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NEUROMORPHIC FEATURES OF PROBABILISTIC

NEURAL NETWORKS

Jiř́ı Grim

We summarize the main results on probabilistic neural networks recently published in
a series of papers. Considering the framework of statistical pattern recognition we assume
approximation of class-conditional distributions by finite mixtures of product components.
The probabilistic neurons correspond to mixture components and can be interpreted in
neurophysiological terms. In this way we can find possible theoretical background of the
functional properties of neurons. For example, the general formula for synaptical weights
can be viewed as a statistically justified formulation of the well known Hebbian principle
of learning. Similarly, the mean effect of lateral inhibition can be expressed by means of a
formula proposed by Perez as the dependence tightness of involved variables.
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1. INTRODUCTION

In the last decades a lot of knowledge has been accumulated about neural systems.
Many details are known about the internal structure and interconnections of neurons
and also about the adaptive processes in neurons which are responsible for learning.
Different neural network models have been proposed to explain the functioning of
neural assemblies and simultaneously they have been successfully applied to practical
problems. At present artificial neural networks can be viewed as a standard tool to
solve difficult problems in pattern recognition and many other fields.

On the other hand even very successful neural network models seem to be poor in
comparison with the excellent functioning of biological neural systems. As it appears,
we are still missing the full understanding of the basic principles which guarantee
the functional superiority of biological neural systems in spite of the fact that they
consist of imprecise, noisy and unreliable biological neurons. Unlike different training
algorithms, biological neural systems have only limited possibilities to control and
coordinate the functioning of individual neurons centrally, according to some global
criteria. In this sense the decentralized learning of artificial neural networks based
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on the modular adaptivity of neurons also represents one of the essential steps to be
done towards better explanation of biological neural network principles.

The main motivation of the considered probabilistic approach to neural networks
is to clarify basic functional properties of biological neural systems by formal inter-
pretation of a general statistical classification method. The classification of complex
stimuli into different categories undoubtedly represents an important activity per-
manently performed by biological neural systems. It is therefore of theoretical rele-
vance to demonstrate that a reliable statistical classification method can be realized
by means of highly autonomous adaptive neurons.

The probabilistic approach to neural networks has been developed in the frame-
work of statistical pattern recognition. The term probabilistic neural network (PNN)
has been suggested by Specht in connection with kernel-estimates of class-conditional
densities [26]. In the following we refer mainly to our early paper [3] and other re-
sults published in the last years ([5]-[20]). Considering PNN we approximate the
underlying probability distributions of data by finite mixtures which can be opti-
mized by means of EM algorithm (cf. e.g. [1], [22], [15]). In this sense PNN do not
provide a new technique of statistical pattern recognition but they may substantially
contribute to better understanding of the functional principles of biological neural
networks.

The main idea of PNN is to look up on the components of mixtures as neurons.
Unlike other authors (cf. e.g. [21], [27], [29]) we assume the mixture components
in product form which is essential from the point of view of biological interpreta-
tion. In the published papers we have verified different neuromorphic features of
PNN and their compatibility with biological neural networks. In particular we have
shown that multilayer PNN can be designed sequentially by means of information
preserving transform which is defined for each layer by the respective estimated mix-
ture parameters [6], [7], [8], [28]. The concept of information preserving transform
is closely related to data reduction problems studied by Perez [23],[24].

The interconnection structure of multilayer PNN may be incomplete and can be
optimized in a statistically correct way by using product mixtures with structural
parameters [7],[15]. The structural mixture model is one of the few statistically
correct subspace approaches to pattern recognition [15].

Independently trained PNN can be combined both horizontally and vertically
[13], [14], [15] in a way which corresponds with the parallel and multilayer structures
occurring in biological neural networks. Simultaneously, the PNN can be constructed
in a modular way assuming modular autonomous properties of the probabilistic
neurons [16].

