
Compenzational Vagueness

Milan Mareš
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Abstract

Some manipulations with vague quantities
consist in an aggregation of vague amounts
where the resulting aggregated quantity (in
our case a sum of vague summands) is ex-
pected to be (almost) crisp. The aim of
this contribution is to analyze and briefly
discuss various approaches to this problem
which can be supported by the elementary
theory of fuzzy quantities. The analysis is
focused on the possibility of achieving the
desired sum, on the fuzzy set theoretical
methods applicable to this model, and also
to the limits of regulation of some fuzzy
summands during the aggregation process.

Keywords: Fuzzy quantity, extension
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1 Introduction

The well handled processing of fuzzy quantities ap-
pears to be one of the most prospective trends of
further development of fuzzy set theory and applica-
tions. It becomes important for advanced methods of
management of uncertainty and vagueness in numer-
ous economic, sociological and organizational proce-
dures. The significancy of the multilevel investigation
of fuzzy quantities is analyzed from the point of view
of fuzzy methodology (see, e. g., [12, 13, 14]), its tra-
ditional methods are modified to be more adequate
to the real problems (e. g., in [11]), and the fuzzy set
theoretical model of quantitative phenomena is widely
generalized (as, e. g., in [1]).

This development of the general theory implies an
extension of the scale of its potential applications to

new sorts of problems. In this paper, we discuss sev-
eral approaches to the problem of aggregation of vague
(it means fuzzy) components aiming to minimize the
variability (fuzziness) of the result.

Such problem seems to be rather contradictoric
with regard to the essence of fuzziness, nevertheless,
it is not as unusual as it appears.

Let us consider, for example, a model of transport
line passing one or more check-points where the time
demanded for passing particular intervals is relatively
free, meanwhile their total is given by a time-table
as a narrow interval. Very similar situation appears
when a container is part-wise filled by some mater-
ial, where particular doses are in certain limits arbi-
trary but the total amount is given quite strictly. All
such situations, formulated in the language of fuzzy
set theory, mean the demand to get a crisp (or almost
crisp) sum of fuzzy components. This is impossible in
the classical model based on the extension principle.
However, such situations exist and they are not very
rate.

Some attempts to it were done in [7, 8], some others
can be potentially derived by means of the decomposi-
tion model (see [11] and others). In this contribution,
we discuss the effectivity and adequacy of some of
them. Namely, we compare the models using exten-
sion and decomposition principles. The questions on
which we focuse our attention are:

— how to estimate the possibility that (after the
realization of particular vague additions) the to-
tal sum will be equal or very near to the desired
value,

— how to characterize the possibilities of compen-
sation of declinations of consequently added ele-
ments,

— which of both principles of computation with
fuzzy quantities appears more effective (and due
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to which criteria) in modelling the real situations
of the considered type.

2 Fuzzy Quantity

In the whole paper, we denote by R the set of all real
numbers.

Due to [5, 6] and other works, we define fuzzy quan-
tity a as a fuzzy subset of R with membership function
µa such that:

There exists xa ∈ R such that µa(xa) = 1.(1)
There exist x1, x2 ∈ R such that x1 < xa < x2(2)
and µa(x) = 0 for x /∈ [x1, x2].

Any member xa ∈ R fulfilling (1) is called a modal
value of a. The set of all fuzzy quantities will be
denoted by R. The properties of fuzzy quantities are
summarized in many works. Let us mention at least
[2, 3, 4, 5, 6, 9].

To simplify the notations, we denote by 〈r〉, where
r ∈ R, the fuzzy quantity in R which is condensed in
a single possible value, i. e.

µ〈r〉(r) = 1, µ〈r〉(x) = 0 for x 6= r.(3)

If a ∈ R then we denote by (−a) ∈ R the opposite
fuzzy quantity to a, and

µ(−a)(x) = µa(−x) for all x ∈ R.(4)

As the fuzzy quantities are, in fact, extensions of crisp
real numbers, it is rational to extend even the alge-
braic operations used over R, on R. It is usually done
by so called extension principle. In this paper we need
only the operation of addition which, extended over
R, is denoted by ⊕, and if c = a ⊕ b, a, b, c ∈ R,
then

µc(x) = sup
y∈R

[min(µa(y), µb(x− y))](5)

for any x ∈ R. The properties of this (and others)
operation are summarized, e. g., in [2, 3, 5, 6]. It can
be easily seen that they are rather similar but not
identical with the group properties of the addition of
crisp real numbers.

