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AbstractBayesian approach to decision making is successfully applied in many
practical situations. Typically, however, a decision maker is considered to be the
only active part of the system. Extension of the classical decision-making scenar-
ios has been presented as multiple-participant decision-making. The resulting DM
units has all features of an agent as it is understood in multi-agent systems. A dis-
tinctive feature of such a Bayesian agent is that all information is represented by
probability density functions. Moreover, communication between two agents is also
facilitated by probabilities. All subsequent operations can be formalized in terms
of probability calculus. Majority of the necessary algorithms was already derived
for a single Bayesian decision maker, however, more work is required to resolve
issues related to communication and cooperation of Bayesian agents. The proposed
approach is illustrated on the problem of feedback control of urban traffic networks.

Keywords. Bayesian decision making, multi-agent systems, fully probabilistic
design

1. Introduction

Decision making (DM) [17,5] is an active and purposeful selection ofactionsamong
several alternative options. For humans, it is a natural part of everyday life. Any decision-
maker—biological or artificial—never has complete knowledge of the mechanism re-
lating the actions and their dynamically delayed consequences, hence the decisions are
always made under uncertainty. Therefore, design of artificial decision-makers (con-
trollers) is typically based on the theory of statistical DM [10,5]. The task is to design
a DM strategy, i.e. such a sequence of rules (mapping the available knowledge onto ac-
tions) that is optimal for reaching the aims of the decision maker. Bayesian statistics pro-
vides a consistent framework for this task, and many techniques for practical design of
Bayesian decision-makers are available [15].

However, practical algorithms for design of the optimal DM strategy are typically
based on the following assumptions:

1. The optimized strategy is the onlysystem that intentionally influences the opti-
mized responses.

2. Only one DM aim is given, and it is known a priori.

These assumptions are too restrictive for certain type of problems. For example, appli-
cation of the traditional approach to large systems (such as traffic control in urban ar-
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Figure 1. Multi-agent scenario.

eas) is conceptually possible, but practically intractable due to the implied computational
burden. The problem is practically solved by decomposition of the whole DM problem,
leading to—necessarily approximate—distributed DM [13,7] and multi-agent systems
[25,26]. However, there is no generally accepted methodology for design of DM strat-
egy for these agents. In this text, we address the problem by extension of the classical
Bayesian DM theory for multiple-participant DM [1].

1.1. Bayesian Agents

An agent, as a general building block of multi-agent systems, can be seen as a decision
maker that can influence only a part of itsenvironment. Each agent interacts with its envi-
ronment via (i) observations, (ii) decisions, (iii) and communication to other agents. This
is illustrated in Figure 1. If the agents are not aware of each others presence, or they do
not care about the others, they actautonomously, in the same way as classical Bayesian
decision-makers. However, mutual effect of uncoordinated autonomous decision-makers
is generically adverse and yields poor overall performance. This can be remedied by their
mutualcommunication, which is not considered by a classical Bayesian decision-maker.

The Bayesian agentis an extension of a single Bayesian decision-maker—which
typically has its individual aims, and pre-determined abilities to observe and act
autonomously—by the ability tocommunicateits knowledgeand aimswith other agents.
The last requirement is a new challenge for the Bayesian paradigm, since the communi-
cated information must be merged with the existing structures. It can be shown that the
technique offully probabilistic design (FPD)of DM strategy [14] reduces the task of
agent cooperation intoreporting and merging of probability density functions[1].

In this paper, we review the basic theory of Bayesian DM in Section 2, and define
the Bayesian decision-maker in Section 3. The Bayesian Agent is outlined in Section 4
and its practical use is illustrated on the problem of urban traffic control.

2. Bayesian Decision Making

Bayesian DM is based on the following principle [5]:Incomplete knowledge and ran-
domness have the same operational consequences for decision-making. Therefore, all
unknown quantities are treated as random variables and formulation of the problem and
its solution are firmly based within the framework of probability calculus.
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This task of decision making can be decomposed into the following sub-tasks.

Model Parametrization: Each agent must have its own model of its neighbourhood, i.e.
part of the environment. Uncertainty in the model is described by parametrized
probability density functions.

