COMPOSITIONAL MODELS

COMPOSITIONAL MODELS

Oligodimensional distributions

$$
P_{1}\left(\left(x_{i}\right)_{i \in K_{1}}\right), P_{2}\left(\left(x_{i}\right)_{i \in K_{2}}\right), \ldots, P_{n}\left(\left(x_{i}\right)_{i \in K_{n}}\right)
$$

COMPOSITIONAL MODELS

Oligodimensional distributions
$P_{1}\left(\left(x_{i}\right)_{i \in K_{1}}\right), P_{2}\left(\left(x_{i}\right)_{i \in K_{2}}\right), \ldots, P_{n}\left(\left(x_{i}\right)_{i \in K_{n}}\right)$

$$
P_{1}\left(x_{K_{1}}\right), P_{2}\left(x_{K_{2}}\right), \ldots, P_{n}\left(x_{K_{n}}\right)
$$

Definition of the operator of composition

For 2 distributions:
$P\left(x_{K}\right), Q\left(x_{L}\right)$
their composition is defined by the expression

$$
P \triangleright Q=\frac{P Q}{Q\left(x_{K \cap L}\right)}
$$

Definition of the operator of composition

For 2 distributions:
$P\left(x_{K}\right), Q\left(x_{L}\right)$
their composition is defined by the expression

$$
P \triangleright Q=\frac{P Q}{Q\left(x_{K \cap L}\right)}=P\left(x_{K}\right) Q\left(x_{L \backslash K} \mid x_{K \cap L}\right)
$$

Definition of the operator of composition

For 2 distributions:
$P\left(x_{K}\right), Q\left(x_{L}\right)$
their composition is defined by the expression

$$
P \triangleright Q=\frac{P Q}{Q\left(x_{K \cap L}\right)}=P\left(x_{K}\right) Q\left(x_{L \backslash K} \mid x_{K \cap L}\right)
$$

More precisely:

$$
P \triangleright Q= \begin{cases}\frac{P\left(x_{K}\right) Q\left(x_{L}\right)}{Q\left(x_{K \cap L}\right)} & \text { if } P\left(x_{K} \cap L\right) \ll Q\left(x_{K \cap L}\right), \\ \text { undefined } & \text { otherwise. }\end{cases}
$$

Definition of the "left composition"

For 2 distributions:
$P\left(x_{K}\right), Q\left(x_{L}\right)$
$P \triangleleft Q= \begin{cases}\frac{P\left(x_{K}\right) Q\left(x_{L}\right)}{P\left(x_{K \cap L}\right)} & \text { if } Q\left(x_{K \cap L}\right) \ll P\left(x_{K} \cap L\right), \\ \text { undefined } & \text { otherwise. }\end{cases}$

Basic properties of the operators of composition

If $P \triangleright Q$ and $P \triangleleft Q$ are defined then

Basic properties of the operators of composition
If $P \triangleright Q$ and $P \triangleleft Q$ are defined then

- $P \triangleright Q$ is a distribution of variables $X_{K \cup L}$

Basic properties of the operators of composition

If $P \triangleright Q$ and $P \triangleleft Q$ are defined then

- $P \triangleright Q$ is a distribution of variables $X_{K \cup L}$
- P is a marginal distribution of $P \triangleright Q$
Q is a marginal distribution of $P \triangleleft Q$

Basic properties of the operators of composition

If $P \triangleright Q$ and $P \triangleleft Q$ are defined then

- $P \triangleright Q$ is a distribution of variables $X_{K \cup L}$
- P is a marginal distribution of $P \triangleright Q$ Q is a marginal distribution of $P \triangleleft Q$
- $P \triangleright Q=P \triangleleft Q$ iff P and Q are consistent: tj. $P\left(x_{K \cap L}\right)=Q\left(x_{K \cap L}\right)$

Basic properties of the operators of composition

If $P \triangleright Q$ and $P \triangleleft Q$ are defined then

- $P \triangleright Q$ is a distribution of variables $X_{K \cup L}$
- P is a marginal distribution of $P \triangleright Q$ Q is a marginal distribution of $P \triangleleft Q$
- $P \triangleright Q=P \triangleleft Q$ iff P and Q are consistent: tj. $P\left(x_{K \cap L}\right)=Q\left(x_{K \cap L}\right)$
- $X_{K \backslash L} \Perp X_{L \backslash K} \mid X_{K \cap L}[P \triangleright Q]$

