
On asymptoti su�ieny andoptimality of quantizations1A. Berlinet2 and I. Vajda3AbstratIt is known that quantizations of primary soures of information re-due the information available for statistial inferene. We are inter-ested in the quantizations for whih the loss of statistial informationan be ontrolled by the number of ells in the observation spae usedto quantize observations. If the losses for inreasing numbers of ellsonverge to zero then we speak about asymptotially su�ient quanti-zations. Optimality is treated on the basis of rate of this onvergene.The attention is restrited to the models with ontinuous real valuedobservations and to the interval partitions. We give easily veri�ableneessary and su�ient onditions for the asymptoti su�ieny and,for a most ommon measure of statistial information, we study alsothe rate of onvergene to the information in the original non-quantizedmodels. Appliations of the results in onrete models are illustratedby examples.AMS 1991 subjet lassi�ation: Primary 62B 10. Seondary 94A17.Key Words: Quantization. Information divergene. Asymptoti su�-ieny. Rate of onvergene.1 Introdution and basi oneptsLet us start with the statistial model desribed by a σ-�nite measure spae
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where the integral extends over all X and φ(t) is stritly onvex in the domain
t > 0 with φ(1) = 0. Then, introduing the ∗-onjugated funtion φ∗(t) =
t φ(1/t) in the same domain and setting

(φ(0), φ∗(0)) = lim
t↓0

(φ(t), φ∗(t)) ,we have
0 ≤ Dφ(P,Q) ≤ φ(0) + φ∗(0). (1.2)The left equality holds if and only if P = Q. The right equality holds if andonly if P ⊥ Q unless φ(0) + φ∗(0) = ∞. For φ∗(0) = ∞ or φ(0) = ∞ theright equality holds if P 6≪ Q or Q 6≪ P respetively but these onditions arenot neessary. For details about the de�nition (1.1) and for the basi prop-erties of φ-divergenes used in this paper, we refer to Liese and Vajda (1987).By Theorems 1 and 2 in Österreiher and Vajda (1993), there is one-to-one relation between the φ-divergenes (1.1) and the measures of statistialinformation introdued by De Groot (1970). Namely, for every φ �guringin (1.1) there exists an experiment with the sample family {P,Q} suh that

Dφ(P,Q) is the statistial information in the experiment and, onversely, forevery experiment with the sample family {P,Q} there exists φ of the typeassumed in (1.1) suh that the statistial information in the experiment is
Dφ(P,Q). This motivates our use of the φ-divergenes as measures of statis-tial information.Researh on quantizations is motivated by the fat that omputers pro-ess information through disrete methods requiring quantizations of primarysoures of the above mentioned statistial information Dφ(P,Q). Quantiza-tions in the spae (X ,S) an be represented as �nite or in�nite S-measurablepartitions

Pk = {Akj : 1 ≤ j ≤ k} (1.3.A)or
Pk = {Akj : j = 1, 2 . . .} (1.3.B)of X . The quantization states are the events Akj = Ak,j or their respetiveindies (kj) = (k, j). These states are supporting the disrete distributions

pk = (pkj) and qk = (qkj)

with (1.4)

pkj = P (Akj) and qkj = Q(Akj).2



The φ-divergenes Dφ(Pk, Qk) for restritions Pk, Qk of P,Q to the al-gebras Sk ⊂ S generated by Pk are denoted in this paper by Dφ(P,Q|Pk),i.e.
Dφ(P,Q|Pk) = Dφ(pk,qk) =

∑

j

qkjφ

(
pkj

qkj

)
. (1.5)It is known that

Dφ(P,Q|Pk) ≤ Dφ(P,Q) (1.6)and that this inequality is strit if 0 < Dφ(P,Q) < ∞ (i.e. if P 6= Q and
φ(0) + φ∗(0) <∞), unless the likelihood ratio f(x)/g(x) is onstant on eah
Akj ∈ Pk. If this is the ase then in our statistial model one needs notdistinguish between di�erent observations x ∈ Akj, i.e. the events Akj ∈ Pkan be replaed without loss of information by singletons. More rigorously,then the sub-σ-algebra of S generated by Pk is su�ient for the pair P,Q.This means that the model is in fat disrete and no quantization is needed.The di�erene

Dφ(P,Q) −Dφ(P,Q|Pk)represents a loss of disernibility of distributions P and Q based on statistialobservations. It is a loss of statistial information due to the quantization.We are interested in the quantizations for whih this loss an be held underontrol by the partition parameter k. Therefore one omponent of our modelis a sequene of partitions {Pk} = {Pk : k = 1, 2, . . .}, and the problem is to�nd onditions on {Pk} under whih
lim
k→∞

Dφ(P,Q|Pk) = Dφ(P,Q) (1.7)for all φ-divergenes under onsideration.Csiszár (1973) proved that if the sequene {Sk} of sub-σ-algebras of Sgenerated by the sequene {Pk} satis�es for every A ∈ S the ondition
lim
k→∞

inf
B∈Sk

[P (A∆B) +Q(A∆B)] = 0 (1.8)where A∆B is the symmetri di�erene (A \B) ∪ (B \ A), then (1.7) holds.Vajda (2002) studied the model with the Eulidean spae X = R
d, the σ-�eld

S of Borel sets in R
d, Lebesgue measure µ and the retangle partitions {Pk}.He proved that if for every x ∈ R

d

lim
k→∞

Q(Bk(x)) = 0 (1.9)where Bk(x) = Akj ∈ Pk if x ∈ Akj for 1 ≤ j ≤ k, then (1.7) holds for all
P and φ suh that Dφ(P,Q) < ∞. The ondition (1.9) is simpler and more3



easily veri�able than (1.8).The onvergene in (1.7) is a basi desirable asymptoti property of se-quenes of quantizations {Pk} in the statistial problems involving measures
P and Q. We all this property an asymptoti su�ieny of quantizations.In typial appliations this optimality is required for all pairs {P,Q} from afamily of probability measures dominated by µ. The asymptotially su�ientsequenes {Pk} maximizing the rate of onvergene in (1.7) are asymptoti-ally optimal in the obvious sense.Note that the states of measurable quantizations P = {A1, ..., Ak} ofrandom observations X from Eulidean probability spaes (Rd,Bd, µ) areoften the onditional expetations