Learning: Reduces uncertainty in the model of the neighbourhood, using the observed
data. In practical terms, parameters of the model are inferred.

Strategy Design:Choose the rule for generating decisions using the parametrized model
and given aims.

These tasks will be now described in detail.

2.1. Model Parametrization

The basic scenario of decision-making is illustrated in Figure 2. Here,dt denotes all
observable quantities on the environment, i.e. data,yt, and actions,ut, dt = [y′t, u

′
t]
′. Θt

is an unknown parameter of the model of the environment. In Bayesian framework, the
closed loop—i.e. the environmentandthe decision-maker—is described by the following
probability density function:

f (d (t) ,Θ(t)) =

t∏
τ=1

f (yτ |uτ , d (τ − 1) ,Θτ ) f (Θτ |uτ , d (τ − 1) ,Θτ−1) f (uτ |d (τ − 1)) . (1)

Here,f (·) denotes probability density function (pdf) of its argument.d (t) denotes the
observation historyd (t) = [d1, . . . , dt]. The model represents the whole trajectory of the
system, including inputsuτ which can be influenced by the decision maker. The chosen
order of conditioning distinguishes the following important pdfs:

observation modelf (yt|ut, d(t− 1),Θt) , which models dependency of the observed
data on past datad (t− 1) = [d1, . . . , dt−1], model parametersΘt and actionsut.
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internal model f (Θt|ut, d(t− 1),Θt−1) , which models evolution of parameters of the
model via data historyd (t− 1), previous model parametersΘt−1 and the chosen
actionsut.

DM strategy f (ut|d (t− 1)), is a probabilistic description of the decision rule.

2.2. Learning via Bayesian filtering

The task of learning is to infer posterior distribution of unknown parameters from the
observed data,f (Θt|d (t)). This pdf can be computed recursively as follows:

f (Θt|ut, d (t− 1)) =
∫

f (Θt|ut, d (t− 1) ,Θt−1) f (Θt−1|d (t− 1)) dΘt−1,(2)

f (Θt|d (t)) ∝ f (yt|ut, d (t− 1) ,Θt) f (Θt|ut, d (t− 1))
f (yt|ut, d (t− 1))

, (3)

f (yt|ut, d (t− 1)) =
∫

f (yt|ut, d (t− 1) ,Θt) f (Θt|ut, d (t− 1)) dΘt. (4)

In general, evaluation of the above pdfs is a complicated task, which is often in-
tractable and many approximate techniques must be used [9]. In this text, we are con-
cerned with conceptual issues and we assume that all operation (2)–(4) are tractable.

2.3. Design of DM strategy

In this Section, we reviewfully probabilistic design (FPD)of the DM strategy [14]. This
approach is an alternative to the standard stochastic control design, which is formulated
as minimization of an expected loss function with respect to decision making strategies
[2,6]. The FPD starts with specification of the decision-making aim in the form ofideal
pdf of the closed loop. This ideal pdf—which is the key object of this approach—is
constructed in the same form as (1) distinguished by superscriptbI:

f (d (t) ,Θ(t)) → bIf (d (t) ,Θ(t)) . (5)

Similarly to (1), the ideal distribution is decomposed into ideal observation model, in-
ternal model, and ideal DM strategy. Recall, from Section 2.1, that model (1) contains
the DM strategy, which can be freely chosen. Therefore, the optimal DM strategy can be
found by functional optimization of the following loss function

L
(
f (ut|d (t− 1)) , t̊

)
= KL

(
f

(
d

(̊
t
)
,Θ

(̊
t
))
|| bIf

(
d

(̊
t
)
,Θ

(̊
t
)))

,

whereKL (·, ·) denotes the Kullback-Leibler divergence between the current (learnt) and
the ideal pdf [20], and̊t > t is the decision-making horizon.

The approach has the following special features.

• The KL divergence to an ideal pdf forms a special type of loss function that can
be simply tailored both to deterministic and stochastic features of the considered
DM problem.
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• Minimum of the KL divergence—i.e. the optimal DM strategy—is found inclosed
form:

f (ut|d (t− 1)) = bIf(ut|d(t− 1))
exp[−ω(ut, d(t− 1))]

γ(d(t− 1))
, (6)

whereω (·) and γ (·) are integral functions of all involved pdfs (these are not
presented for brevity, see [15] for details). The decisions are then generated using
a simplified version of stochastic dynamic programming [4].

