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Abstract

Let P be a discrete multidimensional probability distribution over a finite set of variables
N which is only partially specified by the requirement that it has prescribed given marginals
{PA; A ∈ S}, where S is a class of subsets of N with

⋃

S = N . The paper deals with
the problem of approximating P on the basis of those given marginals. The divergence of
an approximation P̂ from P is measured by the relative entropy H(P |P̂ ). Two methods for
approximating P are compared. One of them uses formerly introduced concept of dependence

structure simplification [3]. The other one is based on an explicit expression, which has to
be normalized. We give examples showing that neither of these two methods is universally
better than the other. If one of the considered approximations P̂ really has the prescribed
marginals then it appears to be the distribution P with minimal possible multiinformation. A
simple condition on the class S implying the existence of an approximation P̂ with prescribed
marginals is recalled. If the condition holds then both methods for approximating P give
the same result.

Keywords: marginal problem, relative entropy, explicit expression, dependence structure
simplification, multiinformation, decomposable model, asteroid.

Preface - memories of the second author

This paper was written particularly for a special volume of Kybernetika in honour of Albert
Perez. I had the opportunity to be the last doctoral student of his. In 1983 I joined the
Institute of Information Theory and Automation to start my studies for CSc degree1 under his
supervision. I am indebted to him for directing me towards an interesting topic of probabilistic
decision making. What I learned from him during my doctoral studies I also utilized in my
later research on probabilistic conditional independence. For example, the basic idea to use
information-theoretical tools in this field was inspired by his paper [3]. After defending my CSc
thesis in 1987 I became a regular member of the department formerly led by Albert Perez. He
tried to stimulate the activity of his colleagues in the department by organizing a weekly seminar
(I also attended). Moreover, he himself continued in research activity until he retired in 1990.

We renewed our contacts in November 2001 when I invited him to a small celebration of
my getting DrSc degree, in a restaurant. During the celebration, we agreed to have another
meeting, this time in the institute, together with two other colleagues of mine and former co-
workers of his, Radim Jiroušek and Otakar Kř́ıž. Otakar, Radim and I expected an informal

∗The work of the second author was also supported by the grant GAAVČR n. A1075104.
1This is the official name of the scientific degree awarded in Czechoslovakia in the 1980s. Nowadays, doctoral

students get PhD degree.
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meeting over some refreshment but when Albert Perez came he wanted us to discuss with him
on scientific theme. He wished to inform us about his latest research effort and, perhaps, to
help him to prepare some paper(s) on that topic. Later, we organized one more seminar for
four of us and agreed that Albert Perez would write something down and we would read it and
give him critical comments in order to prevent obstacles during future reviewing process. In
2002, 82-year-old Albert Perez bought a personal computer and started, first time in his career,
to work with it – of course, with substantial help and advice of Otakar Kř́ıž. I myself, visited
Albert Perez a few times in his flat. We mainly discussed former versions of the manuscript [6]
and I also tried to invite him to participate in WUPES 2003 workshop. Note that he worked on
several manuscripts that time and probably wanted to write a series of papers. During my last
visit, Albert Perez offered me to become a co-author of his paper based on [6], mainly because
I had helped him to find some counterexamples. Nevertheless, I had other commitments that
time and did not want to delay submitting his paper. Thus, I told him I was pleased to help
him anyway but preferred he would write the paper himself and would mention my name in an
acknowledgement.

When I phoned him in December 2003 to arrange giving him my comments on the last
version of [6] he did not answer the phone. My colleagues and I learned later that it was because
he was already dead. After his funeral, Radim Jiroušek came with an idea to prepare a special
volume of Kybernetika in honour of Albert Perez. I promised to write a paper based on [6] and
submit it to the volume. Of course, the present paper differs from the source manuscript [6]
very much: I changed the structure of the paper and omitted some points. Because the paper
is substantially based on the results and ideas of Albert Perez he is the first author.

1 Introduction

The paper deals with the following problem. Let N be a finite non-empty set of variables, S
a class of subsets of N whose union is N and M = {PA;A ∈ S} a given system of marginals
of a discrete probability distribution P over N .2 In general, P is not uniquely determined by
M. Thus, we only know that P belongs to the class KM of discrete probability distributions
over N that have the prescribed system of marginals M. We are interested in the problem of
approximating P on basis of M. More specifically, we consider special approximations P̂ of P .
These are probability distributions over N “constructed” from M by means of “multiplication”
in a special way. Actually, we deal with and compare two special methods for constructing
approximations of this kind. The first approach leads to dependence structure simplifications,
already introduced in [3]. In this paper, we introduce an alternative method which is based on
certain explicit expression, which has to be normalized. To compare quality of approximations
we use the relative entropy H(P |P̂ ) as the measure of divergence of an approximation P̂ from
P . The point is that the quality of an approximation P̂ of the considered kind actually does not
depend on the choice of P ∈ KM. This is because, for any P ∈ KM and any approximation P̂
of this kind, the following formula holds:

H(P |P̂ ) = I(P ) − IM(P̂ ), (1)

where I(P ) is the multiinformation of P and IM(P̂ ) an expression, called the information content

of P̂ , that does not depend on particular P ∈ KM.

The motivation for this problem comes from probabilistic decision making. More specifically,
the considered approximations can be utilized in multi-symptom diagnosis making. Let us

2Of course, PA is a distribution over A where A ⊆ N .
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assume that every variable i ∈ N has assigned a non-empty finite set of possible values Xi. Let
d ∈ N be a diagnostic variable, that is, a variable whose value we would like to “determine”
on basis of remaining variables. The variables in S ≡ N \ {d} are, therefore, called symptom

variables. Our decision should be based on an “observed” configuration of values xS ≡ [xi]i∈S ,
where xi ∈ Xi for i ∈ S. On the basis of the configuration xS , we would like to determine
the most probable value of the diagnostic variable. That means, we would like to find y ∈ Xd

with maximal conditional probability Pd|S(y|xS).3 The complication is that we do not know the
“actual” distribution P which describes the probabilistic relationships among variables in N .
Therefore, we try to replace P by its approximation P̂ based on a given system of marginals
M = {PA; A ∈ S} with d ∈ A for every A ∈ S.

There are two methodological procedures that can be applied in this situation. The first
approach is based on direct approximation of P : we use an approximation P̂ instead of P which
leads to the following estimator of the value y of the diagnostic variable:

ψ1(xS) = argmax {P̂ ([y, xS ]) ; y ∈ Xd } .
4

The second approach is a Bayesian one. It is based on the idea that a prior distribution Qd is
given on Xd. In this case, we use Qd ·P̂S|d instead of P , where P̂S|d is an estimate of the respective
conditional probability. For fixed y ∈ Xd, we consider the system of probability distributions
over subsets of S ≡ N \{d}, namely M[y] = {PA\{d}|d(?|y) ; A ∈ S}, which should be the system
of marginals of the conditonal probability PS|d(?|y).

5 Now, on basis of M[y], we can analogously

construct an approximation P̂[y] of PS|d(?|y).
6 This leads to the following estimator:

ψ2(xS) = argmax {Qd(y) · P̂[y](xS) ; y ∈ Xd} .

The structure of the paper is as follows. Section 2 is an overview of basic concepts and facts.
We recall some information-theoretical concepts and describe the considered situation in detail
in mathematical terms. In Section 3 we introduce the concept of M-construct, which is the
above mentioned approximation of P ∈ KM constructed from M by “multiplication”. We also
derive the formula (1) there. The concept of a dependence structure simplification (DSS) is dealt
with in Section 4. We recall the definition from [7] and the respective formula for the information
content. We also discuss the problem of finding an optimal DSS and a possible modification
of the definition of a DSS. Section 5 is devoted to approximating P by means of an explicit
expression. We explain the role of a normalizing constant, give the formula for the respective
information content IM(P̂ ) and discuss possible application of this type of approximation in
probabilistic decision making. Section 6 is devoted to the case of fitting marginals. This is the
fortunate case when P̂ falls within KM. We show that then P̂ is the probability distribution
from KM which has minimal multiinformation.7 We also discuss the barycenter principle of the
choice of a representative of KM introduced in [4] and show that the choice of optimal DSS
is in concordance with this principle. Section 7 contains examples showing that none of two

3Of course, this problem is equivalent to the problem of finding y ∈ Xd which maximizes P ([y, xS ]). This alter-
native formulation formally avoids assuming that the marginal probability P S(xS) of the observed configuration
is strictly positive, which assumption is needed to define the conditional probability Pd|S(?|xS).