In case of infinite training data sequence the EM algorithm can be realized as
a sequential procedure [9],[12] which can be viewed as one infinite iteration of EM
algorithm with periodic updating of the estimated parameters. The corresponding
probabilistic neuron can be interpreted in neurophysiological terms at the level of
functional properties of a biological neuron [11],[12]. Weighting of data is compatible
with probabilistic neural networks [16] in a way allowing for selective evaluation
of training data (emotional learning). The possibility of data weighting is closely
related to the problem of norming at the level of a single neuron.
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2. MIXTURE BASED STATISTICAL PATTERN RECOGNITION

Considering the framework of statistical pattern recognition we assume that some
multivariate observations have to be classified with respect to a finite set of classes
Ω = {ω1, . . . , ωK}. The observation vectors x from the N -dimensional space X
(which may be real, discrete or binary)

x = (x1, x2, . . . , xN ) ∈ X , xn ∈ Xn, X = X 1 ×X 2 × . . .×XN

are supposed to occur randomly according to some class-conditional distributions
P (x|ω) and a priori probabilities p(ω), ω ∈ Ω. Recall that, given an observation
x ∈ X , all statistical information about the set of classes Ω is expressed by the
Bayes formula for a posteriori probabilities

p(ω|x) =
P (x|ω)p(ω)

P (x)
, x ∈ X (1)

where P (x) is the joint unconditional probability distribution of x

P (x) =
∑

ω∈Ω

P (x|ω)p(ω), x ∈ X . (2)

The posterior distribution p(ω|x) may be used to define a unique final decision by
means of the Bayes decision function: 1

d : X → Ω, d(x) = arg max
ω∈Ω

{p(ω|x)}, x ∈ X (3)

which is known to minimize the probability of classification error.
In view of Eqs. (1), (3) the statistical solution of a pattern recognition problem

can be reduced to estimation of the probabilistic description of classes. Considering
PNN we assume that the class-conditional distributions P (x|ω) may be approxi-
mated by finite mixtures

P (x|ω) =
∑

m∈Mω

F (x|m, ω)f(m|ω),
∑

m∈Mω

f(m|ω) = 1, f(m|ω) ≥ 0, ω ∈ Ω.

(4)
Here f(m|ω) are some probabilistic weights and Mω are the component index sets.

Let us recall that the basic idea of PNN is to look up on the mixture components
as neurons. In this respect the unique correspondence of the components (neurons)
to the classes ω ∈ Ω implies an unnatural structural limitation. The parameter
ω occurring in the components means that to each class ω ∈ Ω there corresponds
a specific subset of neurons or even specific multilayer structure of neurons to be
trained separately. On the other hand, one of the most apparent structural properties
of ascending neural pathways is a rich branching of axons into multiple endings and,
simultaneously, a large number of different axons converging on dendrites of neurons.

In view of the above biological arguments it is more appropriate to define the class-
conditional distribution mixtures P (x|ω) over the same set of components, i.e. we

1Possible ties can be solved arbitrarily.
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approximate the conditional distributions P (x|ω) by finite mixtures of components
from a given common set. In particular we assume (cf. [6], [5]) that there is a finite
set of probability distributions or density functions on X

F = {F (.|m),m ∈M} (5)

such that each conditional probability distribution P (x|ω) may be expressed in the
form

P (x|ω) =
∑

m∈M
F (x|m)f(m|ω), ω ∈ Ω, x ∈ X . (6)

Unlike Eq. (4) we assume only one set of components (5) and ignore possible de-
pendence of components on the classes:

F (x|m,ω) = F (x|m), x ∈ X , m ∈M, M≡Mω, ω ∈ Ω. (7)

In this sense the mixture components F (x|m) become shared by all class-conditional
probability distributions P (x|ω).

Let us note that the set of component distributions F (x|m) introduces an addi-
tional low-level “descriptive” decision problem. By substitution (6) into (2) we can
write

P (x) =
∑

m∈M
F (x|m)f(m), x ∈ X , f(m) =

∑

ω∈Ω

f(m|ω)p(ω). (8)

Here each component in the mixture (8) may correspond to some specific prop-
erty or situation. Given a vector x ∈ X , the presence of these properties can be
characterized by the probabilities

f(m|x) =
F (x|m)f(m)

P (x)
, m ∈M, x ∈ X , (P (x) > 0). (9)

As it can be seen, there is a simple relation between the a posteriori probabilities of
classes and the properties

p(ω|x) =
∑

m∈M
p(ω|m)f(m|x), x ∈ X , p(ω|m) =

f(m|ω)p(ω)
f(m)

, ω ∈ Ω. (10)

The probabilistic model (6) naturally suggests hybrid optimization of parameters.
In particular, only the weights f(m|ω) have to be estimated in a supervised way to
approximate the unknown class conditional distribution mixtures P (x|ω) whereas
the estimation of the mixture components F (x|m) is non-supervised. Nevertheless,
the problem of supervised estimation of finite mixtures with shared components is
non-trivial and can be solved by a modified EM algorithm in full generality [5].