• Multiple-objective decision-making can be easily achieved using multi-modal
ideal distributions [?,12].

3. Bayesian Decision Maker

In practise, the task of adaptive decision making is typically solved in two stages [15]:
(i) off-line, and (ii) on-line. The off-line stage is dedicated to design of the structure and
fixed parameters (such as initial conditions) of the decision-maker. When the structure
and fixed parameters are determined, the decision-maker operates autonomously in on-
line mode, where it is able to adapt (by adjusting model parameters) to changes in the
environment and improve its DM-strategy. Operation needed in both stages are described
in this Section.

3.1. Off-line stage

In this stage, it is necessary to determine structure of the model (1) and prior distribu-
tion of model parameters. These tasks are solved using archives of the observed data as
follows.

Model selection: if there is no physically justified model of the environment, this tech-
nique test many possible parameterization of the model, and selects one, which
is best suited for the observed data. Typically, only a class of models that yields
computationally tractable algorithms is examined. A key requirement of tractabil-
ity is, that the learning operation (2) can be reduced into algebraic operations on
finite-dimensionalsufficient statistics.

Elicitation of prior distributions : The expert knowledge which is not available in the
form of pdfs must be converted (often approximately) into probabilistic terms.
Moreover, if the available knowledge is not compatible with the chosen model, a
suitable approximation (projection into the chosen class) must be found. If there is
more sources of prior information are available, these must be merged into a single
pdf. This operation will be described in detail at the end of this Section.

Design of DM strategy: When the model and ideal distributions are chosen, the opti-
mal DM strategy is given in closed form by the FPD (Section 2). In special cases,
the equation (6) can be parametrized by a finite-dimensional parameters, and the
implied dynamic programing is reduced into algebraic operations on these param-
eters.

These tasks are computationally demanding and thus they are traditionally solved off-
line, i.e. only once for all available data. This is acceptable, since all expert information
is available a priori, and model of the environment is assumed to be constant.
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3.2. On-line stage

A typical adaptive decision maker operates by recursive repetition of the following steps:

1. read: the observed data are read from the environment. All the necessary pre-
processing and transformation of data is done in this step.

2. learn: the observed data are used to increase the knowledge about the environ-
ment, namely the sufficient statistics of the model parameters are updated.

3. adapt: the decision-maker use the improved knowledge of the system to improve
its DM strategy. Specifically, parameters of the DM strategy are re-evaluated us-
ing the new sufficient statistics.

4. decide: the adapted DM strategy is used to choose an appropriate action. Recall,
that the DM-strategy is a pdf. Hence, a realization from this pdf must be selected.
Typically, the optimal decision is chosen as expected value of (6).

5. write : the chosen action is written into the environment. Similar to the first step,
transformation of the results is done in this step.

Note that due to computational constraints, all operations in this stage are defined on
finite dimensional parameters or statistics.

3.3. Merging of pdfs

For the task of prior elicitation, we need to define a new probabilistic operation for merg-
ing of information from many sources. The merging operation is defined as a mapping
of two pdfs into one:

f1 (Θt|d (t)) , f2 (Θt|d (t))
merge−→ f̃ (Θt|d (t)) , (7)

wheref1 andf2 are thesource pdfs, and thef̃ is themerged pdf. The aim of the merging
operation is to preserve within one pdf,f̃ , as much information from the sources,f1 and
f2, as possible.

Note that the source pdfs in (7) are defined on the same variable as the merged pdf,
hence (7) will be known asdirect merging. Alternatively, the sources can be defined on
the variable in condition of the merged pdf,

f1 (dt|d (t− 1)) , f2 (dt|d (t))
merge−→ f̃ (Θt|d (t)) , (8)

in which case, the mapping is known asindirect merging. The problem is discussed in
detail in [?], we shortly outline the principle of its solution in the sequel.