4The symbol argmax {f(y) ; y ∈ Y } denotes any z ∈ Y such that f(z) = max {f(y) ; y ∈ Y }.
5We implicitly assume that Pd(y) > 0 for every y ∈ Xd for otherwise Xd can be reduced to {y ∈ Xd ; Pd(y) > 0}.
6Indeed, the situation is completely analogous to the problem of approximating P on basis of M – the only

difference is that N is replaced by S and M by M[y].
7This is equivalent to the requirement that it has minimal entropy within KM.
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described methods for approximating P is better than the other in the sense of information
content. Section 9 gives a simple sufficient condition on S which ensures that the approximation
P̂ falls in KM. The condition, named the running intersection property, is strongly related
to well-known decomposable graphical models [2]. Section 10 contains conclusions and open
problems.

2 Basic concepts

Throughout the paper we will assume the situation described in the following subsection.

2.1 The considered situation

Let N be a non-empty finite set of variables. Every i ∈ N has assigned the respective individual

sample space Xi, which is a non-empty finite set of its possible values. Given a set A ⊆ N , by
a configuration of values for A we mean any list [xi]i∈A such that xi ∈ Xi for any i ∈ A. Of
course, if A 6= ∅ then a configuration for A is nothing but an element of the Cartesian product
∏

i∈A Xi. However, the above definition also formally introduces a configuration for the empty
set; it is simply the empty list. We will denote the set of configurations for A ⊆ N by XA and
call it the sample space for A. The joint sample space is then XN .

Two basic operations with configurations are as follows. Given A ⊆ B ⊆ N and x = [xi]i∈B ∈
XB, the marginal configuration (of x) for A, denoted by xA, is the restriction of the list x to
the items that correspond the variables in A: xA = [xi]i∈A. Given A,C ⊆ N , A ∩ C = ∅, by
concatenation of x = [xi]i∈A ∈ XA and y = [yi]i∈C ∈ XC we will understand the configuration
z = [zi]i∈A∪C for A ∪ C obtained by merging the lists x and y: that is, zi = xi for i ∈ A and
zi = yi for i ∈ C. It will be denoted by [x, y].

Further assumption is that a class S of subsets of N is given whose union is N . The symbol
S↓ will denote the class {B ; B ⊆ A for A ∈ S} of subsets of sets in S. If A ⊆ S is a non-
empty subclass of S then the symbol

⋃

A, respectively
⋂

A, will be used to denote the union,
respectively the intersection, of sets in A.

A basic concept is the concept of a probability measure on XN . A probability measure of this
kind is given by its density, which is a function p : XN → [0, 1] such that

∑

{p(x) ; x ∈ XN} = 1.
The respective probability measure is then a set function on subsets of XN which ascribes
P (T) =

∑

{p(x) ; x ∈ T} to every T ⊆ XN .8 By a discrete probability distribution over N
we will understand a probability measure on any joint sample sample space XN of the above-
mentioned kind.

Given a probability measure P on XN and A ⊆ N , the marginal of P for A is the probability
measure PA on XA defined as follows:

PA(Y) = P ({x ∈ XN ; xA ∈ Y}) for Y ⊆ XA .

It is easy to see that PA is determined by the marginal density pA for A, given by

pA(y) =
∑

{ p([x, y]) ; x ∈ XN\A} for y ∈ XA .

In particular, pN = p and p∅ ≡ 1. Observe that marginal densities comply with the following
vanishing principle:

if A ⊆ B ⊆ N and z ∈ XB then pA(zA) = 0 implies pB(z) = 0 . (2)

8Of course, then P (∅) = 0 by a convention.
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The last assumption is that a collection of marginals of a probability measure on XN is
given. More specifically, we assume that a collection of probability measures M = {PA ; A ∈ S}
is given, where PA is a probability measure on XA for A ∈ S and there exists at least one
probability measure P on XN such that

∀A ∈ S PA = PA . (3)

The last assumption on M is the requirement of its strong consistency.9 We will use the symbol
KM to denote the class of all probability measures P on XN such that (3) holds. The assumption
of strong consistency of M means that KM is non-empty. Of course, KM may contain more
than one probability measure in general.

An important question is how to verify the assumption of strong consistency of M. In
general, it is not an easy task. The only general method for its verification is to find P ∈ KM

directly, but no universal instructions how to do it are available. To show that (3) is not fulfilled
the following concept is suitable. We say that M is weakly consistent if

∀A,B ∈ S (PA)A∩B = (PB)A∩B . (4)

Evidently, strong consistency of M implies its weak consistency. As weak consistency is easy
to verify the condition (4) can be used to disprove strong consistency. On the other hand, the
weak consistency does not imply the strong one as the following example shows.

Example 1 Put N = {a, b, c} and Xi = {0, 1} for every i ∈ N . Let S = {A ⊆ N ; |A| = 2} be
the class of two-element subsets of N and the density pA of PA for any A ∈ S is given as follows:

pA(0, 0) = pA(1, 1) =
1

10
, pA(0, 1) = pA(1, 0) =

2

5
.

As (pA){i}(0) = (pA){i}(1) = 1/2 for both i ∈ A, the collection M = {PA ; A ∈ S} is weakly
consistent. However, (3) is not valid for any P on XN . To see this assume for contradiction that
P ∈ KM with density p exists and put x ≡ p(1, 1, 1) ≥ 0. The fact p{b,c}(1, 1) = 1/10 and (3)
implies p(0, 1, 1) = (1/10)−x. Hence, by p{a,b}(0, 1) = 2/5 observe p(0, 1, 0) = 2/5−[(1/10)−x] =
(3/10) + x. Finally, by p{a,c}(0, 0) = 1/10 get p(0, 0, 0) = 1/10 − [(3/10) + x] = −(2/10) − x.
The fact p(0, 0, 0) ≥ 0 gives x ≤ −2/10, which contradicts the assumption x ≥ 0.

Fortunately, the condition (4) implies strong consistency under an additional assumption on
the class S, namely that S satisfies so-called running intersection property – for detail see § 9.
Moreover, even if that additional condition is not fulfilled strong consistency can sometimes be
verified as follows. Provided that (4) holds, an approximation P̂ is constructed on basis of M.
Then one can check whether P̂ has M as the collection of marginals. This happens whenever
S satisfies the running intersection property but it can also happen even if this is not the case
– see Example 6 in § 6.

Remark 1 One can assume without loss of generality that S consists of incomparable sets, that
is, A \B 6= ∅ 6= B \A for any pair of distinct sets A,B ∈ S. This is because otherwise S can be
reduced to

Smax = {A ∈ S ; ¬(∃B ∈ S with A ⊂ B) }, 10

and M to Mmax = {PA ; A ∈ Smax}. Owing to strong consistency the collection M can be
reconstructed from Mmax (and S) and one has KM = KMmax .

9As M is supposed to be the class of marginals of a probability measure over N it is denoted by the letter M.
10Here, ⊂ denotes strict inclusion of sets.
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2.2 Some related concepts and notation

In this section we introduce some concepts used systematically in the rest of the paper.

2.2.1 The greatest supporter

Given probability measure P on XN with density p, the set NP ≡ {x ∈ XN ; p(x) > 0} will be
called the supporter of P . It is the least subset T ⊆ XN such that P is concentrated on T , that
is, P (XN \ T ) = 0. As KM is a convex set11 and XN has finitely many subsets there exists a
probability measure R ∈ KM which has the greatest supporter in KM.12 It will be denoted by
the symbol NM.

2.2.2 Relative entropy

Given two probability measures P,Q on XN we say that P is absolutely continuous with respect
to Q and write P � Q of Q(T) = 0 implies P (T) = 0 for each T ⊆ XN .13 We also say that Q
dominates P .

The well-known result is Radon-Nikodym theorem which says that P � Q iff there exists a
function dP

dQ
: XN → [0,∞), called the Radon-Nikodym derivative of P with respect to Q, such

that

P (T) =
∑

x∈T

dP

dQ
(x) · q(x) for any T ⊆ XN ,

where q is the density of Q. Of course, dP
dQ

is uniquely determined on NQ, in particular, on NP .
The relative entropy of P with respect to Q is defined by the formula

H(P |Q) ≡
∑

x∈XN ,p(x)>0

p(x) · ln
dP

dQ
(x) =

∑

x∈XN

q(x) ·
dP

dQ
(x) · ln

dP

dQ
(x) ,

provided P � Q and H(P |Q) = ∞ otherwise. A well-known fact is that H(P |Q) ≥ 0 and
H(P |Q) = 0 iff P = Q – see §A.6.3 in [8]. Thus, it can be understood as a measure of distinction
between P and Q.14 Observe that in the considered discrete case one has H(P |Q) < ∞ iff
P � Q. In particular, it follows from the previous observations:

Proposition 1 There exists R ∈ KM such that ∀P ∈ KM H(P |R) <∞.

2.2.3 Dominating product measure

The first step is to realize that a given collection of marginals M can uniquely be extended to
a system of marginals M↓ = {PB ; B ∈ S↓}. Indeed, given B ∈ S↓ there exists A ∈ S with
B ⊆ A and we put PB = (PA)B. The condition (4) implies that the definition does not depend
on the choice of A ∈ S, it only depends on M. Actually, the fact that every P ∈ KM satisfies
(3) implies PB = PB for every P ∈ KM and B ∈ S↓. Given M↓ and B ∈ S↓ the symbol pB will
denote the density of PB.