Let us remark that the assumption of shared components is not restrictive. We
can estimate the conditional distributions P (x|ω) in the form (4) in a supervised way
and define the set of shared components F as a union of class-specific subsets Fω.
On the other hand, it is intuitively clear that the quality of the mixture components
F (x|m) may be restrictive from the point of view of global performance of the
resulting neural network. One can easily verify that the decision information I(X ,Ω)
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is bounded by the “descriptive” information I(X ,M) or in other words that the
statistical decision information I(X ,M) cannot be increased by creating additional
linear combinations of the functions F (x|m) [5], [8]. In this sense the estimation of
the component distributions F (.|m) ∈ F is of primary importance.

Recall that there is a strong similarity between PNN and so called radial basis
function (RBF) neural networks. The RBF neural networks usually define the output
of a neuron by means of radially symmetrical unimodal function with the aim of
multivariate interpolation or approximation of some prescribed output functions (cf.
e.g. [21], [6]). However, in case of PNN, we use EM algorithm to compute maximum-
likelihood estimates of the class conditional distributions for the sake of Bayesian
decision-making. The simplifying assumption of radial symmetry is not necessary in
case of mixtures since the EM algorithm can be applied to rather general component
densities or even to multivariate discrete data.

3. INFORMATION PRESERVING TRANSFORM

In multilayer neural networks each neuron of a given layer plays the role of a coor-
dinate function of a vector transform T mapping the input space X into the space
of output variables Y. We denote

T : X → Y, Y ⊂ RM , y = T (x) = (T 1(x),T2(x), . . . ,TM (x)) ∈ Y. (11)

It has been shown (cf. [3], [5], [28]) that the transform defined by Eqs.

ym = Tm(x) = log f(m|x), x ∈ X , m ∈M (12)

belongs to a class of information preserving transforms minimizing the entropy of
the output space Y. In particular, if we introduce the following notation for the
transformed distributions and posterior probabilities

Q(y) = P (T−1(y)); Q(y|m) = F (T−1(y)|m), y ∈ Y, m ∈M, (13)

T−1(y) = {x ∈ X : y = T (x)}, f(m|y) =
Q(y|m)f(m)

Q(y)
(14)

and for the related unconditional and conditional Shannon entropies

H(M) =
∑

m∈M
−f(m) log f(m), H(Y) =

∑

y∈Y
−Q(y) log Q(y). (15)

H(M|X ) =
∑

x∈X
P (x)Hx(M), Hx(M) =

∑

m∈M
−f(m|x) log f(m|x)

H(M|Y) =
∑

y∈Y
Q(y)Hy(M), Hy(M) =

∑

m∈M
−f(m|y) log f(m|y)

then we can write

I(X ,M) = H(M)−H(M|X ) = H(M)−H(M|Y) = I(Y,M). (16)
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In order to explain the idea of the proof let us recall that, given an input vector
x ∈ X , the decision information is fully expressed by the posterior distribution
f(m|x). Roughly speaking, the transform (11), (12) is information preserving as it
unifies the points x ∈ X with the identical posterior distributions f(.|x). For the
same reason the decision information I(X , Ω) is also preserved and, in analogy with
(16), we can write

I(X ,Ω) = H(Ω)−H(Ω|X ) = H(Ω)−H(Ω|Y) = I(Y,Ω). (17)

Simultaneously, it can be shown that the partition of the input space X induced by
the transform T is the “simplest” one in the sense that the entropy H(Y) of the
output space Y is minimized [6]. Consequently, the transform T may be expected
to simplify the underlying statistical decision problem, too.