In direct merging, the merged pdf̃f (d) is selected so that a weighted sum of
Kullback-Leibler divergences between the source pdfs,f1 andf2, and the merged pdf,
f̃ , is minimized:

f̃ = arg min
f

(αKL (f2||f) + (1− α) KL (f1||f)) . (9)

The weightα ∈ 〈0, 1〉 governs the level of importance of each source. The optimum of
(9) for merging of distributions of thesamevariable, is found in the form of a probabilis-
tic mixture of the source pdfs:
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f̃ (d) = αf2 (d) + (1− α) f1 (d) . (10)

Note that the result is significantly dependent on the weightα, which is an important
tuning knob in the operation.

4. Bayesian Agents

The Bayesian agent is an extended Bayesian decision maker described in previous Sec-
tion. The additional features are the ability and need of agents to communicate and co-
operate. In the Bayesian framework, all knowledge is stored in pdfs. The challenge is to
formalize communication and cooperation within the framework of probability calculus.
In this Section, we propose a simple probabilistic model of negotiation. For clarity of
explanation, we consider only two agents,A[1] andA[2], where agent number is always
in subscript in square brackets.

Each agent has the following quantities

Observed datadt: Naturally, each agent can observe different subset of variables, i.e.
dt,[1] anddt,[2], for A1 andA2, respectively. The agents can exchange knowledge
only in terms of variables that are common for both of them, i.e.dt,[1∩2]. Any
communication is meaningful only with respect to this subset.

Internal quantities Θt: We do not impose any structure of the environment model for
the agents, hence, internal quantitiesΘt,[1] andΘt,[2] are in general disjoint sets.

Environment Model: f[1] = f
(
d[1] (t) ,Θ[1] (t)

)
andf[2] = f

(
d[2] (t) ,Θ[2] (t)

)
for

each agent.
Ideal distributions: bIf[1] = bIf

(
d[1] (t) ,Θ[1] (t)

)
and bIf[2] = bIf

(
d[2] (t) ,Θ[2] (t)

)
for each agent.

Negotiation weights: For the purpose of negotiation, we define a scalar quantityα2,[1] ∈
〈0, 1〉 denoting the level of belief of agentA1 in information received fromA2.
Analogically,α1,[2] is defined inA2.

4.1. Communication

The agents can communicate two kinds of information: (i) about the environment, and
(ii) about their individual aims. In both cases, the information is stored in the form of
pdfs, namely marginal distribution from the environment model for (i), and marginal
distribution on ideal pdfs for (ii).

The model of the environment (1) is fully determined by the observation model (Sec-
tion 2.1) and parameter distribution (3), which is estimated from the observed datad(t).
The easiest way how to exchange the information about the environment is to exchange
the observed data. The observed data can be seen as a special case of pdf, namely empir-
ical pdff

(
d[2](t)

)
. Then, the task is formally identical with the task of indirect merging

of pdf (8) as described in Section 3.3. The observed data fromA2 are merged with the
existing model ofA1 using

f[1], f
(
d[2](t)

) merge−→ f̃[1].
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Figure 3. Illustration of merging of two Gaussian distribution. The merged distribution is a mixture of
Gaussians for which the operations of learning and design of DM strategy do not have a finite-dimensional
parametrization. Thus, the merged distribution is projected into the class of single Gaussians.

and the negotiation weightα2,[1]. This weight can be chosen constant or it can be nego-
tiated with the neighbour. When the negotiation is finished, the merged pdff̃[1] is then
used as the new model of the environment.

The ideal distributions can be communicated and merged in the same way, using
direct merging (7). Note that merging of the ideal distributions influences the aim of the
agent. The FPD procedure must be performed after each merge in order to recompute the
DM strategy. Once again, the result is strongly influenced by the negotiation weightsα.
These weights can be determined by negotiation strategies.

If the merging operation yields pdfs that are not compatible with the observation
model (i.e. can not be reduced into algebraic form), the merged distribution must be
projected into the compatible class, as illustrated in Figure 3.

4.2. Negotiation strategies

We distinguish three basic strategies [16]:

• selfish— a strategy where each agent freely chooses its own weights. AgentA1

accepts all information from its neighbour, but it refuse any attempts to change
the weightα2,[1] that may be suggested byA2.



9

• hierarchical — a strategy where the agent have a fixed values ofα2,[1], however
if the neighbourA2 is superordinate toA1, it can assign the value ofα2,[1] by
communication.