Eµ(X|A1), ..., Eµ(X|Ak)taking on values in the sets A1, ..., Ak provided these are onvex. Thereis an extensive literature dealing with quantizations Pk = {Ak1, ..., Akk} ofrandom observations X ∼(Rd,Bd, µ) whih are non-asymptotially optimalin the sense that for a �xed k they minimize over all P = {A1, ..., Ak} theaverage quantization errors
eµ(P) =

∑

A∈P

∫

A

‖ x−Eµ(X|A) ‖2 dµ(x),(see the reent monograph of Graf and Lushgy (2000) and referenes therein).We show below that the the asymptoti optimality studied in this paper isfully onsistent with this non-asymptoti optimality.In the present paper we study the simple variant of the model with ab-solutely ontinuous observations from X where X = (x−, x+) is an openinterval in R with −∞ ≤ x− < x+ ≤ ∞, S is the σ-�eld of Borel subsets of
X and µ is the Lebesgue measure. By {Pk} we denote a sequene of intervalpartitions of X and by P , Q two di�erent measures with densities

f ≥ 0, g > 0and distribution funtions
F (x) =

∫ x

x
−

f(t)dµ(t), G(x) =

∫ x

x
−

g(t)dµ(t), x ∈ X (1.10)respetively. Sine g > 0 on X , the integrals in (1.1) and the sums in (1.5)are well de�ned. For this model we prove in Setion 2 that (1.9) is equivalent4



to
lim
k→∞

sup
j
Q(Akj) = 0 (1.11)and that (1.9) or (1.11) is su�ient for (1.7) even if Dφ(P,Q) = ∞. We provealso that any of these onditions is neessary for (1.7) when Dφ(P,Q) < ∞,e.g. when φ(0) + φ∗(0) <∞.However, the main results of the paper are in Setion 3 where we studythe rate of onvergene in (1.7). In this respet we restrit ourselves tothe χ2-divergenes de�ned by (1.1) for φ(t) = (t − 1)2 or, equivalently, for

φ(t) = t2 − 1, i.e. to
χ2(P,Q) =

∫
(f − g)2

g
dµ =

∫
f 2

g
dµ− 1, (1.12)and to the �nite partitions (1.3.A) so that, by (1.5),

χ2(P,Q|Pk) =

k∑

j=1

(pkj − qkj)
2

qkj
=

k∑

j=1

p2
kj

qkj
− 1. (1.13)The simpliity of the quadrati funtion φ(t) = t2 − 1 makes the analysis ofthe rate of the onvergene

lim
k→∞

χ2(P,Q|Pk) = χ2(P,Q) (1.14)easier than the analysis of the rate in (1.7) for a general funtion φ. The
χ2-divergenes are thus onvenient for a deeper insight into the problem ofasymptoti optimality of quantizations Pk.The asymptoti optimality studied in the present paper is intimately on-neted with the non-asymptoti optimality mentioned above. For P and Qunder onsideration denote by L = f/g the likelihood ratio, by µ = QL−1the orresponding probability measure indued by L on (R,B), and onsiderthe random variable X ∼(R,B, µ). As notied by Bok (1992) (see also Po-etzelberger and Strasser (2001)), if Eµ(X

2) <∞ then the above introduederror eµ(P) is minimized by Pk = {Ak1, ..., Akk} if and only if the divergene
χ2(P,Q|P) is maximized by P̃k = {L−1(Ak1), ...,L−1(Ak1)}. Thus the non-asymptoti optimality of quantizations Pk implies the asymptoti optimalityof the orresponding sequene {P̃k = L−1Pk}. On the other hand, χ2(P,Q|P)is the larger, the loser it is to χ2(P,Q) Therefore if {P̃k = {Ãk1, ..., Ãkk}}is a sequene of interval partitions of X =(x−, x+) whih is asymptotially5



optimal for {P,Q} and the likelihood ratio L is monotone on X then one anexpet that Pk = {L(Ãk1), ...,L(Ãkk)} will not be too far from the k-statenon-asymptotially optimal interval quantization of X ∼(R,B, µ).The results about the onvergene (1.14) and the rate of onvergenethere have also some other diret statistial appliations. By Mayoral etal. (2003), the Fisher informations I(θ0) and Ik(θ0) in parametrized families
{Pθ : θ ∈ Θ} and their restritions {Pk,θ : θ ∈ Θ} due to the quantizations
Pk haraterize the powers of Pk-based Pearson-type tests of the hypothesis
θ = θ0 against loal alternatives. Kallenberg et al. (1985) used the fatthat I(0) = χ2(P,Q) and Ik(0) = χ2(P,Q|Pk) are the Fisher informations at
θ0 = 0 in the families

{Pθ = (1 − θ)Q+ θP : 0 ≤ θ ≤ 1}

and (1.15)

{Pk,θ = (1 − θ)Qk + θPk : 0 ≤ θ ≤ 1}.We show that the partitions (1.3.A) satisfying natural assumptions ful�l theonvergene (1.14) and that, under some restritions on P,Q, the rate of thisonvergene is quadrati in 1/k. For the G-uniform partitions we evaluatethe onstant at the asymptoti term (1/k)2 and demonstrate by an examplethat this onstant is not maximized by the standard uniform partitions. Inother words, the standard uniform quantizations widely used in the moderneletroni devies are not always asymptotially optimal in the sense of on-vergene in (1.14).Note that the rate of onvergene of information funtionals and its statis-tial onsequenes were studied in a number of previous papers. In additionto those already mentioned above, see e.g. Ghurye and Johnson (1981), Zo-grafos et al. (1986), Menéndez et al (2001) and further referenes therein. Akey fat in the ontext of the present paper is that Kallenberg et al. (1985)have shown that the rate of onvergene in (1.14) is also important when
χ2(P,Q) = ∞. In this ase the slower rate than √

k in (1.14) means that any
Pk-based Pearson test of the hypothesis Q is asymptotially for the samplesize n→ ∞more powerful against the loal alternatives (1−1/