Instead of logarithm any bijective function could be used in Eq. (12) but the
logarithmic coordinate function is useful since, in case of product components, the
output of neuron becomes additive function of input variables [13]. The proof of
these properties for a discrete space X can be found in [6] and a generalization to
continuous variables is described in [28]. Another argument to use logarithm in Eq.
(12) is the fault-tolerant property of the resulting information preserving transform.
In particular, if T is a transform of the space X satisfying the inequality

|Tm(x)− ln[f(m|x) + f(m)δ]| < ε, m ∈M, x ∈ X (18)

for some δ > 0, ε > 0, then the information loss accompanying the transformation
T is bounded by the inequality

I(X ,M)− I(Y,M) < δ + 2ε. (19)

In other words, by using logarithmic function in Eq. (12), we obtain information pre-
serving transform which is fault-tolerant in the sense that a bounded approximation
inaccuracy may cause only bounded information loss (cf. [8]):

It should be emphasized that the proof of the information preserving property
holds for the correctly estimated conditional distributions. In practical situations
the estimates may differ from the true conditional distributions and therefore the
corresponding transform T based on the estimated distributions may be accompa-
nied by some information loss. Possible consequences of estimation errors can be
partly avoided by combining multiple classifiers [13]. In particular, the underlying
information loss connected with the independently designed PNN can be reduced
by means of parallel fusion of the corresponding transformation vectors (11). The
compound transformation potentially preserves more decision information than any
of the component transforms but the dimension of the resulting feature space is
much higher. Considering relatively simple facts we have derived a hierarchy be-
tween different schemes of classifier fusion in terms of information inequalities [14].
In particular, we have shown that the parallel fusion of classifiers is potentially more
efficient than various methods based on combining functions. However, the infor-
mation advantage of parallel fusion is achieved at the expense of the lost simplicity
of the combining rules. In order to utilize the potentially available decision informa-
tion it is necessary to design a new classifier in the corresponding high-dimensional
feature space.
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4. PROBLEM OF COMPLETE INTERCONNECTION OF PNN

The well known ”beauty defect” of the probabilistic approach to neural networks is
the biologically unnatural complete interconnection of neurons with all input vari-
ables which is enforced by the norming condition. Roughly speaking, all class-
conditional distributions in the Bayes formula must be normed at the same space
and therefore the conditional distributions must be defined at the same set of input
variables [16]. The complete interconnection requirement can be removed in a sta-
tistically correct way by a special subspace approach originally proposed in pattern
recognition (cf. [4]).

Considering PNN we assume the mixture components to be of product form

F (x|m) =
∏

n∈N
fn(xn|m), m ∈M, N = {1, . . . , N} (20)

where fn(xn|m) are univariate probability distributions or densities. Without leav-
ing the exact framework of Bayesian decision-making we introduce additional binary
structural parameters φmn ∈ {0, 1} into the components (20):

F (x|m) =
∏

n∈N
fn(xn|m)φmnfn(xn|0)1−φmn ,

∑

m∈M

∑

n∈N
φmn = r. (21)

By setting the structural parameter φmn = 0 we can substitute any component-
specific density function fn(xn|m) by the respective univariate background density
fn(xn|0) which is common to all components. Simultaneously, the complexity of the
resulting mixture simplifies by means of the binary parameters φmn set to zero. We
assume the number of the nonzero structural parameters φmn to be fixed and equal
to r, (r ≤ MN).

We can write the component (21) equivalently in the form

F (x|m) = F (x|0)G(x|m,φm) (22)

where the component functions G(x|m, φm) are actually defined on different sub-
spaces

G(x|m,φm) =
∏

n∈N

[
fn(xn|m)
fn(xn|0)

]φmn

, φm = (φm1, . . . , φmN ) ∈ {0, 1}N (23)

and F (x|0) is a nonzero “background” probability density usually defined as a prod-
uct of marginals, i.e. :

F (x|0) =
∏

n∈N
fn(xn|0), fn(xn|0) = Pn(xn). (24)

After substitution (22) in Eq. (8) we obtain a modified “structural” distribution
mixture

P (x) =
∑

m∈M
F (x|0)G(x|m,φm)f(m). (25)
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It is an important aspect of the structural mixture (25) that the background prob-
ability density F (x|0) cancels in the formula (9)

f(m|x) =
G(x|m,φm)f(m)∑
j∈MG(x|j, φj)f(j)

(26)

and therefore the computation may be confined only to “relevant” variables. In
other words the input connections of a single neuron can be confined to an arbitrary
subset of input variables (neurons) in a biologically plausible way.

By using the present subspace method we can compute the posterior probabilities
of classes p(ω|x) from different subsets of input variables without any preprocessing
of the data vectors x ∈ X . In this sense the structural mixture model (25) represents
a statistically correct subspace approach to Bayesian decision-making which is di-
rectly applicable to the input space - without any feature selection or dimensionality
reduction. Let us recall that, unlike our approach, the “subspace representation” of
classes is usually considered only at the level of extracted features defined as linear
combinations of all input variables. For a more detailed discussion cf. [15], [16].

