1}:$	$A \supset B$	$A \supset B$	$A \supset B$	$A \supset B$
$P_{2}:$	A	A	$\neg A$	$\neg A$
$\mathfrak{C}:$	B	$\neg B$	$\neg B$	B
L-valid:	yes	no	no	no
$V(\mathfrak{C})$	t	f	$?$	$?$

$V(\mathfrak{C})$ denotes the truth value of the conclusion \mathfrak{C} under the assumption that the valuation-function V assigns t to each premise.

Probabilistic argument forms

Probabilistic versions of the

	MP	NMP	DA	NDA
$P_{1}:$	$P(B \mid A)=x$	$P(B \mid A)=x$	$P(B \mid A)=x$	$P(B \mid A)=x$
$P_{2}:$	$P(A)=y$	$P(A)=y$	$P(\neg A)=y$	$P(\neg A)=y$
$\mathfrak{C}:$	$P(B)=z$	$P(\neg B)=z$	$P(\neg B)=z$	$P(B)=z$

The "IF A, then B " is interpreted as a conditional probability,

$$
P(B \mid A)
$$

Probabilistic argument forms

Probabilistic versions of the

	MP	NMP	DA	NDA
$P_{1}:$	$P(B \mid A)=x$	$P(B \mid A)=x$	$P(B \mid A)=x$	$P(B \mid A)=x$
$P_{2}:$	$P(A)=y$	$P(A)=y$	$P(\neg A)=y$	$P(\neg A)=y$
$\mathfrak{C}:$	$P(B)=z$	$P(\neg B)=z$	$P(\neg B)=z$	$P(B)=z$
z^{\prime}	$x y$		$(1-x)(1-y)$	
$z^{\prime \prime}$	$1-(y-x y)$		$1-x(1-y)$	

$$
z=f(x, y) \quad \text { and } \quad z \in\left[z^{\prime}, z^{\prime \prime}\right]
$$

Probabilistic argument forms

Probabilistic versions of the

	MP	NMP	DA	NDA
$P_{1}:$	$P(B \mid A)=x$	$P(B \mid A)=x$	$P(B \mid A)=x$	$P(B \mid A)=x$
$P_{2}:$	$P(A)=y$	$P(A)=y$	$P(\neg A)=y$	$P(\neg A)=y$
$\mathfrak{C}:$	$P(B)=z$	$P(\neg B)=z$	$P(\neg B)=z$	$P(B)=z$
z^{\prime}	$x y$	$y-x y$	$(1-x)(1-y)$	$x(1-y)$
$z^{\prime \prime}$	$1-(y-x y)$	$1-x y$	$1-x(1-y)$	$1-(1-x)(1-y)$

...by conjugacy: $P(\neg \mathfrak{C})=1-P(\mathfrak{C})$

Probabilistic argument forms

Probabilistic versions of the

	MP	NMP	DA	NDA
$P_{1}:$	$P(B \mid A)=x$	$P(B \mid A)=x$	$P(B \mid A)=x$	$P(B \mid A)=x$
$P_{2}:$	$P(A)=y$	$P(A)=y$	$P(\neg A)=y$	$P(\neg A)=y$
$\mathfrak{C}:$	$P(B)=z$	$P(\neg B)=z$	$P(\neg B)=z$	$P(B)=z$

Chater, Oaksford, et. al: Subjects' endorsement rate depends only on the conditional probability of the conclusion given the categorical premise, $P\left(\mathfrak{C} \mid P_{2}\right)$

- the conditional premise is ignored
- the relation between the premise(s) and the conclusion is uncertain

Probabilistic argument forms

Probabilistic versions of the

	MP	NMP	DA	NDA
$P_{1}:$	$P(B \mid A)=x$	$P(B \mid A)=x$	$P(B \mid A)=x$	$P(B \mid A)=x$
$P_{2}:$	$P(A)=y$	$P(A)=y$	$P(\neg A)=y$	$P(\neg A)=y$
$:$	$P(B)=z$	$P(\neg B)=z$	$P(\neg B)=z$	$P(B)=z$

Mental probability logic: most subjects infer coherent probabilities from the premises

- the conditional premise is not ignored
- the relation between the premise(s) and the conclusion is deductive

Condition	lower bound		upper bound		
(Task B7)	M	$S D$	M	$S D$	n_{i}
CUT1	95.05	22.14	100	0.00	20
CUT2	93.75	25.00	93.75	25.00	16
RW	95.00	22.36	100	0.00	20
OR	99.63	1.83	99.97	0.18	30
CM *	100	0.00	100	0.00	19
AND $^{* *}$	75.30	43.35	90.25	29.66	40
M *	41.25	46.63	92.10	19.31	20
TRANS1	95.00	22.36	100	0.00	20
TRANS2	95.00	22.36	100	0.00	20
TRANS3	77.95	37.98	94.74	15.77	19

Inference from imprecise premises "Silent bounds"

"Silent" bounds

A probability bound b of a premise is silent iff b is irrelevant for the probability propagation from the premise(s) to the conclusion.