√
n)Q+P/

√
nthan any Pkn

-based test with kn → ∞ for n → ∞. If the rate is faster than√
k then the tests with inreasing numbers of partition sets are asymptoti-ally more powerful than the test with any partition Pk of a �xed size k.Our results about the rate of onvergene in (1.14) for χ2(P,Q) < ∞are new. For χ2(P,Q) = ∞ they extend the results of Kallenberg et al.6



(1985) by employing similar arguments as theirs. Our onvergene onditionsare formulated in terms of the moment funtion of the likelihood ratio f/g(moment generating funtion of the log-likelihood ratio)
Ma(P,Q) =

∫ (
f

g

)a

g dµ =

∫
exp

{
a ln

f

g

}
dµ (1.16)and its Pk-redued version

Ma(P,Q|Pk) =
k∑

j=1

(
pkj

qkj

)a

qkj =
k∑

j=1

exp

{
a ln

pkj

qkj

}
qkj. (1.17)The onvergene onditions of Kallenberg et al. (1985) were formulated interms of the χa−divergene

χa(P,Q) =

∫ ∣∣∣∣
f − g

g

∣∣∣∣
a

g dµand its Pk−redued version
χa(P,Q|Pk) =

k∑

j=1

∣∣∣∣
pkj − qkj

qkj

∣∣∣∣
a

qkj.The moment generating funtion is more familiar to the statistiians thanthe χa−divergene. It is also smoother and therefore simpler for analysis.Moreover, if f, g or pk = (pkj) ,qk = (qkj) are from an exponential statistialfamily then Ma(P,Q) or Ma(P,Q|Pk) an be expliitly evaluated for all real
a while for χa(P,Q) or χa(P,Q|Pk) this is true only when a is a positive eveninteger.Notie that if a 6= 0 and a 6= 1 then
Ia(P,Q) =

Ma(P,Q) − 1

a(a− 1)
and Ia(P,Q|Pk) =

Ma(P,Q|Pk) − 1

a(a− 1)
(1.18)are the power divergenes of orders a de�ned by (1.1) and (1.5) for φ(t) =

(ta − 1)/(a(a− 1)). Hene in aordane with (1.6)
Ma(P,Q|Pk) ≤Ma(P,Q) for a ≥ 1 (1.19)and the inequality is strit when a > 1,Ma(P,Q) <∞ and f/g is not piee-wise onstant in X . 7



Let us note that the results of the paper obtained for sequenes of �niteinterval partitions Pk = {Ak1, . . . , Akk}, k = 1, 2, . . . remain valid for thesubsequenes Pkn
, n = 1, 2, . . . Therefore they an be diretly extended toarbitrary sequenes of interval partitions P̃n = {Ãn1, . . . , Ãn,kn

}, n = 1, 2, . . .for limn−→∞ kn = ∞ by replaing k in the results with kn and k −→ ∞ with
n −→ ∞, and by taking Pkn

= P̃n for all n.2 ConvergeneIn this setion we study the model onsidered in the seond half of Setion1, with X = (x−, x+) ⊂ R and the Lebesgue measure µ on the Borel subsetsof X . We onsider a sequene {Pk} of quantizations (interval partitions) of
X and measures P,Q with Lebesgue densities f, g where g > 0 on X , andwith distribution funtions F,G on X . To avoid trivial situations where theequality in (1.6) an take plae, we suppose that the likelihood ratio f/g isnot pieewise onstant on any open interval in X. This in partiular implies
P 6= Q, i. e. the trivial ase P = Q is exluded. The partitions Pk may beeither �nite of the type (1.3.A) or in�nite of the type (1.3.B).De�nition 1 If

lim
k→∞

Dφ(P,Q|Pk) = Dφ(P,Q) (2.1)for all φ under onsideration then the sequene {Pk} of quantizations is saidto be asymptotially su�ient for {P,Q}.Notie that the onvergene (2.1) is required irrespetively of whether
Dφ(P,Q) < ∞ or Dφ(P,Q) = ∞. In the following theorem dealing withneessary onditions and su�ient onditions for (2.1) and for the asymptotisu�ieny of sequenes {Pk} , it is useful to take into aount that there exist
φ-divergenes withDφ(P,Q) <∞ for all P,Q. By (1.2), for this the ondition
φ(0) + φ∗(0) < ∞ su�es. An example is the Hellinger divergene de�nedby φ(t) = (1 −

√
t)2 for whih

0 ≤ H(P,Q) =

∫
(
√
f −√

g)2dµ ≤ 2,or the power divergenes (1.18) of the orders 0 < a < 1, for whih
0 ≤ Ia(P,Q) ≤ 1

a(1 − a)
.

8



Theorem 1 If {Pk} satis�es the ondition
lim
k→∞

sup
j
Q(Akj) = 0 (2.2)then it is asymptotially su�ient for {P,Q}. If (2.2) does not hold then

lim inf
k→∞

Dφ(P,Q|Pk) < Dφ(P,Q) (2.3)for all φ under onsideration with Dφ(P,Q) <∞. Therefore (2.2) and (1.9)are equivalent onditions and eah of them is neessary and su�ient for theasymptoti su�ieny of {Pk} for {P,Q}.Proof. Sine (2.2) implies (1.9), it implies (2.1) for all onvex φ : (0,∞) 7→ Rwith φ(0) + φ∗(0) < ∞, or with φ(0) + φ∗(0) = ∞ and Dφ(P,Q) < ∞,aording to Theorem 2 in Vajda (2002). If Dφ(P,Q) = ∞ then φ(0) +
φ∗(0) = ∞ and we an use the onvex funtions φi : (0,∞) 7→ R de�ned forall integers i ≥ 2 by

φi(t) =





φ(i) + φ′
+(i)(t− i) for t ≥ i

φ(t) for (1/i) < t < i
φ(1/i) + φ′

+(1/i)(t− (1/i)) for 0 ≤ t ≤ (1/i)where φ′
+ stands for the right-hand derivative. Obviously,

