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Introduction to track-before-detect problem

• Classical tracking approaches estimating target state consider
measurements, typically position, range, bearing.

• The measurements are extracted by thresholding from the
output of sensor signal processing unit.

• However, these approaches are not suitable for tracking targets
with low Signal-to-Noise Ratio (SNR), where thresholding has
an undesirable effect to disregarding potentially useful data.

• To track low SNR targets, the tracking approach working with
raw (unthresholded) data is used. This approach for
simultaneous target detection and tracking is known as
Track-Before-Detect (TBD) approach.
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Simulated output data with different SNR
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Target state

The state of the target is given by
xk = [xk , yk , ẋk , ẏk , Ik ]T ,

where
• (xk , yk) and (ẋk , ẏk) are position and velocity in x and y

directions, and
• Ik is return target intensity.

State equation

The target state evolves according to discrete-time model
xk+1 = Fxk + ek ,

where
• F is known transition matrix and
• p(ek) = N{ek : 0,Q} with known Q.

Both matrices F and Q depend on the sampling period T .
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Measurement equation

• The measurement is obtained as a sequence of images
consisting of nx × ny cells, i.e. zk = {z(i ,j)k }nx ,nyi=1,j=1.

• Each cell represents measured intensity and contains a
contribution of the target h(i ,j)(xk) and noise v (i ,j)k

z(i ,j)k =

{
h(i ,j)(xk) + v (i ,j)k , if target present,

v (i ,j)k , if target not present.

Aim of TBD problem

The aim of the track-before-detect problem is to find the filtering
probability density function (pdf)

p(xk ,Ek = 1|zk) =?

where Ek=1 represents presence of the target and zk=[z0, . . . , zk ].
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Particle filter for TBD approach

• The basic idea of the Particle Filter (PF) in nonlinear state
estimation is to approximate the pdf by an empirical pdf,
which is given by N random samples of the state {x(i)k }

N
i=1

with associated weights {wk(x
(i)
k )}Ni=1.

• In the TBD approach, the particles are divided at each time
instant k into two groups:

• “alive” particles (target exists, Ek = 1),
• “dead” particles (target does not exist, Ek = 0).

• For “alive” particles the state part xk is drawn from several
proposal densities.

• For “dead” particles the state part xk is not defined.
• The existence variable Ek together with corresponding state

part xk form the extended state x̃k .
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Fundamental steps of PF algorithm for TBD

• Sampling:
• Several alive particles will die (E (i)

k = 0).
• Remaining alive particles survive with E (i)

k = 1 and their state
part is drawn from the proposal

x(i)k ∼ π(xk |x(i)k−1,E
(i)
k−1=1, zk).

• Several dead particles remain dead (E (i)
k = 0).

• Remaining dead particles will be born with E (i)
k = 1 and their

state part is drawn from the proposal

x(i)k ∼ πb(xk |E
(i)
k−1=0, zk).

• Weighting: The particles are weighted according to the last
measurement zk .

• Resampling: A new set of samples, where all particles have the
same weight, is generated.
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Standard choice of proposal densities

• In the TBD approach there are two proposal densities:
• π(xk |x(i)k−1,E

(i)
k−1=1, zk) = π for the surviving particles, and

• πb(x
(i)
k |E

(i)
k−1=0, zk) = πb for the newborn particles.

• As far as the proposal π is concerned, the simplest proposal
(transition pdf) π = p(xk |xk−1,Ek = 1,Ek−1 = 1) is usually
used (Rutten et al., 2005).

• Concerning the proposal πb, there are following possibilities:
• the proposal spreads the particles uniformly in the state space,
• the proposal uses available measurements zk - particle position

is distributed uniformly within Nc highest intensity cells,
remaining particle components are distributed uniformly,

• combination of previous two approaches.

• Thus, newborn particles are standardly drawn from uniform
prior distribution πb = pb(xk , yk , ẋk , ẏk , Ik).
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Goal of the Paper

The goal of the paper is to present another proposal density
πb = pb(xk |zk) for the newborn particles, which achieves higher
estimation quality with comparable computational demands as the
standard proposals.
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Basic idea

• Novel design of the proposal density πb is based on utilisation
of more information from the measurement.