Some of the essential differences between both addi-
tion operations are related with the concept of fuzzy
zero. Its seemingly natural definition as 〈0〉 (note,
a ⊕ 〈0〉 = a for every a ∈ R) does not fit with the
concept of opposite element as (−a). As shown in
[5, 6] and further specified in [9], fuzzy zeros form a
class of fuzzy quantities, closed for the operation ⊕,
which we denote

S = {s ∈ R : µs(x) = µs(−x) for all x ∈ R} .(6)

Fuzzy quantities from S are called symmetric. Due to
[9], the class S can be narrowed to

Z = {z ∈ R : z ∈ S, µz(0) = 1} ,(7)

whose elements are called strongly symmetric. The
algebraic properties of symmetric and strongly sym-
metric fuzzy quantities are equivalent and they agree
with the group axioms (including commutativity) un-
der the condition that we substitute the identity be-
tween fuzzy quantities a = b, a, b ∈ R,

a = b if µa(x) = µb(x) for all x ∈ R,(8)

by a weaker equivalence due to which a, b ∈ R are
equivalent iff they differ in fuzzy zeros, only (see, [5,
6, 9]).

The comparison and ordering relation between
fuzzy quantities can be (and often is) defined in differ-
ent ways, due to the character of the solved problem
(a representative analysis of it can be found in [4],
some possibilities are mentioned in [6], too). Here, we
use the ordering relation most respecting the vague
structure of fuzzy quantities. Namely, we define the
fuzzy ordering relation º over R as a fuzzy relation
with membership function νº : R × R → [0, 1] such
that for a, b ∈ R the possibility of a º b is

νº(a, b) = sup
x,y∈R

x≥y

[µa(x), µb(y)] ,(9)

and, analogously, we define fuzzy equality a ∼ b as
fuzzy relation with ν∼(a, b) : R× R→ [0, 1],

ν∼(a, b) = sup
x∈R

[µa(x), µb(x)] .(10)

3 Decomposition Paradigm

The algebraic operations based on the extension prin-
ciple, including the addition (5), are natural. They re-
flect the expected properties of composition of vague-
ness of summands after the summation procedure in
the standard situations. One of the evident results
is, that the vagueness of the sum is higher than the
one of the summands, where the vagueness is repre-
sented by the extent and values of the membership
functions. This observation contradicts with the es-
sential demand of the problem analyzed in this paper.
Hence, it appears evident that the extension principle
cannot serve as the method of its solution.

An alternative approach to the processing of fuzzy
quantities increasing the flexibility of actually applied
methods was suggested in several papers, including
[7], and it was summarized in [11]. It is based on so
called decomposition paradigm due to which any fuzzy
quantity a ∈ R consist of three components:
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— the crisp numerical value xa

— the shape function ϕa characterizing the struc-
ture of vagueness connected with a,

— the increasing scale function fa characterizing the
structure of vagueness connected with the source
of data.

The formal properties of all these components are pre-
sented, e. g., in [11]. The essential meaning of this
decomposed model is that it admits the possibility
to process each of the components separately, with
regard to the demands of actual application. Such
processing leads to the component of the resulting
fuzzy quantity (let us denote it c ∈ R with compo-
nents (xc, ϕc, fc)), where the membership function µc

is derived by means of

µc(x) = ϕc (fc(x)− fc(xc)) , x ∈ R.(11)

The consequence of the decomposition paradigm
significant for the model of addition which we are
looking for is the admissibility of separate process-
ing of shapes independent on the scales and crisp val-
ues. The shapes represent the main features of the
membership functions – namely, they reflect the main
structure of vagueness and its behaviour. In the fol-
lowing sections, we use especially the possibility to
combine the shapes not only by means of the exten-
sion principle (or its very close analogy) but by other
relevant fuzzy set theoretical operations. The choice
of the one used in a specific model can be modified
with respect to the described reality.

4 Composition of Vagueness

In the main section, we briefly discuss and compare
some approaches to the problem formulated in the
Introduction.

Let us consider fuzzy quantities a, b, c ∈ R with
membership functions µa, µb, µc, respectively. Let us
denote, for any d ∈ R with µd, the values

µsup
d = sup {x ∈ R : µd(x) > 0}(12)

µinf
d = inf {x ∈ R : µd(x) > 0}(13)

and

Vd = xsup
d − xinf

d .(14)

In the following subsections, we analyze the demand
that

min (Va, Vb) > Vc(15)

including the possibility that c = 〈xc〉 for modal value
xc of c. By xa, xb we denote some of the (possibly
many) modal values of a and b, respectively.