φi(0) + φ∗
i (0) = φ(1/i) − φ′

+(1/i)/i+ φ′
+(i) <∞and the funtions φi are ordered in the sense φ2 ≤ φ3 ≤ . . . ≤ φ, tendingpointwise to φ for i tending to in�nity. Hene for every i and k

Dφ(P,Q|Pk) ≥ Dφi
(P,Q|Pk)and (2.2) implies that

lim
k→∞

Dφi
(P,Q|Pk) = Dφi

(P,Q)where
lim
i→∞

Dφi
(P,Q) = Dφ(P,Q) = ∞by the monotone onvergene theorem. This implies the desired relation

lim
k→∞

Dφ(P,Q|Pk) = ∞.The proof of neessity of (2.2) for (2.1) when Dφ(P,Q) < ∞ is based onLemma A.1. in the Appendix. By this lemma, there exists an interval9



A ⊂ X suh that for some partition intervals Akjk
∈ Pk and a subsequene

{kn} of {k}
A ⊂ An : =(Akjk

)k=knfor all n = 1, 2, . . . Let SA be the sub-σ-algebra of the Borel σ-algebra Sonsisting of the sets C and C ∪A for all Borel subsets C ⊆ X \A. Further,denote by PA, QA the restritions of P,Q to SA. Sine A is ontained in
An ∈ Pkn

and disjoint with the remaining intervals of Pkn
it holds Pkn

⊂ SAand onsequently
S(Pkn

) ⊂ SA ⊂ S for all n = 1, 2, ...By the monotoniity of φ-divergenes (see Corollary 1.29 in Liese and Vajda(1987)), this implies
Dφ(P,Q|Pkn

) ≤ Dφ(PA, QA) < Dφ(P,Q) for all n = 1, 2, . . . ,where the last inequality is strit beause φ is stritly onvex, Dφ(P,Q) <∞and the likelihood ratio f/g is not a. s. onstant on A and thus is not SA-measurable. From here (2.3) follows immediately. �Example 1. To see that the ondition (2.2) is not neessary for (2.1) when
Dφ(P,Q) = ∞, onsider the ase where

∫

A

g φ

(
f

g

)
dµ = ∞ (2.7)and X \A is an open interval. Take e. g. the φ-divergene χ2(P,Q) de�nedby φ(t) = t2−1, the doubly exponential P with f(x) = exp{−|x|} on X = Rand the standard normal Q. Then (2.7) holds for every interval A = (x,∞),

x ∈ R. Under (2.7) we obtain (2.1) for every sequene of partitions
Pk = {X \ A,Ak1, . . . , Akk} (2.8)provided P∗

k = {Ak1, . . . , Akk} is an interval partition of A with the property
Q(Akj) = Q(A)/k. Sine Q(X \ A) > 0, the sequene (2.8) does not satisfy(2.2).Example 2. To see that (2.2) is not neessary for (2.1) with Dφ(P,Q) <∞when φ is not stritly onvex, onsider arbitrary φ stritly onvex in thedomain t ∈ (0, 2) and linear, equal to at+ b for t ≥ 2. Further onsider P,Qwith the likelihood ratio f(x)/g(x) exeeding 2 on an open interval X \A (as10



an example, we an take again the above proposed doubly exponential f(x)and the standard normal g(x)). Then
Dφ(P,Q) =

∫

A

g φ

(
f

g

)
dµ+ a P (X \ A) + b Q(X \ A)so that (2.1) holds for the partitions (2.8). Similarly as above, Q(X \A) > 0implies that these partitions do not satisfy (2.2).3 Rate of onvergeneThis setion is a ontinuation of Setion 2. We study the rate of onvergeneof the χ2-divergenes χ2(P,Q|Pk) to χ2(P,Q) in the ases where χ2(P,Q) is�nite as well as in�nite.We restrit ourselves to the �nite sequenes of partitions

Pk = {Ak1, . . . , Akk}suh that, for su�iently large Γ > 0,

k min
1≤j≤k

Q(Akj) ≥ 1/Γ for all k (3.1)and/or
k max

1≤j≤k
Q(Akj) ≤ Γ for all k. (3.2)Speial attention is paid to the partitions intoQ-equiprobable intervals where

Q(Akj) =
1

k
for all 1 ≤ j ≤ k and all k, (3.3)so that (3.1) and (3.2) hold for Γ = 1.Let G(x) = Q((−∞, x) ∩ X ) be the distribution funtion of Q whih isby assumption stritly inreasing on X . It transforms the open interval Xonto Y = (0, 1), the distribution Q into the Lebesgue measure on (0, 1) andthe φ-divergenes (1.1) into formally simpler integrals on (0, 1), namely

Dφ(P,Q) =

∫ 1

0

φ(p(y)) dy (3.4)where
p(y) =

f(G−1(y))

g(G−1(y))
, y ∈ (0, 1) (3.5)11



and G−1 is the quantile funtion from [0, 1] to the losure [x−, x+] of X (thegeneralized inverse of the funtion G). The funtion G also de�nes a oneto one relation between the partitions Pk under onsideration and intervalpartitions of (0, 1). If {xkj : 0 ≤ j ≤ k} are the utpoints of X leadingto Pk (with xk0 and xkk being the possibly in�nite endpoints of X ) and
yk0 = 0 < yk1 < . . . < ykk = 1 are similar utpoints of (0, 1) leading to aninterval partition of (0,1) then this relation is represented by the formulas

G(xkj) = ykj or xkj = G−1(ykj), 0 ≤ j ≤ k. (3.6)Partitions related by (3.6) satisfy the relation
Q(Akj) = ykj − yk,j−1, 1 ≤ j ≤ k (3.7)or, more generally, the probabilities de�ned in (1.4) satisfy the relations

pkj =

∫ ykj

yk,j−1

p(y) dy and qkj =

∫ ykj

yk,j−1

dy (3.8)where p(y) is given by (3.5). It follows from here for example that theutpoints xkj of partitions Pk satisfying (3.3) are uniquely de�ned by
xkj = G−1(ykj) for ykj =

j

k
, 0 ≤ j ≤ k, (3.9)and

1

Γk
≤ ykj − yk,j−1 ≤

Γ

k
, 1 ≤ j ≤ k, (3.10)for the utpoints ykj obtained by (3.6) from the partition Pk satisfying (3.1)and (3.2).By (3.4) and (3.8), the χ2-divergenes under onsideration an be ex-pressed as follows