5. STRUCTURAL OPTIMIZATION OF PNN

Numerically the structural mixture model (25) can be optimized by means of EM
algorithm in full generality, including the structural parameters (cf. [6], [16], [25],
[2]. Given a set of independent observations S = {x1, . . . , xK} we can maximize the
log-likelihood function of the structural mixture (25)

L =
1
|S|

∑

x∈S
log

[ ∑

m∈M
F (x|0)G(x|m,φm)f(m)

]
(27)

by means of the modified EM iterations (cf. [7],[15]):

f(m|x) =
G(x|m,φm)f(m)∑
j∈MG(x|j, φj)f(j)

, ∈M, x ∈ S, (28)

f
′
(m) =

1
|S|

∑

x∈S
f(m|x), (29)

f
′
n(·|m) = arg max

fn(·|m)

{
1
|S|

∑

x∈S
f(m|x) log fn(xn|m)

}
. (30)

γ
′
mn =

1
|S|

∑

x∈S
f (t)(m|x) log

f
′
n(xn|m)
fn(xn|0)

, φ
′
mn =

{
1, γ

′
mn ∈ Γ

′
r

0, γ
′
mn 6∈ Γ

′
r

(31)

Here the apostrophe denotes the new iterated values and Γ
′
r stands for the set of r

highest quantities γ
′
mn.
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The implicit relation (30) can usually be expressed in a closed form. In particular,
in case of normal densities

fn(xn|µmn, σmn) =
1√

(2π)σmn

exp
{
−1

2
(xn − µmn)2

σ2
mn

}
(32)

Eq. (30) has the following solution

µ
′
mn =

1∑
x∈S f(m|x)

∑

x∈S
xnf(m|x), (33)

(
σ
′
mn

)2

=
1∑

x∈S f(m|x)

∑

x∈S

(
x2

n − µ
′
mn

)2

f(m|x) (34)

and the structural criterion has the form

γ
′
mn = f

′
(m)


 (µ

′
mn − µ0n)2

σ2
0n

+

(
σ
′
mn

σ2
0n

)2

− log

(
σ
′
mn

σ0n

)2

− 1


 . (35)

Similarly, in case of discrete distributions

fn(xn|m) ≥ 0, xn ∈ Xn,
∑

xn∈Xn

fn(xn|m) = 1, m ∈M

we can write explicit solution of Eq. (30) and the structural criterion in the form

f
′
n(ξ|m) =

1∑
x∈S f(m|x)

∑

x∈S
δ(ξ, xn)f(m|x), ξ ∈ Xn. (36)

γ
′
mn =

1
|S|

∑

x∈S
f(m|x) log

f
′
n(xn|m)
fn(xn|0)

(37)

A detailed discussion of convergence properties of the modified EM algorithm can
be found in [7] and more generally in [1], [22], [25], [30].

Let us note that arbitrary weighting of the training data set S can be equivalently
realized by repeating the data vectors in S. For this reason we can write immediately
the weighted version of the likelihood function [16]:

Lλ =
1
|S|

∑

x∈S
λ(x) log

[ ∑

m∈M
F (x|0)G(x|m,φm)f(m)

]
, (38)

(39)

and also the corresponding modification of the structural EM algorithm (cf. [16]):

f
′
(m) =

1
Λ(S)

∑

x∈S
λ(x)f(m| x), Λ(S) =

∑

x∈S
λ(x), (40)
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f
′
n(·|m) = arg max

fn(·|m)

{
1

Λ(S)

∑

x∈S
λ(x)f(m|x) log fn(xn|m)

}
. (41)

γ
′
mn =

1
Λ(S)

∑

x∈S
λ(x)f(m|x) log

f
′
n(xn|m)
fn(xn|0)

. (42)

Recently we have shown for discrete space X that if P ∗(x) is the true distribution
and λ(x) is a positive bounded function on X then the maximization of the weighted
likelihood function Lλ (cf. (38)) is asymptotically equivalent to m.-l. estimation of
the distribution P̃ (x) obtained by analogous weighting of the original distribution
P ∗(x):