"Silent" bounds

A probability bound b of a premise is silent iff b is irrelevant for the probability propagation from the premise(s) to the conclusion. E.g., the probabilistic modus ponens,

Premise 1: $P(B \mid A)$

Premise 2: $P(A)$

Conclusion: $P(B)$

"Silent" bounds

A probability bound b of a premise is silent iff b is irrelevant for the probability propagation from the premise(s) to the conclusion. E.g., the probabilistic modus ponens,

"Silent" bounds

A probability bound b of a premise is silent iff b is irrelevant for the probability propagation from the premise(s) to the conclusion. E.g., the probabilistic modus ponens,

$P(B \mid A) \in\left[x^{\prime}, x^{\prime \prime}\right], P(A) \in\left[y^{\prime}, y^{\prime \prime}\right] \therefore P(B) \in\left[x^{\prime} y^{\prime}, 1-y^{\prime}+x^{\prime \prime} y^{\prime}\right]$

"Silent" bounds

A probability bound b of a premise is silent iff b is irrelevant for the probability propagation from the premise(s) to the conclusion. E.g., the probabilistic modus ponens,

MODUS PONENS task with silent bound (Bauerecker, 2006)

Claudia works at blood donation services. She investigates to which blood group the donated blood belongs and whether the donated blood is Rhesus-positive.

MODUS PONENS task with silent bound (Bauerecker, 2006)

Claudia works at blood donation services. She investigates to which blood group the donated blood belongs and whether the donated blood is Rhesus-positive.

Claudia is 60% certain: If the donated blood belongs to the blood group 0, then the donated blood is Rhesus-positive.
Claudia knows that donated blood belongs with more than 75% certainty to the blood group 0 .

MODUS PONENS task with silent bound (Bauerecker, 2006)

Claudia works at blood donation services. She investigates to which blood group the donated blood belongs and whether the donated blood is Rhesus-positive.

Claudia is 60% certain: If the donated blood belongs to the blood group 0, then the donated blood is Rhesus-positive.
Claudia knows that donated blood belongs with more than 75% certainty to the blood group 0 .

How certain should Claudia be that a recent donated blood is Rhesus-positive?

MODUS PONENS task with silent bound (Bauerecker, 2006)

Claudia works at blood donation services. She investigates to which blood group the donated blood belongs and whether the donated blood is Rhesus-positive.

Claudia is 60% certain: If the donated blood belongs to the blood group 0, then the donated blood is Rhesus-positive.
Claudia knows that donated blood belongs with exactly 75% certainty to the blood group 0 .

How certain should Claudia be that a recent donated blood is Rhesus-positive?

Resutts: Megin Respoines (Bauerecker, 2006)

Task	Premise		Coherent		Response	
	1	2	$L B$	$U B$	$L B$	$U B$
$M P$.60	$.75-1^{*}$.45	.70	.45	.72
	.60	.75	.45	.70	.47	.60
$N M P$.60	$.75-1^{*}$.30	.55	.17	.46
	.60	.75	.30	.55	.23	.42

- Participants inferred higher intervals in the MP tasks: participants are sensitive to the complement

Results: Mean Responses ${ }_{\text {(Bauereckecr 200e) }}$

Task	Premise		Coherent		Response	
	1	2	$L B$	$U B$	$L B$	$U B$
$M P$.60	$.75-1^{*}$.45	.70	.45	.72
	.60	.75	.45	.70	.47	.60
$N M P$.60	$.75-1^{*}$.30	.55	.17	.46
	.60	.75	.30	.55	.23	.42

- Participants inferred higher intervals in the MP tasks: participants are sensitive to the complement
- Participants inferred wider intervals in the tasks with the silent bound, 1^{*} : they are sensitive to silent bounds (i.e., they neglect the irrelevance of 1^{*})

Results: Mean Responses ${ }_{\text {(Bauereckecre 200e) }}$

Task	Premise			Coherent		Response	
	1	2	$L B$	$U B$	$L B$	$U B$	
$M P$.60	$.75-1^{*}$.45	.70	.45	.72	
	.60	.75	.45	.70	.47	.60	
$N M P$.60	$.75-1^{*}$.30	.55	.17	.46	
	.60	.75	.30	.55	.23	.42	

- Participants inferred higher intervals in the MP tasks: participants are sensitive to the complement
- Participants inferred wider intervals in the tasks with the silent bound, 1^{*} : they are sensitive to silent bounds (i.e., they neglect the irrelevance of 1^{*})
- More than half of the participants inferred coherent intervals

Frege's 1879 axioms for the propositional calculus

- $X \supset(Y \supset X)$
- $[X \supset(Y \supset Z)] \supset[(X \supset Y) \supset(X \supset Z)]$
- $[X \supset(Y \supset Z)] \supset[Y \supset(X \supset Z)]$
- $(X \supset Y) \supset(\neg Y \supset \neg X)$
- $\neg \neg X \supset X$
- $X \supset \neg \neg X$

Frege's 1879 axioms for the propositional calculus

- $X \supset(Y \supset X)$
- $[X \supset(Y \supset Z)] \supset[(X \supset Y) \supset(X \supset Z)]$
- $[X \supset(Y \supset Z)] \supset[Y \supset(X \supset Z)]$
- $(X \supset Y) \supset(\neg Y \supset \neg X)$
- $\neg \neg X \supset X$
- $X \supset \neg \neg X$