χ2(P,Q) =

∫ 1

0

p2(y) dy − 1,

(3.11)

χ2(P,Q|Pk) =

k∑

j=1

1

ykj − yk,j−1

(∫ ykj

yk,j−1

p(y) dy

)2

− 1.Example 3. Let us onsider the situation where X = Y = (0, 1) and theprobability measures P and Q are de�ned by the distribution funtions
F (x) = (G(x))2 and G(x) =





4x/3 for 0 < x ≤ 1/2

2x/3 + 1/3 for 1/2 < x < 1.12



By (3.5) and (3.11),
p(y) = 2y and χ2(P,Q) = 4

∫ 1

0

y2 dy − 1 =
1

3
.Let Pk be the uniform partition of X = (0, 1) de�ned by the utpoints xkj =

j/k for 0 ≤ j ≤ k and P∗
k be the Q-uniform partition by the utpoints x∗kj =

G−1(xkj) for 0 ≤ j ≤ k. We shall ompare χa(P,Q|Pk) and χa(P,Q|P∗
k).Assuming for simpliity that k is even we see that

ykj =





4j/(3k) for 0 ≤ j ≤ k/2

2j/(3k) + 1/3 for k/2 < x ≤ kand y∗kj = G(x∗kj) = xkj are the utpoints de�ned by (3.6). Hene by (3.8)and (3.11),
χ2(P,Q|Pk) =

k∑

j=1

[
F̃ (ykj) − F̃ (yk,j−1)

]2

ykj − yk,j−1
− 1and

χ2(P,Q|P∗
k) =

k∑

j=1

[
F̃ (xkj) − F̃ (xk,j−1)

]2

xkj − xk,j−1

− 1where F̃ (y) = y2 is primitive to p(y). Substituting the values of ykj and xkjspei�ed above we get
χ2(P,Q|Pk) =

k/2∑

j=1

[(4j/(3k))2 − (4(j − 1)/(3k))2]
2

4/(3k)
+

k∑

j=k/2+1

[(2j/(3k) + 1/3)2 − (2(j − 1)/(3k) + 1/3)2]
2

2/(3k)
− 1and

χ2(P,Q|P∗
k) =

k∑

j=1

[(j/k)2 − ((j − 1)/k)2]
2

1/k
− 1.Applying the substitution j = k/2 + i to k/2 < j ≤ k in the formula for

χ2(P,Q|Pk) and using repeatedly the formula
k/2∑

j=1

j2 =
k(k + 1)(k + 2)

24
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we obtain for every k under onsideration
χ2(P,Q|Pk) =

1

3

(
1 − 4

k2

)and
χ2(P,Q|P∗

k) =
1

3

(
1 − 1

k2

)Thus χ2(P,Q|Pk) is a four times less aurate approximation of χ2(P,Q) =
1/3 than χ2(P,Q|P∗

k), i. e. the Q-uniform quantization P∗
k is for all k sig-ni�antly better than the standard uniform quantization Pk.In the last example the redued χ2-divergenes were of the form χ2(P,Q)−

ρ/k2 where ρ = 4/3 or ρ = 1/3 depending on whether the redution wasdue to the quantization Pk or P∗
k respetively. The next theorem showsthat if χ2(P,Q) < ∞ then for the Q-uniform partitions Pk the di�erene

χ2(P,Q) − χ2(P,Q|Pk) tends to zero typially with the rate at least 1/k2for k tending to in�nity. For regular P,Q it shows that this rate is exatly
1/k2 and we expliitly evaluate the oe�ient ρ = ρ(P,Q) at 1/k2 in theasymptoti expansion of the di�erene. Note that in this theorem and in thesequel, the asymptoti formulas are onsidered for k → ∞ unless otherwiseexpliitly stated.Theorem 2 Let p(y) de�ned by (3.5) be twie ontinuously di�erentiable on(0,1) with �rst and seond derivatives ṗ(y) and p̈(y), and let p̈(y) be boundedon (0,1). Then χ2(P,Q) is �nite and

χ2(P,Q|Pk) = χ2(P,Q) − O

(
1

k2

)
(3.12)for all sequenes {Pk} satisfying (3.1) and (3.2). If {Pk} satis�es (3.3) then

χ2(P,Q|Pk) = χ2(P,Q) − ρ(P,Q)

k2
+ o

(
1

k2

)
(3.13)where

ρ(P,Q) =
1

12

∫ 1

0

[ṗ2(y) + p(y)p̈(y)] dy > 0. (3.14)Proof. Let us start with a detailed proof of the seond assertion whih ismore ompliated. Suppose that {Pk} satis�es (3.3) so that
ykj − yk,j−1 =

1

k
. (3.15)14



If ykj = (yk,j−1 + ykj)/2 then for y ∈ (yk,j−1, ykj)

p(y) = p(ykj) + ṗ(ykj)(y − ykj) +
p̈(ykj)

2
(y − ykj)

2 +Rkj(y),where Rkj(y) is the remainder in the Taylor series expansion. Sine y varies inan interval of length 1/k, the assumptions imply Rkj(y) = o (1/k2) uniformlyfor all y ∈ (yk,j−1, ykj) and 1 ≤ j ≤ k. Therefore
p2(y) = p2(ykj) + 2ṗ(ykj)p(ykj)(y − ykj) + ρ(ykj)(y − ykj)

2 + o
(
1/k2

)where ρ(y) denotes the integrand of (3.14). Further,
∫ ykj

yk,j−1

p(y) dy =
p(ykj)

k
+ o

(
1/k2

)and ∫ ykj

yk,j−1

p2(y) dy =
p2(ykj)

k
+
ρ(ykj)