Basic properties of the operators of composition

If $P \triangleright Q$ and $P \triangleleft Q$ are defined then

- $P \triangleright Q$ is a distribution of variables $X_{K \cup L}$
- P is a marginal distribution of $P \triangleright Q$ Q is a marginal distribution of $P \triangleleft Q$
- $P \triangleright Q=P \triangleleft Q$ iff P and Q are consistent: $\mathrm{tj} . P\left(x_{K \cap L}\right)=Q\left(x_{K \cap L}\right)$
- $X_{K \backslash L} \Perp X_{L \backslash K} \mid X_{K \cap L}[P \triangleright Q]$
- if P and Q are consistent then $P \triangleright Q$ is a maximum entropy extension of both P and Q.

Composition of distributions

Composition of distributions

Generating sequence

System $\left\{P_{j}\left(x_{K_{j}}\right): j=1,2, \ldots, m\right\}$.

Compositional model is defined by a generating sequence ($m=2$):
P_{1}, P_{2} define distribution:
$P_{1}\left(x_{K_{1}}\right) \triangleright P_{2}\left(x_{K_{2}}\right)$
which is defined for variables $X_{\left(K_{1} \cup K_{2}\right)}$

Generating sequence

System $\left\{P_{j}\left(x_{K_{j}}\right): j=1,2, \ldots, m\right\}$.

Compositional model is defined by a generating sequence $(m=3)$:
P_{1}, P_{2}, P_{3} define distribution:

$$
\begin{aligned}
P_{1}\left(x_{K_{1}}\right) & \triangleright P_{2}\left(x_{K_{2}}\right) \triangleright P_{3}\left(x_{K_{3}}\right) \\
& =\left(P_{1} \triangleright P_{2}\right) \triangleright P_{3}
\end{aligned}
$$

which is defined for variables $X_{\left(K_{1} \cup K_{2} \cup K_{3}\right)}$

Generating sequence

System $\left\{P_{j}\left(x_{K_{j}}\right): j=1,2, \ldots, m\right\}$.

Compositional model is defined by a generating sequence ($m=4$):
$P_{1}, P_{2}, P_{3}, P_{4}$ define distribution:

$$
\begin{aligned}
& P_{1}\left(x_{K_{1}}\right) \triangleright P_{2}\left(x_{K_{2}}\right) \triangleright P_{3}\left(x_{K_{3}}\right) \triangleright P_{4}\left(x_{K_{4}}\right) \\
&=\left(\left(P_{1} \triangleright P_{2}\right) \triangleright P_{3}\right) \triangleright P_{4}
\end{aligned}
$$

which is defined for variables $X_{\left(K_{1} \cup K_{2} \cup K_{3} \cup K_{4}\right)}$

Generating sequence

System $\left\{P_{j}\left(x_{K_{j}}\right): j=1,2, \ldots, m\right\}$.

Compositional model is defined by a generating sequence:
P_{1}, \ldots, P_{m} define distribution:

$$
\begin{aligned}
P_{1}\left(x_{K_{1}}\right) & \triangleright P_{2}\left(x_{K_{2}}\right) \triangleright \ldots \triangleright P_{m}\left(x_{K_{m}}\right) \\
& \left.=\left(\ldots\left(P_{1} \triangleright P_{2}\right) \triangleright \ldots\right) \triangleright P_{m}\right)
\end{aligned}
$$

which is defined for variables $X_{\left(K_{1} \cup \ldots \cup K_{m}\right)}$

Composition of oligodimensional distributions

Why we introduced two operators of composition?

Why we introduced two operators of composition?
Operators are neither commutative nor associative - saving brackets; operators are applied from left to right.

Why we introduced two operators of composition?
Operators are neither commutative nor associative - saving brackets; operators are applied from left to right.

Main difference between them is, however,

Why we introduced two operators of composition?
Operators are neither commutative nor associative - saving brackets; operators are applied from left to right.

Main difference between them is, however, - their computational complexity.

Why we introduced two operators of composition?
Operators are neither commutative nor associative - saving brackets; operators are applied from left to right.

Main difference between them is, however, - their computational complexity.