P̃ (x) =
λ(x)
Λ∗

P ∗(x), x ∈ X , Λ∗ =
∑

x∈X
λ(x)P ∗(x). (43)

Here Λ∗ is a norming coefficient. From the above assertion it follows that, for the
sample-size approaching infinity, the posterior probabilities

f∗(m|x) =
F ∗(x|m)f∗(m)

P ∗(x)
, m ∈M, x ∈ X (44)

are asymptotically invariant with respect to weighting of the distribution P ∗(x) by
λ(x). In particular, we can write

P̃ (x) =
∑

m∈M
F̃ (x|m)f̃(m) =

λ(x)
Λ∗

P ∗(x), x ∈ X (45)

with the components satisfying Eqs.

F̃ (x|m) =
λ(x)
Λ∗m

F ∗(x|m), Λ∗m =
∑

x∈X
λ(x)F ∗(x|m), f̃(m) =

Λ∗m
Λ∗

f∗(m), (46)

and therefore, by substitution, we obtain

f̃(m|x) =
F̃ (x|m)f̃(m)

P̃ (x)
= f∗(m|x). m ∈M (47)

In this sense the design of information preserving transform is asymptotically in-
variant with respect to arbitrary weighting of training data by a positive bounded
function λ(x).

6. SEQUENTIAL MODIFICATION OF EM ALGORITHM

An important aspect of biological interpretation is the possibility of a sequential
optimization of parameters. In the original form the EM algorithm is a typical off-
line estimation method using all training data at each iteration. However, assuming
an infinite data sequence

S = {x(t)}∞t=1, x(t) ∈ X , (48)
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we can write the EM algorithm in a modified sequential form which corresponds to
a single “infinite” iteration with intermediate updating of the estimated parameters
(cf. [9], [12], [18]).

Considering a sequential version of EM algorithm we assume some fixed structural
parameters φmn since “on-line” structural optimization does not have any efficient
counterpart in biological neural systems. The adaptive properties of neural systems
are mainly enabled by the plasticity of existing synapses while the structure of
interconnections can be assumed to be given and essentially fixed in a particular
case. It is supposed that the structural properties of biological neural systems have
been optimized during the long process of phylogenetic evolution. Nevertheless, the
above possibility of structural optimization (cf. Eq. (31)) can be viewed as an
interesting short-cut alternative to obtain practical solutions of high quality.

For the sake of a sequential modification of EM algorithm we define first the index
of periodically substituted parameters by Eq.

kt = [: α log t :], kt ∈ {0, 1, 2, . . .}, t = 1, 2, . . . (49)

where [: :] denotes integer part of the parenthesized expression, i.e. kt is a step-
function of t. Now, the sequential EM procedure can be described by Eqs.

f (kt)(m) = f̂ (t)(m), f (kt)(·|m) = f̂ (t)(·|m), (50)

f (kt)(m|x(t)) =
G(kt)(x(t)|m,φm)f (kt)(m)∑
j∈MG(kt)(x(t)|j, φj)f (kt)(j)

, (51)

f̂ (t+1)(m) =
1
t

t∑
τ=1

f (kτ )(m|x(τ)), (52)

f̂ (t+1)
n (·|m) = arg max

fn(·|m)

{
1
t

t∑
τ=1

f (kτ )(m|x(τ)) log fn(x(τ)
n |m)

}
. (53)

In view of the above Eqs. the parameter estimates f̂ (t)(m), f̂ (t)
n (·|m) are sequentially

computed, however, the new parameter values are not substituted immediately after
each observation x(t) but only periodically - at the points of change of the substitu-
tion index kt (cf. (50)). In this sense G(k)(·|m, φm) denotes the component function
G(·|m, φm) with the k-th parameters substituted.

Again, in analogy with the Eqs. (33) - (36), we can write solution of Eq. (53) in
explicit form. In particular, we obtain for Gaussian densities the following sequential
Eqs.