• More information is extracted by means of a nonlinear filter,
namely Gaussian Mixture (GM) filter.

• The novel proposal πb=pb(xk |zk) is denoted as GM proposal.

Proposal for newborn particles

πb = pb(xk , yk)pb(ẋk , ẏk)pb(Ik),

In stage of track initiation
• position, velocity, and intensity are independent,
• velocity components do not influence the measurement,

therefore there will be still drawn from prior pdf pb(ẋk , ẏk),
• however, for position and intensity, the measurement can be

used to obtain posterior proposal πb = pb(xk , yk , Ik |zk).
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Posterior proposal design for newborn particles

• The prior proposal πb = pb(xk , yk , Ik) is considered to be
uniform within a whole area covered by measurement, i.e.

• [0, nx ] and [0, ny ] for x and y directions and
• [Imin, Imax ] for intensity.

• The prior pdf pb(xk , yk , Ik) can be approximated by a GM
with N terms

p̂b(xk , yk , Ik) =
1
N

N∑
i=1

N


 xkyk
Ik

 :

 x̂ ′i ,kŷ ′i ,k
Î ′i ,k

 ,P′k
 ,

where
[
x̂ ′i ,k , ŷ

′
i ,k , Î

′
i ,k

]T
is a position and intensity grid point

with covariance matrix P′k .
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Posterior proposal design for newborn particles (cont’d)

• Each prior grid point is transformed through the Extended
Kalman Filter (EKF) and weighted.

• The posterior GM pdf is then given by

pb(xk , yk , Ik |zk) =
N∑
i=1

αi ,kN


 xkyk
Ik

 :

 x̂i ,kŷi ,k
Îi ,k

 ,Pi ,k
 ,

where filtering means and covariance matrices

•

 x̂i,kŷi,k
Îi,k

 =

 x̂ ′i,kŷ ′i,k
Î ′i,k

 +Ki,k(zk − h

 x̂ ′i,kŷ ′i,k
Î ′i,k

),

• Pi,k = (I−Ki,kHi,k)P′k , and Ki,k is the Kalman gain.

• Position and intensity components will be drawn from
posterior proposal πb = pb(xk , yk , Ik |zk).
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Computational efficiency

Causes of high computation requirements:
• relatively large number of grid points N to sufficiently cover a

whole space of admissible positions and intensity,
• the measurement contains nx × ny elements processed by each

EKF (the Jacobian Hi ,k has to be evaluated).

Reduction of computational demands

Possibilities to reduce computational requirements:
• reduction of processed measurements - target influences the

cells in vicinity and only these measurements are processed,
• reduction of EKF’s - grid points are used to cover Nc highest

intensity cells only,
• precomputation - Jacobians, Kalman gains, and filtering

covariance matrices can be precomputed.
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Outline of numerical experiment

• PF with uniform proposal πb = pb(xk , yk , Ik) and the GMPF
with GM proposal πb = pb(xk , yk , Ik |zk) were compared.

• Comparison was based on filter performance when the target
appeared in the scene.

• Performance was measured in terms of Root Mean Square
Error (RMSE) for position and intensity components by means
of 1000 Monte Carlo experiments.

• Each frame of data consisted of nx = ny = 64 cells and the
SNR was between 0.69 and 10.23dB.
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Root mean square error

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

N
c

R
M

S
E

(I
)

SNR = 6.7107dB

 

 

PF
GMPF

0 200 400 600 800 1000 1200 1400 1600 1800 2000
18

20

22

24

26

N
c

R
M

S
E

(x
)

O. Straka, M. Šimandl, J. Duník Gaussian Mixtures Proposal Density in Particle Filter 16/19 FUSION 2009



Introduction and Problem Statement
Goal of the Paper

Design of Proposal Density for Newborn Particles
Numerical Illustration
Concluding Remarks

Root mean square error (cont’d)
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Computational time
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Concluding remarks

• The paper dealt with the track-before-detect problem.
• Novel proposal density design for newborn particles was

presented.
• The proposal utilises more information from available

measurement using bank of the EKF’s.
• Resulting target state estimates achieve better quality than

estimates based on standard proposal density with comparable
computational demands.
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