Denote $L=K_{j} \cap\left(K_{1} \cup \ldots \cup K j-1\right)$,
$\left(P_{1} \triangleright \ldots \triangleright P_{j-1}\right) \triangleright P_{j}=\frac{\left(P_{1} \triangleright \ldots \triangleright P_{j-1}\right) \cdot P_{j}}{\left(P_{j}\right)^{\downarrow L}}$

Why we introduced two operators of composition?
Operators are neither commutative nor associative - saving brackets; operators are applied from left to right.

Main difference between them is, however, - their computational complexity.

Denote $L=K_{j} \cap\left(K_{1} \cup \ldots \cup K j-1\right)$,
$\left(P_{1} \triangleleft \ldots \triangleleft P_{j-1}\right) \triangleleft P_{j}=\frac{\left(P_{1} \triangleleft \ldots \triangleleft P_{j-1}\right) \cdot P_{j}}{\left(P_{1} \triangleleft \ldots \triangleleft P_{j-1}\right)^{\downarrow L}}$

To define multidimensional distribution it is enough to determine a sequence of oligodimensional distributions

GENERATING SEQUENCE

To define multidimensional distribution it is enough to determine a sequence of oligodimensional distributions

GENERATING SEQUENCE

advantageous are
PERFECT SEQUENCES
they define the same distriibution for both operators

$$
\triangleright \text { and } \triangleleft \text {. }
$$

Perfect sequences are those, for which

Perfect sequences are those, for which

$$
P_{1} \triangleright P_{2}=P_{1} \triangleleft P_{2}
$$

Perfect sequences are those, for which

$$
\begin{aligned}
& P_{1} \triangleright P_{2}=P_{1} \triangleleft P_{2} \\
& P_{1} \triangleright P_{2} \triangleright P_{3}=P_{1} \triangleleft P_{2} \triangleleft P_{3}
\end{aligned}
$$

Perfect sequences are those, for which

$$
\begin{aligned}
& P_{1} \triangleright P_{2}=P_{1} \triangleleft P_{2} \\
& P_{1} \triangleright P_{2} \triangleright P_{3}=P_{1} \triangleleft P_{2} \triangleleft P_{3} \\
& P_{1} \triangleright P_{2} \triangleright P_{3} \triangleright P_{4}=P_{1} \triangleleft P_{2} \triangleleft P_{3} \triangleleft P_{4}
\end{aligned}
$$

Perfect sequences are those, for which

$$
\begin{aligned}
& P_{1} \triangleright P_{2}=P_{1} \triangleleft P_{2} \\
& P_{1} \triangleright P_{2} \triangleright P_{3}=P_{1} \triangleleft P_{2} \triangleleft P_{3} \\
& P_{1} \triangleright P_{2} \triangleright P_{3} \triangleright P_{4}=P_{1} \triangleleft P_{2} \triangleleft P_{3} \triangleleft P_{4} \\
& \quad \quad \quad \\
& \quad P_{1} \triangleright P_{2} \triangleright \ldots \triangleright P_{n}=P_{1} \triangleleft P_{2} \triangleleft \ldots \triangleleft P_{n}
\end{aligned}
$$

Basic properties of perfect sequences

Basic properties of perfect sequences

- P_{1}, \ldots, P_{m} is perfect iff all the distributions P_{j} are marginal to $P_{1} \triangleright \ldots \triangleright P_{m}$

Basic properties of perfect sequences

- P_{1}, \ldots, P_{m} is perfect iff all the distributions P_{j} are marginal to $P_{1} \triangleright \ldots \triangleright P_{m}$
- The class Bayesian network models is equivalent to the class of perfect sequence models.

Composition of oligodimensional distributions

Composition of oligodimensional distributions

Composition of oligodimensional distributions

Composition of oligodimensional distributions

Composition of oligodimensional distributions

Perfect sequence

Composition of oligodimensional distributions

Composition of oligodimensional distributions

Composition of oligodimensional distributions

Composition of oligodimensional distributions

Composition of oligodimensional distributions

Non-perfect sequence

Comments on equivalence of BN and PS models

- Simple algorithm transforming these types of representation each to other;
- Transformation PS $\longrightarrow \mathrm{BN}$ is local;
- Transformation BN $\longrightarrow \mathrm{PS}$ is not local (!);
- The difference arises from the fact that in PS models some of marginal distriobutions are explicitely expressed - their computation from BN is sometimes computationally expensive;
- Consequence: simplification of some computational procedures.

What have been achieved in the field of PS models?