The main goal of this contribution is to discuss
some of the possible compositions of a and b whose re-
sult is near to the fuzzy quantity c. For the purpose of
general problem discussion, we denote this composi-
tion by ◦, which means that we discuss the properties
of the relations represented by formulas

a ◦ b ∼ c or a ◦ b º c.(16)

Special attention is focused on the compositions of
fuzzy quantities a ◦ b where (15) is fulfilled.

In the following subsections, we briefly discuss three
specific cases of the composition operation ◦, espe-
cially from the point of view of the degree, in which
they respect demands (15) and (16). Priority is given
to the following questions:

— How large is the possibility that the composition
a ◦ b is close to c?

— What is the extent of possible values of the com-
posed fuzzy quantity a ◦ b (i. e., the value of
Va¯b)?

— Does the actual method include a possibility of
compensation of the composition by means of
proper modification of fuzzy quantity b in accor-
dance with a?

— Is it possible to compare the effectivity of partic-
ular composition methods.

4.1 Extension Principle Model

The first model of composition operation which we
consider, is the classical extension principle (5), i. e.,
we consider the operation ⊕ in the position of ◦. It
means that we compute, by means of the extension
principle, the sum a ⊕ b ∈ R with membership func-
tion µa⊕b.

Due to the above notation

a ◦ b = a⊕ b.(17)

Unfortunately, this method evidently does not respect
the most important general demand, namely the one
demanding (see (14))

Va⊕b < min (Va, Vb) .

Observation 1. The possibility of a⊕b ∼ c is equal
to 1 iff there exist modal values xa, xb, xc of a, b, c,
respectively, such that

xa + xb = xc.
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Observation 2. The possibility that a ⊕ b ∼ c is
generally equal to µ∼(a⊕ b, c) due to (10).

Observation 3. Using (12), (13) and (14),

xinf
a⊕b = xinf

a + xinf
b , xsup

a⊕b = xsup
a + xsup

b ,

hence

Va⊕b ≥ max (Va, Vb) > Vc.

Observation 4. The previous statements cannot be
changed by any choice of b. If we choose b = 〈xc−xa〉
as a crisp quantity then Va⊕b = Va > Vc, and ν∼(a⊕
b, c) = 1.

The previous observations show that the dogmatic
application of the extension principle does not gen-
erally aim to the desirable model of the considered
situation.

4.2 Complementation Model

The next model modifies the previous extension prin-
ciple approach by accenting stronger stress on the po-
tential possibility of compensation of vague declina-
tions of the first component by proper modification of
the second one.

Evidently, the space for the choice of the second
summand (we are used to denote it b ∈ R) is not un-
limited. Its boundaries are often given by physical or
technological parameters, accessible stock of material
or energy, qualification and accessibility of human re-
sources, etc. Let us denote the accessible set of the
second summands by B ⊂ R.

Using the above notation, the operation ◦ in this
case means

a ◦ b = a⊕ d for some d ∈ B,(18)

or, more generally,

a ◦ b = {a⊕ d : d ∈ B} .

The choice of d ∈ B is to respect the following state-
ments.

Summarizing the model, we can see that there ex-
ists a desirable terminal fuzzy quantity c ∈ R which
is to be as exact as possible, with a modal value
xc. Moreover, “the first” summand, a fuzzy quantity
a ∈ R is (vaguely) known. Our aim in this subsection
is to choose “the second” summand, fuzzy quantity
b ∈ B ⊂ R which is the best one from the point of
view of the goal of this model. Let us suppose, still,
that the considered composition operation ◦ is the ex-
tension principle summation ⊕. Then all observations
introduced in Subsection 4.1 keep valid, and, more-
over, the following ones can be seen whenever (18) is
kept in mind.

Observation 5. If there exists b ∈ B such that xb =
xc−xathen ν∼(a⊕b, c) = 1 and, consequently, ν∼(a◦
b, c) = 1.

Observation 6. If the fuzzy quantity condensed in
one possible value 〈xc − xa〉 ∈ B and if we put b =
〈xc − xa〉 then the statement of Observation 5 holds
and, moreover Va+b = Va which extent of variability
is the nearest one to Vc.

Observation 7. If we put b = c⊕(−a) and if b ∈ B
then it fulfils assumptions of Observation 5.

4.3 Accessibility Testing Model

One of the questions to be answered whenever we try
to solve the problem of (almost) deterministic total
value of vague summands is the possibility that at
least one value of the sum a◦b is equal to the desired
total value c.

