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Definition of the operator of composition

For 2 distributions:
P (xK), Q(xL)
their composition is defined by the expression

P . Q =
PQ

Q(xK ∩ L)
= P (xK)Q(xL \K|xK ∩ L)

More precisely:

P . Q =


P (xK)Q(xL)

Q(xK∩L)
if P (xK∩L)� Q(xK∩L),

undefined otherwise.
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Definition of the ”left composition”

For 2 distributions:
P (xK), Q(xL)

P / Q =


P (xK)Q(xL)

P (xK∩L)
if Q(xK ∩ L)� P (xK ∩ L),

undefined otherwise.



Basic properties of the operators of composition

If P . Q and P / Q are defined then

• P . Q is a distribution of variables XK∪L

• P is a marginal distribution of P . Q
Q is a marginal distribution of P / Q

• P . Q = Q . P iff P and Q are consistent:
tj. P (xK ∩ L) = Q(xK ∩ L)

•XK\L ⊥⊥ XL\K|XK∩L [P . Q]

• if P and Q are consistent then P . Q is a ma-
ximum entropy extension of both P and Q.
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Generating sequence

System {Pj(xKj
) : j = 1, 2, . . . ,m }.

Compositional model is defined by a generating
sequence (m = 2):

P1, P2 define distribution:

P1(xK1) . P2(xK2)

which is defined for variables X(K1∪K2)



Generating sequence

System {Pj(xKj
) : j = 1, 2, . . . ,m }.

Compositional model is defined by a generating
sequence (m = 3):

P1, P2, P3 define distribution:

P1(xK1) . P2(xK2) . P3(xK3)

= (P1 . P2) . P3

which is defined for variables X(K1∪K2∪K3)



Generating sequence

System {Pj(xKj
) : j = 1, 2, . . . ,m }.

Compositional model is defined by a generating
sequence (m = 4):

P1, P2, P3, P4 define distribution:

P1(xK1) . P2(xK2) . P3(xK3) . P4(xK4)

= ((P1 . P2) . P3) . P4

which is defined for variables X(K1∪K2∪K3∪K4)



Generating sequence

System {Pj(xKj
) : j = 1, 2, . . . ,m }.

Compositional model is defined by a generating
sequence:

P1, . . . , Pm define distribution:

P1(xK1) . P2(xK2) . . . . . Pm(xKm
)

= (. . . (P1 . P2) . . . .) . Pm)

which is defined for variables X(K1∪...∪Km)
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Why we introduced two operators of composition?

Operators are neither commutative nor associative
- saving brackets; operatots are applied from left
to right.

Main difference between them is, however, – their
computational complexity.

Denote L = Kj ∩ (K1 ∪ . . . ∪Kj − 1),

(P1 . . . . . Pj−1) . Pj =
(P1 . . . . . Pj−1) · Pj

(Pj)↓L
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To define multidimensional distribution it is
enough to determine a sequence of oligodimensio-
nal distributions

GENERATING SEQUENCE

advantageous are:

PERFECT SEQUENCES

they define the same distriibution for both opera-
tors

. and /.
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Perfect sequences are those, for which

P1 . P2 = P1 / P2

P1 . P2 . P3 = P1 / P2 / P3

P1 . P2 . P3 . P4 = P1 / P2 / P3 / P4
...

P1 . P2 . . . . . Pn = P1 / P2 / . . . / Pn
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Basic properties of perfect sequences

• P1, . . . , Pm is perfect iff all the distributions Pj
are marginal to P1 . . . . . Pm

• The class Bayesian network models is equivalent
to the class of perfect sequence models.
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Comments on equivalence of BN and PS models

• Simple algorithm transforming these types of re-
presentation each to other;

• Transformation PS −→ BN is local;
• Transformation BN −→ PS is not local (!);
• The difference arises from the fact that in PS
models some of marginal distriobutions are ex-
plicitely expressed - their computation from BN
is sometimes computationally expensive;

• Consequence: simplification of some computati-
onal procedures.



What have been achieved in the field of PS
models?

• Theoretical apparatus
• Persegrams
•Decomposition
• Efficient marginalization procedure



Comparison of BN and PS models
Shachter’s procedure of node deletion and edge
reversal

• Simple marginalization(!)

Bayesian network Compositional model

terminal node deletion deletion of a variable appearing
among the arguments of only
one distribution
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Decomposition of PS models

P1(x1, x2), P2(x1, x3), P3(x3, x4, x7), P4(x2, x5), P5(x3, x6), P6(x5, x6, x9),
P7(x6, x7, x11), P8(x5, x8), P9(x6, x10), P10(x8, x9, x10, x12)
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Decomposition of Bayesian networks
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Concluding remark

Based on Albert Perez’ ideas of dependence
structure siplification approximation we have deve-
loped an approach for multidimensional distributi-
ons modelling, which is an alternative to Bayesian
networks and which is from some points of view
superioir to them.
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