11This means that it is closed under convex combinations: if P, Q ∈ KM, α ∈ [0, 1] then α ·P +(1−α) ·Q ∈ KM.
12Realize that whenever R = α · P + (1 − α) · Q with α ∈ (0, 1) then NR = NP ∪ NQ.
13Note that in the considered case of finite joint sample space XN this is equivalent to the inclusion NP ⊆ NQ.
14However, because it may happen H(P |Q) 6= H(Q|P ) even if P � Q � P , it is not a distance.
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Given i ∈ N , the assumption
⋃

S = N implies that {i} ∈ S↓ for every i ∈ N . Let us put
Pi = P{i} then. The product of these probability measures

∏

i∈N Pi will be called the dominating

product measure and denoted by L. It is a probability measure on XN with density l is given by

l(x) =
∏

i∈N

p{i}(xi) for every x = [xi]i∈N ∈ XN .

The terminology is justified because one can easily observe that P � L for every P ∈ KM.15

This allows one to derive PB � LB for every B ∈ S↓.16 In particular, the Radon-Nikodym
derivative dPB/dL

B exists for every B ∈ S↓ and is uniquely determined on the supporter of LB

– it will be denoted by the symbol fB in the sequel. Of course,

fB(xB) = pB(xB) ·
∏

j∈B

p{j}(xj)
−1 for any x ∈ XN with l(x) > 0 and B ⊆ N .

Remark 2 Note that we can assume without loss of generality that l(x) > 0 for every x ∈ XN .
Indeed, otherwise replace every Xi, i ∈ N by X

′
i = {y ∈ Xi ; p{i}(y) > 0 }. Then every P ∈ KM

is concentrated on X
′
N =

∏

i∈N X
′
i.

2.2.4 Multiinformation and entropy

Given a probability measure P on XN , the relative entropy H(P |
∏

i∈N P {i}) will be called
its multiinformation and denoted by I(P ). In the considered discrete case one always has
P �

∏

i∈N P {i},17 which implies that I(P ) <∞. Of course, if P ∈ KM then I(P ) = H(P |L).
The entropy of a probability measure P on XN , denoted by H(P ), is given by the following

formula:

H(P ) =
∑

x∈XN ,p(x)>0

p(x) · ln
1

p(x)
.18

Note that entropy is a non-negative (finite) real number. The following lemma recalls basic facts
on multiinformation and entropy in the considered situation.

Lemma 2.1 There exists uniquely determined P∗ ∈ KM such that

H(P∗) = max {H(P ) ; P ∈ KM} .

It concides with unique P∗ ∈ KM such that I(P∗) = min {I(P ); P ∈ KM}. Moreover, there
exists (at least one) P† ∈ KM with I(P†) = max {I(P ); P ∈ KM } <∞.

Proof: Let us introduce an auxiliary (continous) real function h : R → R as follows:

h(y) =

{

y · ln y if y > 0,
0 otherwise.

Observe that −H(P ) =
∑

x∈XN
h(p(x)) for every probability measure P on XN . As h is strictly

convex on [0,∞) the function P 7→ −H(P ) is a strictly convex continuous function on KM.
Moreover, KM is a convex bounded subset of R

XN . Thus, the function achieves both the

15Observe that p{i}(x{i}) = 0 implies p(x) = 0 for x ∈ XN , i ∈ N by the vanishing principle (2).
16Realize that PB = P B and P � L gives P B � LB .
17Use the vanishing principle (2).
18Of course, the definition only makes sense in the discrete case.
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maximum and the minimum on KM and the P∗ ∈ KM in which the minimum is achieved is
uniquely determined. The second basic fact is that

I(P ) = −H(P ) +
∑

i∈N

H(P {i}) for every P ∈ KM . (5)

Since one-dimensional marginals are shared within KM, the second term in (5) is a constant.
This observation implies the remaining claims of the lemma.

3 M-construct

The following definition is modification of a concept introduced in [6].

Definition 3.1 Let M = {PA; A ∈ S} be a strongly consistent collection of probability mea-
sures. By an M-construct we will understand any probability measure Q on XN which is abso-
lutely continuous with respect to the dominating product measure L and whose Radon-Nikodym
derivative dQ/dL satisfies the condition

∀x ∈ NM
dQ

dL
(x) = k ·

∏

B∈S↓

fB(xB)ν(B) , (6)

where k ∈ (0,∞) and ν(B) ∈ Z, B ∈ S↓ are the respective parameters of Q.
The multiinformation content of the M-construct Q given by (6) is the following number,

denoted by IM(Q),

IM(Q) = ln k +
∑

B∈S↓

ν(B) · I(PB) . (7)

An example of an M-construct is the dominating product measure L – it suffices to put
k = 1, ν({i}) = 1 for i ∈ N and ν(B) = 0 for remaining B ∈ S↓.19 However, there are other
examples of M-constructs, namely the approximations of P ∈ KM mentioned in § 4 and § 5. The
following lemma says that every M-construct gives a lower estimate of minimal multiinformation
in KM.

Lemma 3.1 Let M = {PA; A ∈ S} be a strongly consistent collection of probability measures
and Q be an M-construct. Then P � Q� L for every P ∈ KM. Moreover,

min {I(P ) ; P ∈ KM} ≥ IM(Q) (8)

and the equality in (8) occurs iff Q ∈ KM, in which case IM(Q) = I(Q). Actually, one has
H(P |Q) = I(P ) − IM(Q) for any P ∈ KM and an M-construct Q.

Proof: The fact Q� L follows directly from Definition 3.1. To show P � Q it suffices to verify
p(x) > 0 ⇒ q(x) > 0 for x ∈ XN . If p(x) > 0 then l(x) > 0 and to get q(x) > 0 one needs to
show that (dQ/dL)(x) > 0.20 However, then x ∈ NP ⊆ NM and the formula (6) for dQ/dL(x)
can be used. The vanishing principle for marginal densities (2) implies pB(xB) > 0 for every
B ⊆ N and this gives fB(xB) > 0 for any B ∈ S↓.21 In particular, (6) implies (dQ/dL)(x) > 0,
which was needed.

19Note that fB ≡ 1 whenever |B| = 1.
20Realize that q(x) = dQ/dL(x) · l(x).
21Recall that pB(xB) = (dPB/dLB)(xB) · lB(xB) = fB(xB) · lB(xB).
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The next step is to observe that

∑

x∈XN ,p(x)>0

p(x) · ln
dQ

dL
(x) = IM(Q) . (9)

Indeed, whenever x ∈ XN , p(x) > 0 then x ∈ NP ⊆ NM and (6) can be used, which gives:

∑

x∈XN ,p(x)>0

p(x) · ln
dQ

dL
(x) =

∑

p(x)>0

p(x) · ln k +
∑

B∈S↓

ν(S) ·
∑

p(x)>0

p(x) · ln fB(xB) .

To get the expression in (7) write the last internal sum as follows:

∑

x∈XN ,p(x)>0

p(x) · ln fB(xB) =
∑

y∈XB ,pB(y)>0

∑

z∈XN\B ,p([y,z])>0

p([y, z]) · ln fB(y)

=
∑

y∈XB ,pB(y)>0

ln fB(y) ·
∑

z∈XN\B ,p([y,z])>0

p([y, z]) =

=
∑

y∈XB ,pB(y)>0

{ln fB(y)} · pB(y) ,

and realize that fB = dPB/dL
B.

Now, (9) can be used to derive (8). Consider P ∈ KM. The fact P � Q � L implies that
dP
dQ

(x) = dP
dL

(x)/dQ
dL

(x) for every x ∈ NQ.22 This allow one to write using (9):

0 ≤ H(P |Q) =
∑

x∈XN ,p(x)>0

p(x) · ln
dP

dQ
(x)

=
∑

p(x)>0

p(x) · ln
dP

dL
(x) −

∑

p(x)>0

p(x) · ln
dQ

dL
(x) = I(P ) − IM(Q) .

This gives I(P ) ≥ IM(Q) and (8). Moreover, the equality I(P ) = IM(Q) means that H(P |Q) =
0 and this occurs iff P = Q. However, P = Q implies Q ∈ KM. Conversely, if Q ∈ KM then we
put P ′ = Q ∈ KM and repeat the above consideration to get 0 = H(P ′|Q) = I(P ′) − IM(Q).
The formula (8) allows to write

I(P ′) ≥ min {I(P ); P ∈ KM} ≥ IM(Q) = I(P ′) ,

which implies that the equality in (8) occurs and I(Q) = I(P ′) = IM(Q). The last equality
mentioned in Lemma 3.1 was verified above.

4 Dependence structure simplifications

This is one of the ways to approximate measures from KM, already proposed in the 1970s by the
first author in [3]. Dependence structure simplifications were also dealt with in the CSc thesis
of the second author [7]. The following is a minor modification of the definition from [7].