12k3
+ o

(
1

k3

)
.Consequently

∫ 1

0

p2(y) dy =
1

k

k∑

j=1

p2(ykj) +
1

12k3

k∑

j=1

ρ(ykj) + o

(
1

k3

)and
k

k∑

j=1

(∫ ykj

yk,j−1

p(y) dy

)2

=
1

k

k∑

j=1

p2(ykj) + o

(
1

k2

)
.Sine ρ(y) is Riemann integrable it holds

1

12k

k∑

j=1

ρ(ykj) =
1

12

∫ 1

0

ρ(y) dy + o (1) = ρ(P,Q) + o (1)and the previous two formulas imply that
k

k∑

j=1

(∫ ykj

yk,j−1

p(y) dy

)2

=

∫ 1

0

p2(y) dy − ρ(P,Q)

k2
+ o

(
1

k2

)
.Now (3.13) follows from (3.11) and (3.15). The �rst assertion an be provedby repeating similar steps with the formula (3.15) for ykj − yk,j−1 = Q(Akj)replaed with (3.9). � 15



Thus in the regular models of Theorem 2, the divergene χ2(P,Q) is �niteand the quantizations into Q-equiprobable or nearly Q-equiprobable stateslead to a quadrati rate of onvergene in (2.1).Example 4. It is easy to see that the model of Example 3 with theQ-uniformquantization P∗
k satis�es all assumptions of Theorem 2. In this model (3.5)yields p(y) = 2y so that (3.14) implies ρ(P,Q) = 1/3. Thus Example 3veri�ed by a diret alulation that in this onrete model (3.13) holds with

o(1/k2) = 0 for all even k > 1. The alulation indiates that (3.13) holdswith o(1/k2) 6= 0 also for odd k > 1. Let us now illustrate the appliabilityof Theorem 2 in one of the most familiar statistial models. Namely, let Pand Q be from the logisti family on X = R with distribution funtions
Fθ1

(x) =
ex−θ1

1 + ex−θ1

and Fθ2
(x) =

ex−θ2

1 + ex−θ2

, θ1 6= θ2and densities
f(x) =

ex−θ1

[1 + ex−θ1 ]2
and g(x) =

ex−θ2

[1 + ex−θ2 ]2respetively. Here
G−1(y) = θ2 + ln

y

1 − y
for y ∈ (0, 1)so that

g(G−1(y)) = y(1 − y)and
f(G−1(y)) =

τy(1 − y)

[1 + y(τ − 1)]2
for τ = eθ2−θ1 > 0, τ 6= 1. (3.16)Therefore the funtion (3.5) takes on the form

p(y) =
τ

[1 + y(τ − 1)]2for τ given in (3.16), and its derivatives are
ṗ(y) =

−2τ(τ − 1)

[1 + y(τ − 1)]3
and p̈(y) =

6τ(τ − 1)2

[1 + y(τ − 1)]4
.We see that the assumptions of Theorem 2 are satis�ed and that

p2(y) =
τ 2

[1 + y(τ − 1)]416



and
ṗ2(y) + p(y)p̈(y) =

10τ 2(τ − 1)2

[1 + y(τ − 1)]6
.Hene the χ2-divergene of (3.11) is

χ2(P,Q) =
(τ − 1)(τ 2 + 2τ + 3)

3for τ given in (3.16). By Theorem 2, the redued value χ2(P,Q|Pk) of thisdivergene after the quantization of X by the utpoints
xkj = G−1(j/k) = θ2 + ln

j

k − j
, 1 ≤ j ≤ k − 1satis�es the asymptoti relation (3.13) with

ρ(P,Q) =
2(τ − 1)2(τ 4 + τ 3 + τ 2 + τ + 1)

τ 3for the same τ as above.The next theorem deals with the rate of onvergene in (2.1) in the asewhere χ2(P,Q) is in�nite. We use the terminology introdued by the threefollowing de�nitions. For illustration of the onepts de�ned there we referto Example 5 below.De�nition 2 A nonnegative sequene sk is said to be of the order of at most
kc (in symbols, sk . kc) or at least kc (in symbols, sk & kc) if sk/k

b → 0for all b > c, or sk/k
b → ∞ for all b < c, respetively. If sk . kc and also

sk & kc then we say that sk is of the order of kc (in symbols sk ≈ kc).The following de�nition deals with the nonnegative funtions p(y) of (3.5)leading to in�nite divergene χ2(P,Q). We see from (3.11) that suh fun-tions must be unbounded on the de�nition domain (0,1).De�nition 3 We say that the funtion p is regularly unbounded if its exten-sion in [0, 1] is bounded exept in neighborhoods of �nitely many points. If itis not bounded in a right (left) neighborhood of y ∈ [0, 1] then it is assumedthat h(t) = p(y + 1/t) (or h(t) = p(y − 1/t)) varies regularly at in�nity, i.e.that for su�iently large t > 0 and some ρ ∈ R

h(t) = tρλ(t) (3.17)where λ(t) varies slowly at in�nity in the sense that
lim
t→∞

λ(tα)

λ(t)
= 1 for any α > 0.17



In the next de�nition it is useful to take into aount that the momentfuntion Ma(P,Q) de�ned by (1.16) is skew symmetri about a = 1/2 in thesense that M1−a(P,Q) = Ma(Q,P ) and 0 ≤Ma(P,Q) ≤ 1 for a ∈ [0, 1].De�nition 4 The values
a+ = a+(P,Q) = sup{a ≥ 1 : Ma(P,Q) <∞}and
a− = a−(P,Q) = inf{a ≤ 0 : Ma(P,Q) <∞}are maximal and minimal e�etive arguments of the moment funtion. Thevalue

c = c(P,Q) =
2 − a+

a+assumed to be -1 when a+ = ∞ and taking on values from the interval (−1, 1]when a+ <∞, is said to be a harateristi exponent of P and Q.Note that De�nition 3 summarizes properties of p(y) previously onsid-ered by Kallenberg et al. (1985). The following theorem extends Propositions4.2 and 4.4 of these authors.Theorem 3 If the harateristi exponent c = c(P,Q) is negative, i.e. ifthe maximal e�etive argument a+(P,Q) > 2, then χ2(P,Q) < ∞. If c ispositive, i.e. if a+(P,Q) < 2 then χ2(P,Q) = ∞. In the latter ase
χ2(P,Q|Pk) . kc (3.18)provided {Pk} satis�es (3.1) and
χ2(P,Q|Pk) & kc (3.19)provided {Pk} satis�es (3.2) and p(y) is regularly unbounded in the sense ofDe�nition 3. Therefore in the models with positive harateristi exponent c
χ2(P,Q|Pk) ≈ kc (3.20)provided all the mentioned onditions hold.Proof. The �rst assertion follows diretly from Lemma A.2 in the Appendix.To prove (3.18), put b0 = 1 if c = 1 and b0 ∈ (c, 1) otherwise. ThenMa0