µ(kt)
mn (m) = µ̂(t)

mn(m), σ(kt)
mn = σ̂(t)

mn, (54)

µ̂(t+1)
mn =

1∑t
τ=1 f (kτ )(m|x(τ))

t∑
τ=1

x(τ)
n f (kτ )(m|x(τ)), (55)

(σ̂(t+1)
mn )2 =

1∑t
τ=1 f (kτ )(m|x(τ))

t∑
τ=1

(
x(τ)

n − µ(kτ )
mn

)2

f (kτ )(m|x(τ)) (56)
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and similarly, in case of discrete distributions, we can write

f̂ (t+1)
n (ξ|m) =

1∑t
τ=1 f (kτ )(m|x(τ))

t∑
τ=1

δ(ξ, xn)f (kτ )(m|x(τ)), ξ ∈ Xn. (57)

Note that, introducing notation

γ(t) =
f (kt)(m|x(t))∑t

τ=1 f (kτ )(m|x(τ))
, t = 1, 2, . . . (58)

we can express the parameter estimates (52), (55) - (57) in the following more
intuitive way

f̂ (t+1)(m) =
(

1− 1
t

)
f̂ (t)(m) +

1
t
f (kt)(m|x(t)), (59)

µ̂(t+1)
mn = (1− γ(t)) µ̂(t)

mn + γ(t)x(t)
n , (60)

(
σ̂(t+1)

mn

)2

= (1− γ(t))
(
σ̂(t)

mn

)2

+ γ(t)
(
x(t)

n − µ(kt)
mn

)2

, (61)

f̂ (t+1)
n (ξ|m) = (1− γ(t)) f̂ (t)

n (ξ|m) + γ(t)δ(ξ, x(t)
n ), ξ ∈ Xn. (62)

Let tk be a point of the k-th parameter substitution (k-th upgrade). Then the
difference Tk = tk− tk−1 represents the interval between the two consecutive substi-
tutions tk−1, tk. In case of definition (49) the length of the “substitution interval”
Tk increases approximately by a coefficient exp{1/α}, i.e. we have

Tk+1

Tk
=

(tk+1 − tk)
(tk − tk−1)

.= exp{1/α}, k = 1, 2, . . . (63)

In a recent paper [12] we have applied the sequential EM algorithm to binary data
in order to demonstrate strictly modular properties of PNN. In numerical exper-
iments we have observed that the coefficient exp{1/α} chosen from the interval
〈1.2, 1.4〉 yields good results without essential differences [12]. It should be noted
that the above sequential scheme does not guarantee the basic monotonic property
of EM algorithm. However, in some cases, the sequential scheme yields even better
results than the standard EM procedure because the underlying sequential computa-
tion includes much longer data sequence than the standard EM iteration procedure
bounded to a given finite set (cf. [12]).

Let us mention finally a biological analogy of the above periodical substitutions
arising in the sequential version of EM algorithm. From a neurophysiological point
of view it is generally assumed that the neural activity specifically influences e.g.
the concentration of some chemical stuffs or energetic balance of neurons. As a con-
sequence some metabolical changes or growth processes responsible for adaptation
may follow. In this sense some delay can be expected between the primary specific
activity of a neuron and the corresponding adaptive changes. In this sense the pe-
riodical substitutions in the sequential EM scheme could correspond to the sleep
phase which is known to be essential for the long term memory of biological neural
systems.



Neuromorphic Features of PNN 13

7. NEUROPHYSIOLOGICAL INTERPRETATION

Since very beginnings the research of neural networks is motivated by wonderful
performance of biological neural networks like e.g. mammalian central neural sys-
tem. On the other hand, its elementary units - neurons are known to be relatively
unreliable and inaccurate. It is therefore assumed that the excellent properties of
neural systems have to be based on some very efficient and robust principles. In
view of these facts the main motivation of PNN is to explain the basic functional
properties of neurons theoretically in the framework of a general statistical decision
problem.

From the neurophysiological point of view the conditional probability f(m|x) can
be naturally interpreted as a measure of excitation or probability of firing of the m-
th neuron given the input pattern x ∈ X . The output signal of the m-th neuron ym

is defined as logarithm of the excitation f(m|x) and therefore logarithm plays the
role of activation function or response curve. In view of Eqs. (23), (26) we can write

ym = Tm(x) = log f(m|x) =

= log f(m) +
∑

n∈N
φmn log

fn(xn|m)
fn(xn|0)

− log[
∑

j∈M
G(x|j, φj)f(j)]. (64)