22Observe that dQ

dL
(x) > 0 for every x ∈ NQ and use the definition of the Radon-Nikodym derivative.
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Definition 4.1 Let M = {PA; A ∈ S} be a strongly consistent collection of probability
measures. Let us choose a total ordering τ : S1, . . . , Sn, n ≥ 1 of elements of S and put
Fj ≡ Sj ∩ (

⋃

k<j Sk) and Gj ≡ Sj \ Fj for 1 ≤ j ≤ n.23 By a choice for M and τ we will
understand a mapping ϑ which assigns a conditional density pGj |Fj

on XGj
given XFj

consistent

with pSj
to every 1 ≤ j ≤ n.24

By a dependence structure simplification (DSS) for M determined by ordering τ and the
choice ϑ will be understood a probability measure on XN whose density pτ,ϑ is given by

pτ,ϑ(x) =
n

∏

j=1

pGj |Fj
(xGj

|xFj
) for every x ∈ XN .25 (10)

The class of all DSSs for M (determined by any possible τ and ϑ) will be denoted by DM.

Remark 3 The concept of a “choice for M and τ” is a technical concept which is needed to
overcome some troubles one can come across if densities of given distributions from M vanish
for certain marginal configurations.

Of course, if pFj
> 0 on XFj

for some j ∈ {1, . . . , n}26 then the conditional density pGj |Fj

consistent with pSj
is uniquely determined as the ratio pSj

/pFj
. Therefore, if the ordering τ is

such that pFj
> 0 on XFj

for any j = 1, . . . , n27 then all terms in (10) are uniquely determined
and it takes the form

pτ (x) =

n
∏

j=1

pSj
(xSj

)

pFj
(xFj

)
for any x ∈ XN . (11)

In that special case the concept of choice for M and τ is superfluous and can be omitted.
However, on the other hand, if pFj

(xFj
) = 0 for at least one j ∈ {1, . . . , n} and x ∈ XN

then the respective term pSj
(xSj

)/pFj
(xFj

) in (11) is an undefined ratio 0/0! It may even
happen that no other term pSk

(xSk
)/pFk

(xFk
) for k 6= j vanishes for that particular configuration

x ∈ XN , which means that pτ (x) is not defined then – see Example 4. Therefore, some additional
“conventions” are needed to ensure that the formula (11) defines a density on XN . One of the
methods to settle the matter is to choose and fix versions of conditional densities. Surprisingly,
this choice appears not to influence the quality of the resulting approximation from the point of
view we consider – see Lemma 4.1. Another possible approach to deal with the above problem
is mentioned in Remark 4.

Another interesting observation is that whenever Sj ⊆
⋃

k<j Sk for some j ∈ {1, . . . , n} then

pSj
does not influence the value of pτ,ϑ.28 The following is a basic fact concerning DSSs.

Lemma 4.1 Assume that l(x) > 0 for every x ∈ XN .29 Then every Q ∈ DM is an M-construct

23In particular, F1 = ∅ and G1 = S1.
24By a conditional density on XA given XC is meant a function of two variables [y, z] 7→ pA|C(y|z), y ∈ XA,

z ∈ XC such that ∀ z ∈ XC its restriction y 7→ pA|C(y|z), y ∈ XA is a density of a probability measure on XA. It
is called consistent with a density q on XAC if pA|C(y|z) = q([y, z])/qC(z) whenever qC(z) > 0.

25It can be shown by induction on n that (10) indeed defines a density of a probability measure on XN .
26Observe that pFj belongs to the extended system M↓ mentioned in § 2.2.3 and that if Fj = ∅ the pFj > 0 on

XFj = X∅ owing to our convention from § 2.1.
27This happens whenever pS > 0 on XS for every S ∈ S, by vanishing principle.
28This is because then Gj = ∅ and pGj |Fj

(xGj |xFj ) = p∅|Sj
(x∅|xSj ) = 1 for any x ∈ XN .

29This unrestrictive assumption – see Remark 2 – is needed to ensure Q � L for every Q ∈ DM. Alternatively,
we can modify Definition 4.1 and restrict our choices to conditional densities pGj |Fj

on X
′
Gj

given X
′
Fj

.
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and, provided that its density pτ,ϑ is given by (10), its multiinformation content is

IM(Q) =
∑

A∈S

I(PA) −
n

∑

j=2

I(PFj
) =

∏

B∈S↓

ν(B) · I(PB) , (12)

where
ν(B) = |{j;Sj = B}| − |{j;Fj = B}| for any B ∈ S↓ . (13)

In particular, the multiinformation content of Q does not depend on the choice ϑ for M and τ .

Proof: As l(x) > 0 for every x ∈ XN , the claim Q� L is evident. We can express the Radon-
Nikodym derivative dQ/dL as the ratio of respective densities pτ,ϑ and l. To verify (6) let us
choose P ∈ KM such that NP = NM. Thus, given x ∈ NM one has p(x) > 0 and this implies
by the vanishing principle pFj

(xFj
) > 0 for every j = 1, . . . , n. Another point is that the density

l of the dominating product measure L can formally be written as follows:

l(x) =
∏

i∈N

li(xi) =
n

∏

j=1

lGj
(xGj

) =
n

∏

j=1

lSj
(xSj

)

lFj
(xFj

)
for x ∈ XN .

Therefore, we can write for x ∈ NM by (10) and the above formula:

dQ

dL
(x) =

pτ,ϑ(x)

l(x)
=

n
∏

j=1

pSj
(xSj

) · lFj
(xFj

)

lSj
(xSj

) · pFj
(xFj

)
=

n
∏

j=1

fSj
(xSj

)

fFj
(xFj

)
=

∏

B∈S↓

fB(xB)ν(B) ,

where ν(B) is given by (13). Thus, (6) holds with k = 1. By substituting ν(B), B ∈ S↓ to (7)
and realizing that I(PF1

) = I(P∅) = 0 we get (12).

The following example shows that the multiinformation content of a DSS Q need not equal
to its multiinformation.

Example 2 Put N = {a, b, c, d}, Xi = {0, 1} for every i ∈ N and consider a class of sets
S = {S1, S2, S3}, where S1 = {a, b}, S2 = {a, c} and S3 = {b, c, d}. The collection of probability
measures M = {PA; A ∈ S} is introduced by means of densities:

pA(0, 0) = pA(1, 1) =
1

5
, pA(0, 1) = pA(1, 0) =

3

10
for A = S1 and A = S2 ,

while for B = S3 = {b, c, d}

pB(0, 0, 0) = pB(1, 1, 0) =
1

5
, pB(0, 1, 1) = pB(1, 0, 1) =

3

10
.

To see that M is strongly consistent consider a density p : XN → [0, 1], where p(0, 0, 0, 0) =
p(1, 1, 1, 0) = 1/20 and p(x) = 3/20 for any of the following six configurations: (0, 0, 1, 1),
(0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 0), (1, 0, 1, 1) and (1, 1, 0, 1). Take an ordering τ : S1, S2, S3 and
observe that pFj

> 0 for j = 2, 3. Therefore, the density q = pτ of the respective DSS Q is
unambiguously defined. It has the same supporter as the above mentioned joint density p. More
specifically, q(0, 0, 0, 0) = q(1, 1, 1, 0) = 2/25, q(0, 1, 1, 0) = q(1, 0, 0, 0) = 9/50 and q(x) = 3/25
for the following four configurations: (0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 1, 1) and (1, 1, 0, 1). Hence, one
has for B = {b, c, d}:

qB(0, 0, 0) = qB(1, 1, 0) =
13

50
, qB(0, 1, 1) = qB(1, 0, 1) =

6

25
.
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To express the difference I(Q) − IM(Q) we first write the multiinformation of Q as follows:

I(Q) = I(Qab) + I(Qac) + I(Qbcd) − I(Qa) − I(Qbc) .
30

Now, by (12), IM(Q) has the same form, but QA is replaced by PA for respective sets A ⊆ N
there. As Qab = Pab and Qac = Pac one has

I(Q) − IM(Q) = [I(Qbcd) − I(Qbc)] − [I(Pbcd) − I(Pbc)] ,

and the reader can obtain by direct computation31 I(Qbcd)− I(Qbc) = 13
25 · ln

25
13 + 12

25 · ln
25
12 and

I(Pbcd)−I(Pbc) = 2
5 ·ln

5
2+ 3

5 ·ln
5
3 . Hence, I(Q)−IM(Q) = −14

25 ·ln 2+ 3
25 ·ln 3+ln 5− 13

25 ·ln 13 6= 0.

Thus, Lemmas 4.1 and 3.1 allow one to derive the following corollary, already given in [7].

Corollary 4.1 Provided l(x) > 0 for every x ∈ XN , Q ∈ DM and P ∈ KM and one has

H(P |Q) = I(P ) − IM(Q) = I(P ) −
∑

A∈S

I(PA) +
n

∑

j=2

I(PFj
) .