(P,Q)is �nite for a0 = 2/(1+b0) and, by Lemma A.3, the sequene k−b0χ2(P,Q|Pk)is bounded. This means that for all b > b0 (and, onsequently, for all b > c)
k−bχ2(P,Q|Pk) → 018



i.e. (3.18) holds. Relation (3.19) follows diretly from Lemma A.4 and (3.20)is lear. �Example 5. A simple appliation of Theorem 3 is obtained when P and Qare probability measures on the observation spae X = (0, 1) with distribu-tion funtions F (x) = Fθ(x) = x1−θ for some 0 < θ < 1 and G(x) = x. Then
f(x) = (1 − θ)x−θ and (3.5) implies that p(y) = (1 − θ)y−θ for Y = (0, 1)whih is a regularly unbounded funtion on Y in the sense of De�nition 3.By (3.11) and (1.16),

χ2(P,Q) =

{
θ2/(1 − 2θ) if 0 < θ < 1/2
∞ if 1/2 ≤ θ < 1.and

Ma(P,Q) =

{
(1 − θ)a/(1 − aθ) if a < 1/θ
∞ if a ≥ 1/θ.Hene the maximal e�etive argument is a+ = 1/θ and, by De�nition 4,the harateristi exponent is c = c(P,Q) = 2θ − 1. It is in the interval

(−1, 0) for 0 < θ < 1/2 and in the interval (0, 1) for 1/2 < θ < 1. Let
{Pk} be the sequene of uniform partitions of X into k ells. Sine thesepartitions are also Q-uniform, they satisfy (3.3). We see that all assumptionsof Theorem 3 are satis�ed. Therefore this theorem says that if 0 < θ < 1/2then χ2(P,Q) <∞ and if 1/2 < θ < 1 then χ2(P,Q) = ∞ whih agrees withthe diret above omputations. The ase θ = 1/2 is ignored by the theorem,but it also says that if 1/2 < θ < 1 then χ2(P,Q|Pk) ≈ k2θ−1. By De�nition2, this means that k2θ−1 haraterizes the rate of onvergene of χ2(P,Q|Pk)to χ2(P,Q) = ∞ in the sense that, asymptotially for k tending to in�nity,
χ2(P,Q|Pk) = k2θ−1+o(1). This is a new fat about the speial model underonsideration. Its diret veri�ation requires to evaluate

χ2(P,Q|Pk) =
k∑

j=1

[
(j/k)1−θ − ((j − 1)/k)1−θ

]2

1/k(f. (3.8)-(3.11)) for 1/2 < θ < 1, or at least to prove the asymptoti relation
ln

k∑

j=1

[jα − (j − 1)α]2 = o(ln k)for 0 < α < 1/2. These tasks are not so easy.The results of this setion are relevant to the theory of optimal quan-tizations P∗
k that maximize the divergene χ2(P,Q|Pk) over all k-elements19



interval partitions Pk of the observation spae. Sine the Q-uniform inter-val partitions Pk satisfy (3.3), and onsequently also (3.1) and (3.2), theasymptoti representation (3.20) obtainable for these partitions an be usedto estimate from below the maximal divergene χ2(P,Q|P∗
k). Similarly wean use the estimate

χ2(P,Q) − χ2(P,Q|P∗
k) ≤ ρ(P,Q)

k2
+ o

(
1

k2

)for ρ(P,Q) given by (3.14) when P,Q are regular in the sense of Theorem2. An analogous idea was reently applied by Mayoral et al (2003) to thepartitions P∗
k that maximize the Fisher information in parametri models.

20



AppendixLemma A.1 Let Q be an absolutely ontinuous probability measure on aninterval X ⊆ R. If a sequene of intervals Ak ⊂ X satis�es the ondition
lim sup

k→∞

Q(Ak) > 0then there exists an open interval B and a subsequene {Akn
} of {Ak} suhthat B is ontained in Akn

for all su�iently large n and Q(B) > 0.Proof. By assumption, there exists a subsequene {Akr
: r ∈ 1, 2, . . .} suhthat

inf
r
Q(Akr

) ≥ 2δ for some δ > 0. (A.1)Let (a1, a2) ⊂ X be suh that Q((a1, a2)) > 1 − δ. De�ne intervals
Br = Akr

∩ (a1, a2).By (A.1), these intervals are nonvoid with
inf
r
Q(Br) ≥ δ.Sine the endpoints b1r and b2r of Br (where b1r ≤ b2r) are in the ompatset [a1, a2], there exists a subsequene {rn} of {r} for whih both the limits

b1 = lim
n→∞

b1rn
and b2 = lim

n→∞
b2rnexist in [a1, a2]. By ontinuity of measure Q with respet to the set-theoretionvergene of events,

Q((b1, b2)) = lim
n→∞

Q(Brn
) ≥ δ.Therefore b2 > b1 and any nonvoid open subinterval B ⊂ (b1, b2) togetherwith the subsequene Akn

where kn is the index kr for whih r = rn satisfythe statement of the lemma. �The remaining lemmas are applied in Setion 3. Therefore in these lem-mas we onsider the same P,Q and Pk as in Setion 3.Lemma A.2 The moment generating funtion (1.16) satis�es for all 0 <
a1 < a2 and all P,Q the inequality