Let a, b be given, and let us define d = c ⊕ (−a).
Then the eventual possibility of successful outcome of
our problem, it means the possibility that

a⊕ b ∼ c,

is a fuzzy phenomenon whose possibility is

ν∼(d, b).(19)

In a more lucid way, this possibility can be defined
also by the formula

max
x∈R

[min(µd(x), µb(x))] .(20)

Observation 8. Analogously to Observation 1, pos-
sibilities (19) and (20) are equal to 1 iff there exist
modal values xa, xb, xc such that xa + xb = xc, as in
such case also xd = xc − xa = xb and, consequently
xc = xa + xd, as well.

5 Extent of Vagueness

The problem of regulation and compensation of sum-
mands in order to maximize the possibility that the
sum will be close to some not very extensive fuzzy
quantity has also another aspect. In the previous sec-
tion, the main attention is focused on the conditions,
under which at least the modal values of the sum and
goal quantity are identical. The second problem, to
achieve the vagueness of the sum as narrow as possi-
ble, demands a qualitatively new approach based on
the methods suggested (and analyzed) in [11, 7] and
in several related papers. It means, to process the
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crisp modal values and the shapes of the vagueness
separately, and by means of other procedures than
the extension principle.

Let us consider fuzzy quantities a, b with modal
crisp values xa, xb and shape functions ϕa, ϕb, re-
spectively (cf. Section 2). To simplify the notations,
we put the scales fa, fb (see Section 2 and (11))

fa(x) = fb(x) = x,(21)

and, consequently, it is possible to construct the mem-
bership functions µa, µb, using (11)

µa(x) = ϕa(x− xa), µb(x) = ϕb(x− xb),(22)

where the shape functions fulfil:

— ϕa(x) ∈ [0, 1], ϕb(x) ∈ [0, 1], x ∈ R,

— ϕa(0) = ϕb(0) = 1,

— ϕa, ϕb are continuous, not decreasing for x < 0,
and not increasing for x > 0,

— there exist x1, x2 ∈ R such that ϕa(x) = ϕb(x) =
0 for x /∈ [x1, x2].

Evidently, the shape functions represent normalized
forms of the membership functions.

Respecting the procedures, methods and conclu-
sions discussed in [11], we may compute a composition
a ◦ b, due to Subsection 4.1, by means of separate
composition of xa, xb and ϕa, ϕb. Let us keep the
denotation

c = a ◦ b, c is defined by (xc, ϕc)(23)

where ϕc fulfils the above properties of the shapes and
the eventual scale fc of c is equal to fa and fb.

In the case of our problem, it is natural to combine
(or compose) fuzzy quantities in (23) by

xc = xa + xb and ϕc = ϕa ◦ ϕb,(24)

where the composition of shapes ϕa ◦ ϕb can be rel-
atively arbitrary, under the condition that it reflects
the natural character of the modelled reality.

In our case, two following procedures appear nat-
ural and adequate to the problem:

ϕc(x) = min (ϕa(x), ϕb(x)) , x ∈ R,(25)

and

ϕ′c(x) = ϕa(x) · ϕb(x), x ∈ R,(26)

however, the possibility of other, more sophisticated,
operations is admissible as well.

Observation 9. Evidently, µc(x) = ϕc(x− xc) ful-
fills µc(xc) = 1 and

Vc = Va ∩ Vb,

µc(x) = min (µa(x− xb), µb(x− xa)) , x ∈ R,

which means that the demand of the minimization of
the extent of the vagueness is fulfilled.

Observation 10. Similarly, if (26) is used and if
x1 > −1, x2 < 1 then

Vc ⊂ Va ∩ Vb,

µc(x) ≤ min (µa(x− xb), µb(x− xa)) , x ∈ R,

which means that the goals of the procedure are ful-
filled, as well.

Observation 11. If x1 < −1, or x2 > 1, then the
extents of vagueness Vc, Va, Vb do not fulfill the previ-
ous Observation 10 but, the significantly large values
of µc(x) are condensed near xc.

6 Conclusive Remarks

In the last two sections, we have analyzed the problem
of construction of an additive composition method
resulting into a fuzzy quantity with minimal uncer-
tainty, from two points of view. How to maximize
the possibility of the most desired value, and how to
minimize the uncertainty connected with the result.
The second condition is very near to the demand to
decrease the possibility of less desired values of the
result.

In fact, the optimal approach to the problem for-
mulated in Introduction is based on s simultaneous
application of both views and by combination of their
results. This represents the possible continuation of
the research introduced here.
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