The previous corollary substantially simplifies the task of finding an optimal DSS.

Definition 4.2 Let M = {PA; A ∈ S} be a strongly consistent collection of probability mea-
sures. A DSS Q ∈ DM will be called optimal relative to P ∈ KM if

H(P |Q) = min {H(P |Q′); Q′ ∈ DM} .

It follows from the formula in Corollary 4.1 that Q = P τ,ϑ ∈ DM is optimal iff it maximizes
the multiinformation content IM(Q) given by (12). Of course, this occurs it τ minimizes the
value of the function τ 7→ ι(τ) ≡

∑n
j=2 I(PFj

). In particular, the fact that Q ∈ DM is optimal
relative to a particular P ∈ KM actually does not depend on P ! Note that the problem of
finding an ordering yielding an optimal DSS was dealt with in more detail in [7]. The following
example illustrates the procedure. In this case, an optimal DSS is unique.32

Example 3 Put N = {a, b, c}, Xi = {0, 1} for every i ∈ N and S = {A ⊆ N ; |A| = 2}. These
are the densities of probability measures from M = {PA; A ∈ S}:

p{a,b}(0, 0) = p{a,b}(0, 1) =
1

4
, p{a,b}(1, 0) =

1

8
p{a,b}(1, 1) =

3

8
,

p{a,c}(x) = 1/4 for every x ∈ X{a,c}, and

p{b,c}(0, 0) = p{b,c}(1, 0) =
1

4
, p{b,c}(0, 1) =

1

8
p{b,c}(1, 1) =

3

8
.

To show that M is strongly consistent consider a density p on X{a,b,c} given as follows: p(0, 0, 0) =
p(0, 1, 1) = p(1, 1, 0) = 1/4 and p(1, 0, 1) = p(1, 1, 1) = 1/8.

30To see this one can utilize the concept of conditional independence and the formula (2.17) in [8]. Indeed, by
construction one has d ⊥⊥ a | bc [Q] and b ⊥⊥ c | a [Q].

31Actually, I(Qbcd) − I(Qbc) = H(Qbcd|Qbc × Qd) and I(Pbcd) − I(Pbc) = H(Pbcd|Pbc × Pd) and one use the
above formulas for qB and pB with B = {b, c, d}.

32On the other hand, in Example 2, each of three possible DSSs is optimal.
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For example, the ordering τ1 : S1 = {a, b}, S2 = {a, c}, S3 = {b, c} gives F2 = {a} and
F3 = {b, c} and this leads to the value ι(τ1) = I(Pa) + I(Pbc) = I(Pbc). Clearly, the value
of ι(τ) is the multiinformation of the last marginal in the ordering τ . As I(Pac) = 0 and
I(Pab) = I(Pbc) = 3

2 · ln 2 − 5
8 · ln 5 > 0 there are two “optimal” orderings, namely {a, b}, {b, c},

{a, c} and {b, c}, {a, b}, {a, c}. They both lead to the same DSS, given by this density q:

q(0, 0, 0) =
1

6
, q(0, 0, 1) =

1

12
, q(0, 1, 0) =

1

10
, q(0, 1, 1) =

3

20
,

q(1, 0, 0) =
1

12
, q(1, 0, 1) =

1

24
, q(1, 1, 0) =

3

20
, q(1, 1, 1) =

9

40
.

The last example in this section illustrates what was mentioned in Remark 3, namely that
an undefined expression can occur in the formula (11).

Example 4 Put N = {a, b, c, d} and Xi = {0, 1} for every i ∈ N . Consider a class of sets
S = {S1, S2, S3}, where S1 = {a, b}, S2 = {a, c} and S3 = {b, c, d}. The densities of probability
measures from M = {PA; A ∈ S} are given as follows: p{a,b}(x) = 1/4 for any x ∈ X{a,b},
p{a,c}(x) = 1/4 for any x ∈ X{a,c} and p{b,c,d} has the value 1/4 for any of the following four
configurations: (0, 0, 0), (0, 0, 1), (1, 1, 0) and (1, 1, 1). To see that M is strongly consistent con-
sider a density p on X{a,b,c,d} such that p(x) = 1/8 for any configuration x of the following eight
ones: (0, 0, 0, 0), (0, 0, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1), (1, 1, 1, 0) and (1, 1, 1, 1).

If we consider the ordering τ : S1, S2, S3 then F2 = {a} and F3 = {b, c}. The point is that
p{b,c}(0, 1) = p{b,c}(1, 0) = 0. Therefore, one has:

pτ (0, 0, 1, 0) =
p{a,b}(0, 0) · p{a,c}(0, 1) · p{b,c,d}(0, 1, 0)

p{a}(0) · p{b,c}(0, 1)
=

1
4 · 1

4 · 0
1
2 · 0

,

which is an undefined expression. Actually, the sum of the defined terms in (11), that is, pτ (x)
with x{b,c} = (0, 0) or x{b,c} = (1, 1), is 1/2. This indicates that the idea to put pτ (x) = 0
whenever the expression is not defined does not solve the problem.

Remark 4 An alternative formal definition of a DSS, mentioned implicitly in the manuscript
[6], is as follows. The convention (0/0) ≡ 0 is accepted. Then (11) defines “density” of a non-
negative measure on XN . However, in general, 0 < d ≡

∑

x∈XN
pτ (x) ≤ 1.33 One can introduce

a density q by the formula q(x) = d−1 · pτ (x) for x ∈ XN . The point is that this alternative
definition of a DSS34 leads to a different formula for the multiinformation content, namely
ln d−1 +

∑

A∈S I(PA)−
∑n

j=2 I(PFj
); see (7). Paradoxically, this can give better approximation

of P ∈ KM than the DSS introduced in Definition 4.1 – because the multiinformation content is
enlarged by the factor ln d−1. Nevertheless, this only can happen in “non-standard” situations.
For example, as mentioned in Remark 3, if pS > 0 for any S ∈ S then all terms in (11) are
defined and there is no difference between those two formal definitions of a DSS.

5 Explicit expression

This is a method for approximating measures from KM proposed newly in [6]. The motivation
for this proposal was to utilize maximally the information given by M and, moreover, impose

33The fact d > 0 can be derived from strong consistency of M. Indeed, consider the density p of P ∈ KM,
x ∈ XN with p(x) > 0. Then, by (2), all nominators and denominators in (11) are positive and pτ (x) > 0.

34It is also an M-construct – one can modify the arguments from the proof of Lemma 4.1.

13



the minimal possible amount of dependencies between variables. The idea was elicited by the
first author when he tried to solve the approximation problem described in § 1 by the method
of Lagrange multipliers.

Definition 5.1 Given n ∈ N, the symbol sg(n) will denote (−1)n; that is, sg(n) = +1 for even
n and sg(n) = −1 for odd n. Let M = {PA; A ∈ S} be a strongly consistent collection of
probability measures. Let us put

Exe (x) =
∏

∅6=A⊆S

p⋂

A(x⋂

A)−sg(|A|) for every x ∈ XN , 35 (14)

where we accept the convention that 0−1 ≡ 0. Then we put c =
∑

x∈XN
Exe (x)36 and define

Exe(x) = c−1 · Exe (x) ≡ c−1 ·
∏

∅6=A⊆S

p⋂

A(x⋂

A)−sg(|A|) for every x ∈ XN . (15)

Of course, Exe is a density of a probability measure on XN , denote by Pexe. The number c will
be called the norm (of the explicit expression Exe ) and denoted by |Exe |.

Note that the norm |Exe | could be both higher and lower than 1 – examples are given in § 7.
Nevertheless, even if |Exe | = 1 then the respective explicit expression approximation Pexe need
not belong to KM as the following example shows.

Example 5 Consider the system of marginals M from Example 3. Then p{a}(0) = p{a}(1) =
1/2 = p{c}(0) = p{c}(1) and p{b}(0) = 3/8, p{b}(1) = 5/8; this allows one to write by (14):

Exe (0, 0, 0) =
p{a,b}(0, 0) · p{a,c}(0, 0) · p{b,c}(0, 0) · p∅(−)

p{a}(0) · p{b}(0) · p{c}(0)
=

1
4 · 1

4 · 1
4 · 1

1
2 · 3

8 · 1
2

=
2 · 8 · 2

4 · 4 · 4 · 3
=

1

6
.

Actually, the result of detailed calculation of Exe is the density q of the optimal DSS mentioned
in Example 3. In particular, |Exe | = 1 and Pexe has density q. However, q{a,c}(0, 0) = (1/6) +
(1/10) = 8/30 6= 1/4 = p{a,c}(0, 0), which means Pexe 6∈ KM. On the other hand, the example
also shows that Pexe can coincide with an optimal DSS.