(Ma1
(P,Q))1/a1 ≤ (Ma2

(P,Q))1/a2 .21



In partiular, the divergene χ2(P,Q) = M2(P,Q) − 1 is bounded for all
0 < a1 < 2, a2 > 2 and P,Q as follows

(Ma1
(P,Q))2/a1 − 1 ≤ χ2(P,Q) ≤ (Ma2

(P,Q))2/a2 − 1.Proof. The �rst assertion follows from the onvexity of ψ(t) = ta2/a1 andthe seond assertion is a trivial onsequene. �Lemma A.3 If Pk satis�es (3.1) then for every 1 ≤ a ≤ 2 and for Γ whihappears in (3.1)
k(a−2)/aM2(P,Q|Pk) ≤ Γ(2−a)/a(Ma(P,Q))2/a.Consequently for a sequene {Pk} satisfying (3.1) and all a ∈ [1, 2]

sup
k≥1

k(a−2)/aχ2(P,Q|Pk) ≤ Γ(2−a)/a(Ma(P,Q))2/a.Proof. Let k ≥ 1. If a is equal to 1 then Ma(P,Q) is also equal to 1. As wehave
M2(P,Q|Pk) =

k∑

j=1

qkj

(
pkj

qkj

)2

≤ max
1≤j≤k

(
pkj

qkj

)

≤ k Γ (by (3.1)),both inequalities easily follow. Now suppose that 1 < a ≤ 2 and put b =
(2 − a)/a. If b = 0 then the assertion is trivial. If b > 0 then

M2(P,Q|Pk) =

k∑

j=1

qkj

(
pkj

qkj

)2

≤ max
1≤j≤k

(
pkj

qkj

)ab k∑

j=1

qkj

(
pkj

qkj

)a

(ab+ a = 2)

≤
(

max
1≤j≤k

pkj

qkj

)ab

Ma(P,Q).where the last inequality follows from the formula for Ma(P,Q|Pk) in (1.17)and from the inequality (1.19). By (3.8) and the Hölder inequality
pkj =

∫ ykj

yk,j−1

p(y) dy ≤ q
1−1/a
kj

(∫ ykj

yk,j−1

p(y)a dy

)1/a22



so that
max
1≤j≤k

pkj

qkj
≤ max

1≤j≤k
q
−1/a
kj

(∫ ykj

yk,j−1

p(y)a dy

)1/a

≤ Γ1/ak1/a

(
max
1≤j≤k

∫ ykj

yk,j−1

p(y)a dy

)1/a

(see (3.1))
≤ Γ1/ak1/a(Ma(P,Q))1/a (see (1.16)).Combining this with the previous inequality, we obtain
k−bM2(P,Q|Pk) ≤ Γb(Ma(P,Q))2/awhih ompletes the proof. �The proof of the previous lemma uses the arguments of the proof of Propo-sition 4.2 in Kallenberg et al. (1985). The following lemma generalizes Propo-sition 4.4 of the same paper. Notie that its statement is trivial for b < 0beause the assumption (3.2) implies (2.2) so that χ2(P,Q|Pk) → χ2(P,Q)for all P,Q by Theorem 1. Therefore if b < 0 then our assumption P 6= Qimplies k−bχ2(P,Q|Pk) → ∞ automatially for all P,Q under onsideration.Lemma A.4. Let P,Q be probability measures with the funtion p(y)bounded or regularly unbounded in the sense of De�nition 3 and with aharateristi exponent spei�ed in De�nition 4. If {Pk} satis�es (3.2) thenfor every b < c

lim
k→∞

k−bχ2(P,Q|Pk) = ∞.Proof. If p(y) is bounded on (0, 1) then c = −1 so that the statement istrivial. It remains to be trivial unless c > 0, i.e. unless the maximal e�etiveargument a+ of the moment funtion Ma(P,Q) is below 2. Therefore let
a+ < 2 and ∫

U

p(y)a dy = ∞ if a > a+for a neighborhood U ⊂ [0, 1] of at least one point y ∈ [0, 1]. Let for simpliitythe point be y = 0 and put for brevity yk = yk1 for yk1 de�ned in (3.6). Sine(3.2) holds, we see that k−b ≥ (yk/Γ)b. Hene, by (3.11), it su�es to provethat the expression
yb

k

(∫ yk

0
p(y) dy

)2

yk
=

(
y

(b−1)/2
k

∫ yk

0

p(y) dy

)223



tends to in�nity if 0 ≤ b < c. For every 0 ≤ b < c take a suh that
a+ < a <

2

b+ 1
.Note that suh a exists sine 2/(b + 1) > a+ for all 0 ≤ b < c. By theassumptions,

∫ yk

0

p(y)a dy = ∞ and

∫ yk

0

p(y) dy <∞.If we put tk = 1/yk then, by (3.8), p(1/t) = tρλ(t) for λ(t) slowly varying atin�nity, so that
∫ ∞

tk

taρ−2λ(t)adt = ∞ and

∫ ∞

tk

tρ−2λ(t)dt <∞.Sine λa(t) is slowly varying at in�nity too, the �rst assertion of the lemmaon page 280 of Feller (1966) an be applied to both these relations. The �rstone implies in this manner that ρ ≥ 1/a and the seond one implies ρ ≤ 1.Now there are two possibilities : either ρ = 1 in whih ase
∫ ∞

tk

t−1λ(t)dt <∞or ρ < 1. In both these ases the seond assertion of the Feller lemma impliesthat ∫ ∞

t

sρ−2λ(s) ds = tρ−1Λ(t)where
Λ(t) = t1−ρ

∫ ∞

t

sρ−2λ(s) dsis slowly varying at in�nity. By Lemma 2 on p. 277 of Feller, Λ(t) > t−ε forany �xed ε > 0 and all t su�iently large. Therefore
tβk

∫ ∞

tk

sρ−2λ(s)ds = y−β
k

∫ yk

0

p(y) dy → ∞whenever β > 1 − ρ. By de�nition of a and the inequality ρ ≥ 1/a,
1 − b

2
> 1 − 1

a
≥ 1 − ρso that the desired relation

y
(b−1)/2
k

∫ yk

0

p(y) dy → ∞24
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