Consequently, we may assume the first term on the right-hand side of Eq. (64) to
be responsible for spontaneous activity of the m-th neuron. The second term in Eq.
(64) summarizes contributions of input variables xn (neurons) of the subset defined
by means of binary structural parameters φmn = 1. In this sense, the term

wmn(xn) = log fn(xn|m)− log fn(xn|0) (65)

can be viewed as the current synaptic weight of the n-th neuron at input of the
m-th neuron - as a function of the input value xn. The effectiveness of the synaptic
transmission, as expressed by the formula (65), combines the statistical properties
of the input variable xn with the activity of the “postsynaptic” neuron “m”. In
words, the synaptic weight (65) is high when the input signal xn frequently takes
part in excitation of the m-th neuron and, in turn, it is low when the input signal xn

usually doesn’t contribute to the excitation of the m-th neuron. This formulation
resembles the classical Hebb’s postulate of learning (cf. Hebb (1949), p.62):

“When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic changes take
place in one or both cells such that A’s efficiency as one of the cells firing B, is
increased.”

The last term in (64) includes the norming coefficient responsible for competitive
properties of neurons and therefore it can be interpreted as a cumulative effect of
special neural structures performing lateral inhibition. This term is identical for all
components of the underlying mixture and, for this reason, the Bayesian decision-
making would not be influenced by its accuracy. However, in case of hidden-layer
neurons, there is a problem of lateral inhibition accuracy. In case of information
preserving transform the lateral inhibition should summarize the output signals of
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exactly those neurons to which it is applied. However, in biological neural systems
such an exact correspondence is hardly possible.

Let us recall in this connection the invariance of information preserving transform
with respect to weighting (cf. Sec. 5). If we assume an incorrect correspondence
of neurons in the lateral inhibition structure then the resulting effect of incorrect
norming can be represented by a weighting function:

f̃(m|x) =
G(x|m,φm)f(m)∑
j∈M̃G(x|j, φj)f(j)

=

∑
j∈MG(x|j, φj)f(j)∑
j∈M̃G(x|j, φj)f(j)

f(m|x) = λ̃(x)f(m|x).

Here M̃ denotes the incorrect set of neurons. In this sense the effect of incorrect
lateral inhibition would be counter balanced by the asymptotic invariance of EM-
learning with respect to weighting.

Let us also note that, in the exact form, mathematical expectation of the last
“norming” term in (64) can be expressed by means of information-divergence

I(P (·)||F (·|0)) = EP

{
log

P (x)
F (x|0)

}
= EP

{
log

P (x)∏
n∈N Pn(xn)

}
. (66)

The last formula has been proposed by Perez [24] as a measure of dependence of
the involved variables. Perez suggested to call the quantity (66) the “dependence
tightness” as it is nonnegative and for independent variables it is zero. In view of
Eq. (66) the effect of lateral inhibition should be high for highly correlated inputs
and low or even zero for nearly independent input signals.

8. CONCLUSION

Functional interpretation of biological neural networks is known to be a difficult task
because of many highly specific features. Considering PNN we should mention at
least three major biological interpretation problems. First, the information preserv-
ing transform presumes a real output signal of neurons which are known to produce
binary “spikes”. A real output value may correspond to the output frequency of
spikes but the evaluation mechanism of spike frequency in lateral inhibition and
in the learning processes may be rather complex and remains unclear. The sec-
ond problem relates to the functional properties of neurons which correspond to
the “long-term” statistical parameters of mixture components. In the present PNN
there is no counterpart of the well-known short-term synaptical plasticity and of
the related processes. The third problem represents the large and complex area of
recurrent processes relating to short-term memory and not covered by the present
PNN.

On the other hand there are strong arguments to support PNN as a statistical
model of information processing in biological neural networks: The principle of PNN
derives from a general method of statistical pattern recognition. The functioning
of multilayer PNN is guaranteed by means of information preserving transform. In
the feed-forward structures each neuron may include arbitrary subset of lower-level
output variables as input space. The underlying structural mixture model can be
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optimized by means of EM algorithm in full generality. The structural PNN can be
designed by a sequential version of EM algorithm allowing for sequential processing
of training data. Finally, the probabilistic neuron can be interpreted in neurophysio-
logical terms up to the level of functional properties of biological neurons. In this way
we can find possible theoretical counterparts of the well known neurophysiological
properties. In particular, the general formula for synaptical weights can be viewed
as a theoretical justification of the well known Hebbian principle of learning. Simi-
larly, the mean effect of lateral inhibition can be viewed as the dependence tightness
of involved variables - the term proposed by Perez in connection with dependence
structure simplification [24].
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