Lemma 5.1 Let M = {PA; A ∈ S} be a strongly consistent collection of probability measures.
Then the probability measure Pexe is an M-construct. Its multiinformation content is

IM(Pexe) = − ln |Exe | +
∑

B∈S↓

ν(B) · I(PB) , (16)

where
ν(B) =

∑

{−sg(|A|) ; ∅ 6= A ⊆ S,
⋂

A = B} for any B ∈ S↓ . (17)

Proof: The first observation is that

∀ i ∈ N
∑

{ sg(|A|) ; ∅ 6= A ⊆ S, i ∈
⋂

A} = −1 . (18)

35Observe that Exe defines a “density” of a measure EXE on XN such that P � EXE for every P ∈ KM. Indeed,
(2) implies that whenever p(x) > 0 for x ∈ XN then p⋂

A(x⋂

A) > 0 for every ∅ 6= A ⊆ S.
36The assumption of strong consistency of M implies that c > 0 – use what it says in the preceding footnote.
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Indeed, consider a fixed i ∈ N , denote by H the class of A ∈ S with i ∈ A and write using the
definition of sg(n) and binominal formula:

∑

∅6=A⊆H

sg(|A|) =
∑

∅6=A⊆H

(−1)|A| =

|H|
∑

`=1

∑

A⊆H,|A|=`

(−1)` =

|H|
∑

`=1

(−1)` · |{A ⊆ H; |A| = `}|

=

|H|
∑

`=1

(−1)` ·

(

|H|

`

)

= −1 +

|H|
∑

`=0

(−1)` · 1|H|−` ·

(

|H|

`

)

= −1 + (−1 + 1)|H| = −1 + 0|H| = −1 .

The main step is to introduce a measure Q on XN such that Q � L and its Radon-Nikodym
derivative dQ

dL
has the following form:

dQ

dL
(x) =

∏

∅6=A⊆S

f⋂

A(x⋂

A)−sg(|A|) for any x ∈ XN . (19)

To show that Pexe is an M-construct it suffices to show that the density q of Q coincides with
Exe . This is easy to see for x ∈ XN with l(x) = 0. Then p{i}(xi) = 0 for some i ∈ N and
the assumption

⋃

S = N forces the existence of A ⊆ S with i ∈ A. Therefore, the vanishing
principle (2) implies that at least one factor in (14) vanishes and Exe (x) = 0.

To verify q(x) = Exe (x) for x ∈ XN with l(x) > 0 we first observe that

∏

∅6=A⊆S

∏

j∈
⋂

A

p{j}(xj)
sg(|A|) =

∏

i∈N

p{i}(xi)
−1 . (20)

Indeed, one can write it with the help of (18) as follows:

∏

∅6=A⊆S

∏

j∈
⋂

A

p{j}(xj)
sg(|A|) =

∏

i∈N

∏

∅6=A⊆S,i∈
⋂

A

p{i}(xi)
sg(|A|)

=
∏

i∈N

p{i}(xi)
∑

{sg(|A|) ; ∅6=A⊆S, i∈
⋂

A} =
∏

i∈N

p{i}(xi)
−1 .

The formulas (19), fB = pB ·
∏

j∈B p
−1
{j} for B ⊆ N (see § 2.2.3) and (20) now allows one to write

q(x) as follows:

q(x) =
dQ

dL
(x) · l(x) =

∏

∅6=A⊆S

f⋂

A(x⋂

A)−sg(|A|) ·
∏

i∈N

p{i}(xi)

=
∏

∅6=A⊆S

{ p⋂

A(x⋂

A)−sg(|A|) ·
∏

j∈
⋂

A

p{j}(xj)
sg(|A|) } ·

∏

i∈N

p{i}(xi)

=
∏

∅6=A⊆S

p⋂

A(x⋂

A)−sg(|A|) ·
∏

∅6=A⊆S

∏

j∈
⋂

A

p{j}(xj)
sg(|A|) ·

∏

i∈N

p{i}(xi)

=
∏

∅6=A⊆S

p⋂

A(x⋂

A)−sg(|A|) ·
∏

i∈N

p{i}(xi)
−1 ·

∏

i∈N

p{i}(xi)

=
∏

∅6=A⊆S

p⋂

A(x⋂

A)−sg(|A|) · 1 = Exe (x) .
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The observation q = Exe means that Pexe is c−1-multiple of Q where c = |Exe |. In particular,
by (19), Pexe � L and

dPexe

dL
(x) = c−1 ·

∏

∅6=A⊆S

f⋂

A(x⋂

A)−sg(|A|) = c−1 ·
∏

B∈S↓

fB(xB)
∑

{−sg(|A|) ; ∅6=A⊆S,
⋂

A=B} .

Then, by Definition 3.1, Pexe is an M-construct with k = c−1 and ν(B), B ⊆ N given by (17).
The formula (16) follows from (7).

Corollary 5.1 Given P ∈ KM one has

H(P |Pexe) = I(P ) − IM(Pexe) = I(P ) + ln |Exe | −
∑

B∈S↓

ν(B) · I(PB) ,

where ν(B), B ∈ S↓ is given by (17). In particular, minP∈KM I(P ) ≥ IM(Pexe) and the equality
occurs iff Pexe ∈ KM, in which case IM(Pexe) = I(Pexe).

Proof: This follows from Lemma 3.1: we put Q = Pexe and use the formula (16).

Remark 5 An useful observation concerning explicit expression approximation was made in [6].
If we consider the multi-symptom diagnostic problem mentioned in § 1 and base our estimator on
direct approximation of P by means of the explicit expression P̂ = Pexe, then it is not necessary

to compute the norm |Exe |. This is because Exe and Exe only differ in multiplicative positive
factor and always achieve their maxima in same configurations. Thus, in this particular case,
one has

ψ1(xS) = argmax {Exe ([y, xS ]) ; y ∈ Xd } .

6 The case of fitting marginals

It may happen that an approximation P̂ of measures from KM fits the prescribed marginals,
that is, P̂ really has the measures from M as marginals and, therefore, it belongs to KM. The
following example shows that both methods for approximation mentioned in this paper may
result in a distribution from KM.

Example 6 Put N = {a, b, c}, Xa = Xc = {0, 1}, Xb = {0, 1, 2} and S = {A ⊆ N ; |A| = 2}.
The densities of measures from M = {PA ; A ∈ S} are given as follows:

p{a,b}(0, 0) =
2

9
, p{a,b}(0, 1) =

1

9
, p{a,b}(1, 1) = p{a,b}(1, 2) =

1

3
,

p{a,c}(0, 0) = p{a,c}(1, 1) =
2

9
, p{a,c}(0, 1) =

1

9
, p{a,c}(1, 0) =

4

9
,

and, finally

p{b,c}(0, 0) = p{b,c}(0, 1) = p{b,c}(2, 0) =
1

9
, p{b,c}(1, 0) =

4

9
, p{b,c}(2, 1) =

2

9
.

Detailed calculation of Exe gives this

Exe (0, 0, 0) = Exe (0, 0, 1) = Exe (0, 1, 0) = Exe (1, 2, 0) =
1

9
, Exe (1, 1, 0) =

1

3
, Exe (1, 2, 1) =

2

9
,

and Exe (x) = 0 for remaining configurations x ∈ XN . In particular, |Exe | = 1 and the density p
of Pexe coincides with Exe . It is easy to see that pA = pA for A ∈ S. Moreover, the calculation
of DSS for τ : S1 = {a, b}, S2 = {b, c}, S3 = {a, c} gives the same result.
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Note that the fact a DSS has the prescribed marginals implies that it is optimal.

Corollary 6.1 Assume l(x) > 0 for every x ∈ XN . If Q∗ ∈ DM ∩ KM then Q∗ is an optimal
DSS (relative to any P ∈ KM).

Proof: By Lemma 4.1, Q∗ is an M-construct and Lemma 3.1 says that Q∗ ∈ KM implies
min {I(P ); P ∈ KM} = IM(Q∗). Given arbitrary Q ∈ DM, again by Lemmas 4.1 and 3.1,
observe that

IM(Q∗) = min {I(P ); P ∈ KM} ≥ IM(Q) .

Therefore, IM(Q∗) = max {IM(Q); Q ∈ DM}. However, this means Q∗ is optimal – see the
explanation after Definition 4.2.

The approximations should be reasonable in the sense that if an estimate P̂ incidentally
has the prescribed marginals from M then it is a distinguished representative of the class KM.
There are more principles for the choice of a representative of a class of distributions suitable
from the point of view of probabilistic decision-making. One of them is the maximum entropy

principle. The idea is to choose P ∈ KM which maximizes the entropy H(P ). By Lemma
2.1, this distribution is uniquely determined. The results from § 4 and § 5 imply that both
approximation methods dealt with in this paper are in concordance with this principle.