- Theoretical apparatus
- Persegrams
- Decomposition
- Efficient marginalization procedure

Comparison of BN and PS models

Shachter's procedure of node deletion and edge reversal

Comparison of BN and PS models

Shachter's procedure of node deletion and edge reversal

- Simple marginalization(!)

Comparison of BN and PS models

Shachter's procedure of node deletion and edge reversal

- Simple marginalization(!)

Bayesian network
terminal node deletion

Comparison of BN and PS models

Shachter's procedure of node deletion and edge reversal

- Simple marginalization(!)

Bayesian network
terminal node deletion

Comparison of BN and PS models

Shachter's procedure of node deletion and edge reversal

- Simple marginalization(!)

Bayesian network
terminal node deletion

Comparison of BN and PS models

Shachter's procedure of node deletion and edge reversal

- Simple marginalization(!)

Bayesian network
Compositional model
terminal node deletion

$$
Q_{1}\left(X_{1}, X_{2}\right) \triangleright Q_{2}\left(X_{2}, X_{3}\right)
$$

Comparison of BN and PS models

Shachter's procedure of node deletion and edge reversal

- Simple marginalization(!)

Bayesian network
terminal node deletion

Compositional model
deletion of a variable appearing among the arguments of only one distribution

$$
Q_{1}\left(X_{1}, X_{2}\right) \triangleright Q_{2}\left(X_{2}, X_{3}\right)
$$

Comparison of BN and PS models

Shachter's procedure of node deletion and edge reversal

- Simple marginalization(!)

Bayesian network
terminal node deletion

Compositional model

 among the arguments of only one distribution$$
Q_{1}\left(X_{1}, X_{2}\right) \triangleright Q_{2}\left(X_{2},\left\langle X_{3}\right)\right.
$$

Decomposition of PS models

Decomposition of PS models

$$
\begin{array}{r}
P_{1}\left(x_{1}, x_{2}\right), P_{2}\left(x_{1}, x_{3}\right), P_{3}\left(x_{3}, x_{4}, x_{7}\right), P_{4}\left(x_{2}, x_{5}\right), P_{5}\left(x_{3}, x_{6}\right), P_{6}\left(x_{5}, x_{6}, x_{9}\right), \\
P_{7}\left(x_{6}, x_{7}, x_{11}\right), P_{8}\left(x_{5}, x_{8}\right), P_{9}\left(x_{6}, x_{10}\right), P_{10}\left(x_{8}, x_{9}, x_{10}, x_{12}\right)
\end{array}
$$

Decomposition of PS models

$$
\begin{array}{r}
P_{1}\left(x_{1}, x_{2}\right), P_{2}\left(x_{1}, x_{3}\right), P_{3}\left(x_{3}, x_{4}, x_{7}\right), P_{4}\left(x_{2}, x_{5}\right), P_{5}\left(x_{3}, x_{6}\right), P_{6}\left(x_{5}, x_{6}, x_{9}\right), \\
P_{7}\left(x_{6}, x_{7}, x_{11}\right), P_{8}\left(x_{5}, x_{8}\right), P_{9}\left(x_{6}, x_{10}\right), P_{10}\left(x_{8}, x_{9}, x_{10}, x_{12}\right) \\
P_{1}, P_{2}, P_{4}, P_{5}, P_{6}, P_{8}, P_{9}, P_{10}
\end{array}
$$

Decomposition of PS models

$$
\begin{array}{r}
P_{1}\left(x_{1}, x_{2}\right), P_{2}\left(x_{1}, x_{3}\right), P_{3}\left(x_{3}, x_{4}, x_{7}\right), P_{4}\left(x_{2}, x_{5}\right), P_{5}\left(x_{3}, x_{6}\right), P_{6}\left(x_{5}, x_{6}, x_{9}\right), \\
P_{7}\left(x_{6}, x_{7}, x_{11}\right), P_{8}\left(x_{5}, x_{8}\right), P_{9}\left(x_{6}, x_{10}\right), P_{10}\left(x_{8}, x_{9}, x_{10}, x_{12}\right)
\end{array}
$$

Decomposition of Bayesian networks

Concluding remark

Concluding remark

Based on Albert Perez' ideas of dependence structure siplification approximation we have developed an approach for multidimensional distributions modelling, which is an alternative to Bayesian networks and which is from some points of view superioir to them.