Corollary 6.2 Let M = {PA; A ∈ S} be a strongly consistent collection of probability
measures. If Pexe ∈ KM then P̂ = Pexe is the measure maximizing entropy in KM. Assuming
l(x) > 0 for all x ∈ XN and Q ∈ DM ∩ KM the distribution P̂ = Q maximizes entropy in KM.

Proof: Lemmas 5.1 and 4.1 imply that the considered approximation P̂ in an M-construct.
Then, Lemma 3.1 says that P̂ ∈ KM implies the equality in (8); that is, min {I(P ); P ∈ KM} =
IM(P̂ ) and, moreover, IM(P̂ ) = I(P̂ ). Thus, P̂ minimizes the multiinformation in KM and, by
Lemma 2.1, it maximizes the entropy.

7 Examples

In general, it is not possible to claim that one of the above-mentioned methods for approximation
of a distribution P with prescribed marginals is better than the other, if one takes the relative
entropy H(P |P̂ ) as the measure of divergence of an approximation P̂ from P .

The following example shows that the optimal DSS approximation could be better than
the explicit expression approximation. Actually, it this particular example, the optimal DSS
approximation has fitting marginals. The example also shows that it can be the case that
|Exe | > 1.

Example 7 Put N = {a, b, c}, Xi = {0, 1} for every i ∈ N and S = {A ⊆ N ; |A| = 2}.
Densities of measures from M = {PA; A ∈ S} are given as follows:

pA(0, 0) = pA(0, 1) = pA(1, 1) =
1

3
for A = {a, c} and A = {b, c} ,

while p{a,b}(0, 0) = 2/3, p{a,b}(1, 1) = 1/3. Clearly, M is strongly consistent; consider the density
p which ascribes 1/3 to any of the following three configurations of x{a,b,c}: (0, 0, 0), (0, 0, 1) and
(1, 1, 1). Actually, if one takes the ordering τ∗ : S1 = {a, b}, S2 = {b, c}, S3 = {a, c} then the
respective DSS has just the density p. In particular, DM ∩ KM 6= ∅ and p defines an optimal
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DSS. As described in § 4, one can come to the same conclusion by minimizing the function
τ 7→ ι(τ); in this case one has ln 3 − 4

3 · ln 2 = I({a, c}) = I({b, c}) < I({a, b}) = ln 3 − 2
3 · ln 2.

Direct calculation of Exe gives this result:

Exe (0, 0, 0) =
1

2
, Exe (0, 0, 1) =

1

4
, Exe (1, 1, 1) =

1

2
,

and Exe (x) = 0 for remaining configurations x ∈ XN . Therefore, |Exe | = 5/4 > 1 and the
respective explicit expression approximation has the form

Exe(0, 0, 0) =
2

5
, Exe(0, 0, 1) =

1

5
, Exe(1, 1, 1) =

2

5
,

and Exe(x) = 0 for other configurations x ∈ XN . Hence, Exe{a,b}(0, 0) = 3
5 6= 2

3 = p{a,b}(0, 0)
implies that Pexe 6∈ KM. The formulas (12) and (16) allow one to compare multiinformation
contents of the optimal DSS Q and the explicit expression Pexe directly:

IM(Q)− IM(Pexe) = −I({a, c})+ ln |Exe | = −(ln 3−
4

3
· ln 2)+ ln

5

4
= ln 5− ln 3−

2

3
· ln 2 > 0 .

On the other hand, the next example shows that the explicit expression approximation could
be better than the optimal DSS approximation. Moreover, it also shows that it may happen
|Exe | < 1.

Example 8 Put N = {a, b, c}, Xi = {0, 1} for every i ∈ N and S = {A ⊆ N ; |A| = 2}. The
density pA of PA for any A ∈ S is given as follows:

pA(0, 0) =
2

3
, pA(0, 1) = pA(1, 0) =

1

3
, pA(1, 1) = 0 .

To see that M = {PA;A ∈ S} is strongly consistent consider the density p given as follows:

p(0, 0, 0) =
1

2
, p(0, 0, 1) = p(0, 1, 0) = p(1, 0, 0) =

1

6
,

and p(x) = 0 for remaining x ∈ XN . Since I(PA) = 7
3 · ln 2+ ln 3− 5

3 · ln 5 ≡ k > 0 for any A ∈ S,
every ordering τ gives an optimal DSS. For example, the ordering S1 = {a, b}, S2 = {b, c},
S3 = {a, c} leads to the following density q of an optimal DSS:

q(0, 0, 0) =
8

15
, q(0, 0, 1) = q(1, 0, 0) =

2

15
, q(0, 1, 0) =

1

6
, q(1, 0, 1) =

1

30
,

and q(x) = 0 for remaining x ∈ XN . Direct computation of Exe gives this result:

Exe (0, 0, 0) =
64

125
, Exe (0, 0, 1) = Exe (0, 1, 0) = Exe (1, 0, 0) =

20

125
,

and Exe (x) = 0 for remaining configurations x ∈ XN . In particular, |Exe | = 124/125 < 1.
Therefore,

Exe(0, 0, 0) =
16

31
, Exe(0, 0, 1) = Exe(0, 1, 0) = Exe(1, 0, 0) =

5

31
,

and Exe(x) = 0 for other x ∈ XN . Of course, Pexe 6∈ KM as Exe{a,b}(0, 0) = 21
31 6= 2

3 = p{a,b}(0, 0).
Formulas (16) and (12) allow one to compare multiinformation contents of both (types) of
approximation:

IM(Pexe) − IM(Q) = (− ln |Exe | + 3k) − (3k − k) = k − ln |Exe | = k + ln
125

124
> 0 ,

which means that Pexe is better.

Note that so far no example was found that Pexe ∈ KM and KM ∩ DM = ∅.
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8 Barycenter principle

Another principle for the choice of a representative of a class of probability distributions, different
from the maximum entropy principle, is the barycenter principle. It was proposed by the first
author in the 1980s [4, 5]. The following restricted definition is suitable for the purpose of this
paper.

Definition 8.1 Let K and T are two classes of probability measures on the same sample space,
say, on XN . The barycenter of K (taken) in T is any probability measure R∗ ∈ T which minimizes
the function

R 7→ µ(R) ≡ max
P∈K

H(P |R), R ∈ T , (21)

that is, in other words, it is obtained by the following “mini-max” procedure:

max
P∈K

H(P |R∗) = min
R∈T

max
P∈K

H(P |R) .

An implicit technical requirement is that the clases K and T are such that the maxima in (21)
exist and the function µ is finite for at least one R ∈ T .

The interpretation is that T is the class of approximations of distributions from K. Thus,
we typically have in mind the set KM in place of K. If we put T = DM the the concept of
barycenter reduces to the concept of an optimal DSS.

Proposition 2 Let M be a strongly consistent collection of probability measures. Assume
l(x) > 0 for every x ∈ XN . Then every optimal DSS for M is a barycenter of KM in DM.

Proof: It follows from Lemma 2.1 that maxP∈KM I(P ) < ∞ and that at least one P† in
KM exists with I(P†) = maxP∈KM I(P ). Moreover, it follows from Lemmas 4.1 and 3.1 that
H(P |Q) = I(P )− IM(Q) for any P ∈ KM and Q ∈ DM. In particular, given Q ∈ DM, one has

max
P∈KM

H(P |Q) = max
P∈KM

{ I(P ) − IM(Q) } = { max
P∈KM

I(P ) } − IM(Q) = I(P†) − IM(Q),

and the task to minimize Q 7→ maxP∈KM H(P |Q), Q ∈ DM is equivalent to the task to maximize
IM(Q) on DM. However, as explained after Definition 4.2, Q is an optimal DSS iff it maximizes
the multiinformation content IM(Q) on DM.

The above definition of barycenter is general enough: one can even put T ≡ K, which means
that one is looking for a barycenter of a class of distributions K in itself. Actually, this is
an alternative to the maximum entropy principle proposed already in [5]. It was shown there
that in several common situations, the maximum entropy principle and (this special) barycenter
principle yield the same result. However, this is not always the case. The following example
shows that, if we consider the case of K = KM, then the barycenter principle and the maximum
entropy principle may result in a different approximation.

Example 9 Put N = {a, b}, Xa = Xb = {0, 1} and S = {A ⊆ N ; |A| = 1}. The collection
M = {PA; A ∈ S} is given by respective marginal densities:

p{a}(0) =
1

3
, p{a}(1) =

2

3
, p{b}(0) =

1

4
, p{b}(1) =

3

4
.
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We omit the proof of the fact that KM consists of convex combinations of two probability
measures, namely the measure R1 given by the density

r1(0, 0) = 0, r1(0, 1) =
1

3
, r1(1, 0) =

1

4
, r1(1, 1) =

5

12
,

and the measure R2 given by the density

r2(0, 0) =
1

4
, r2(0, 1) =

1

12
, r2(1, 0) = 0, r2(1, 1) =

2

3
.

In particular, the product measure Q = P{a} × P{b} with density

q(0, 0) =
1

12
, q(0, 1) =

1

4
, q(1, 0) =

1

6
, q(1, 1) =

1

2

has the form Q = 2
3 · R1 + 1

3 · R2. Note that this measure minimizes the multiinformation in
KM and, therefore, it maximizes the entropy – see Lemma 2.1. To show that Q differs from the
measure chosen by the barycenter principle it suffices to find at least one R ∈ KM such that

µ(Q) ≡ max
P∈KM

H(P |Q) > max
P∈KM

H(P |R) ≡ µ(R) .

A basic observation is that, given Q′ ∈ KM with strictly positive density, the function P 7→
H(P |Q′), P ∈ KM is convex on KM and achieves its minimum 0 at P = Q′. Moreover, in the
considered case, KM is an “interval” between R1 and R2, for which reason the maximum of the
function P 7→ H(P |Q′) is achieved in one of the “extreme” measures R1 and R2. In particular,

max
P∈KM

H(P |Q′) = max {H(R1|Q′), H(R2|Q′) }.

Now, direct computation gives

H(R2|Q) =
4

3
· ln 2 −

1

2
· ln 3 >

−1

2
· ln 3 +

5

12
· ln 5 = H(R1|Q) ,

which means that µ(Q) = H(R2|Q) = 4
3 · ln 2− 1

2 · ln 3. We put R = 1
3 ·R1 + 2

3 ·R2 and observe
it has the following density:

r(0, 0) = r(0, 1) =
1

6
, r(1, 0) =

1

12
, r(1, 1) =

7

12
.

Thus, we can analogously get

H(R1|R) =
1

3
· ln 2 +

1

4
· ln 3 +

5

12
· ln 5 −

5

12
· ln 7 >

5

3
· ln 2 +

1

4
· ln 3 −

2

3
· ln 7 = H(R2|R) ,

which means that µ(R) = H(R1|R) = 1
3 · ln 2 + 1

4 · ln 3 + 5
12 · ln 5− 5

12 · ln 7. It is straightforward
to observe by detailed computation that µ(Q) > µ(R).

9 Simple sufficient condition

Of course, as mentioned in § 6, the ideal case is if the approximation has prescribed marginals
from M. The problem is often to ensure this situation. There exists simple strong sufficient
condition for this in terms of the class S. The condition has close connection to graphical models
[2], more precisely, to so-called decomposable graphical models. Even more special and simpler
case is the case of so-called asteroid, which is the concept introduced in the manuscript [6].
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Definition 9.1 Ler S be a class of subsets of N such that
⋃

S = N . We say that it is
decomposable if there exists an ordering τ : S1, . . . , Sn, n ≥ 1 of sets in S that satisfies the
running intersection property:

∀ j > 2 ∃ ` < j Fj ≡ Sj ∩ (
⋃

k<j

Sk) ⊆ S` . (22)

Given a partitioning {E1, . . . , Er}, r ≥ 2 of the set N , an asteroid with core C = E1 (generated
by that partitioning) is the class of sets

S = {E1 ∪ Ei; i = 2, . . . , r} .

It is evident that every asteroid is a decomposable class; actually, any ordering of sets of
an asteroid satisfies the running intersection property.37 The point is that the decomposability
condition is a necessary and sufficient condition for the equivalence of weak and strong consis-
tency of any system M of probability measures which has S as the class of “indexing” sets –
see [7] and [1]. However, in the context of this paper, the following observation is crucial.

Proposition 3 Let S be a decomposable class of subsets of N with
⋃

S = N and M =
{PA; A ∈ S} be a (strongly) consistent collection of probability measures. Then any total
ordering τ : S1, . . . , Sn, n ≥ 1 of sets in S satisfying the running intersection property (22)
yields an optimal DSS. The respective optimal DSS coincides with Pexe and has fitting pre-
scribed marginals from M. Moreover, it coincides with the distribution chosen from KM by the
maximum entropy principle.

Proof: To show the first claim it suffices to verify that the respective DSS has prescribed
marginals from M and apply Corollary 6.1. The statement that if τ satisfies (22) then the
density pτ,ϑ given by (10) has pS1

, . . . , pSn as marginal densities can be proved by induction on
n.38 It is evident for n = 1. If n > 1 then we denote H =

⋃

j<n Sj , consider a shortened ordering
τ ′ : S1, . . . , Sn−1, a restricted choice ϑ′ and derive from (10):

pτ,ϑ(x) = pτ ′,ϑ′(xH) · pGn|Fn
(xGn |xFn) for x ∈ XN . (23)

Hence, (pτ,ϑ)H = pτ ′,ϑ′ ,39 which allows one to observe by the induction assumption that pτ,ϑ has
pS1

, . . . , pSn−1
as marginal densities:

∀ j < n (pτ,ϑ)Sj = ((pτ,ϑ)H)Sj = (pτ ′,ϑ′)Sj = pSj
.

To show that it has pSn as marginal density find ` < n with Fn ⊆ S`. Now, the induction
assumption says (pτ ′,ϑ′)S` = pS`

which allows one to observe that pτ ′,ϑ′ has pFn as a marginal
density:

(pτ ′,ϑ′)Fn = ((pτ ′,ϑ′)S`)Fn = (pS`
)Fn = pFn .

Therefore, by (23), the marginal density of pτ,ϑ for Sn can be written as follows:

(pτ,ϑ)Sn = (pτ ′,ϑ′)Fn · pGn|Fn
= pFn · pGn|Fn

= pSn ,

because the conditional density pGn|Fn
is consistent with pSn . This completes the induction step.

37This is because the core C is the set Sj ∩ (
⋃

k<j Sk) for any j > 2.
38This holds irrespective of what choice ϑ for M and τ is considered.
39Use the definition of conditional density.
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To show that the respective optimal DSS coincides with Pexe we first observe that if τ :
S1, . . . , Sn, n ≥ 1 satisfies (22) then the concept of choice for M and τ is not needed because
the density pτ,ϑ given by (10) does not depend on ϑ. Actually, the density of the respective DSS
is then given by (11) where we accept the convention 0−1 ≡ 0.40 Thus, (11) implies that the
density pτ has the form:

pτ (x) =
∏

B∈S↓

pB(xB)ν(B) for x ∈ XN ,

where ν(B), B ∈ S↓ is given by (13) and the convention 0−1 = 0 is accepted. Now, the formula
(14) implies

Exe (x) =
∏

B∈S↓

pB(xB)ν(B) for x ∈ XN ,

where ν(B), B ∈ S↓ is given by (17) and the same convention holds. The point is that if τ
satisfies the running intersection property (22) then the formulas (13) and (17) give the same
result – this is what is proved in Lemma 7.2 in [8].41 In particular, pτ = Exe . As pτ is a density
of a probability measure |Exe | = 1 and one has pτ = Exe. Thus, the respective DSS Q coincides
with Pexe. We have already shown that Q has prescribed marginals.

The last claim of Proposition 3 follows from Corollary 6.2.

10 Conclusions and open problems

Let us summarize the results of the paper. We have compared two methods for approximation
of probability distributions with prescribed marginals: the optimal DSS approximation and
the explicit expression approximation. Both these methods can be applied to multi-symptom
diagnosis making as explained in § 1. The conclusion is that none of these two methods is
universally better than the other – we gave the respective examples in § 7. As mentioned in [6],
the formal advantage of the explicit expression approximation is that if we use this approach then
we automatically avoid the optimization procedure needed in the case of DSS approximations.

Moreover, in the case of fitting marginals, both methods result in the distribution chosen by
the maximum entropy principle – see § 6. A simple sufficient condition for this in terms of S was
recalled in § 9. Finally, in § 8, we compared the barycenter principle and the maximum entropy
principle and showed that they differ in the considered special case; actually, this disproves one
of the conjectures from [6].

Of course, some questions remain open. One of them is as follows. It is true that if |Exe | = 1
then Pexe coincides with an optimal DSS approximation? Thus was also mentioned in [6] as
a conjecture. The second author tried to verify or disprove that conjecture but he has not
succeeded so far. The conjecture was verified in the case |Xi| = 2 for i ∈ N and |S| ≤ 3 – this
was done with the essential help of a computer program Mathematica. Another open question
was mentioned in the end of § 7: is it true that if Pexe ∈ KM then KM ∩ DM 6= ∅?42

40Given x ∈ XN consider the first (possible) j ≥ 2 with pFj (xFj ) = 0 and, by (22), find 1 ≤ ` < j with Fj ⊆ S`.
As M is strongly consistent, by (2), pS`

(xS`
) = 0. However, as pF`

(xF`
) > 0 one certainly has pG`|F`

(xG`
|xF`

) = 0
and pτ,ϑ(x) = 0, no matter what choice ϑ was considered.

41It can be verified by the induction on n.
42Note that if Pexe ∈ KM then KM ∩ DM 6= ∅ is equivalent to Pexe ∈ DM – use Corollary 6.2.
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