• cooperative— a strategy, where both participants have common aim (given by
the user using ideal pdfs) to reach an agreement on the negotiation values, i.e.
α2,[1] = α1,[2].

4.3. On-line algorithm of Bayesian agents

On-line operation of each Bayesian agent is an extension of the on-line steps of Bayesian
decision-maker (Section 3).

1. read: the observed data are read from the system (environment). Possible com-
munication (via pdf) from the neighbour is also received in this step. We assume
that only one neighbour can communicate in one time step.

2. learn: the observed data are used to increase the knowledge about the system
(environment).

2a. merge: if the communication from the neighbour contains information about the
environment, the merge operation is called in order to merge it with the current
knowledge. In case of communication of ideal distributions, the FPD procedure is
run. Note that this step may be computationally expensive.

3. adapt: the decision-maker use the improved knowledge of the environment to
improve its DM strategy.

4. decide: the adapted DM strategy is used to choose an appropriate action. In multi-
agent scenario, the tasks of communication and negotiation are also part of the
decision making process. Therefore, in this step, decisions on communication (re-
quest communication, negotiate, refuse communication) and negotiation (propose
new value ofα1,[2]) must be also made.

5. write : the chosen action is written into the system (environment). If the decision
to communicate was made, a message to the neighbour is also written in this step.

Note that acquisition of the observed data is synchronized with communication. In
each time step, only one message from the neighbour is received, processed and an-
swered. This allows seamless merging of knowledge from direct observations and from
communication. If the periods of data sampling and communication differ, the smaller
one is chosen as the period of one step of an agent.

5. Application in Traffic Control

Urban surface transport networks are characterised by high density of streets and a large
amount of junctions. In many cities these structures cannot easily accommodate the vast
volume of traffic, which results in regular traffic congestions. Efficient traffic control
mechanisms are sought that would provide for higher throughput of the urban transport
network without changing its topology.

Due to space constraints we cannot present the reader with full introduction to the
principles of urban traffic control (UTC). We will just briefly outline terms that will be
needed below. More thorough explanation of the UTC methodology exceeds the scope
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of this paper. Interested readers should refer to any of the existing monographs on this
topic, e.g. [21,24].

In most cases, UTC is targeted onsignalled intersections, where traffic is controlled
by traffic signals. The sequence of traffic signal settings for an intersection is called a
signal plan. A signal plan cycle typically consist of severalstages, where one of the
conflicting traffic flows has green and the others have to wait. The lengths of stages,
the overall signal plan duration and other parameters are bounded by values reflecting
either physical shape of the intersection or other (usually normatively given) rules. An
intersection controlleris an industrial micro-controller that attempts to select the order of
stages and to modify stage lengths in such a way that a maximum possible throughput of
the intersection is achieved. The ordering of stages may be influenced by public transport
vehicles in order to minimise their waiting at an intersection.

Intersection controllers are very often autonomous devices that do not react on traf-
fic conditions at neighbouring intersections. However, in areas with high traffic inten-
sity, intersection controllers may be mutually interconnected in a kind of hierarchical
controller that attempts to optimize the throughput of the whole traffic network. Several
interesting UTC approaches exist that attempt to solve the traffic control problem using
feedback from different traffic detectors [18]. Many agent-based approaches have been
implemented as well. For example: (i) agents for setting of the optimal signal plan cycle
length [11], and (ii) for distributed coordination of signal plans. The latter are based on
game theory [3,8] or Bayesian learning [22]. These applications often use approximate
heuristics and long-time statistics to derive the optimal control strategy. Our proposal is
to build the strategy adaptively in a collaborative agent-based environment.

In the following text, agents are intersection controllers of some street network. The
agents shall agree on the overall traffic signal setting that would minimise time spent by
vehicles inside the controlled region and thus maximise the throughput of the network.

5.1. Model

Papageorgiou [23] shows that the total time spent by a vehicle in a controlled micro-
region is strongly correlated to queue lengths at signalised intersections of this micro-
region. Hence, minimization of waiting queues results in faster vehicle transition and in
higher throughput of the network.

We start with a deterministic model describing the behaviour of the traffic at an
intersection as a particle flow system [19]:

Θt = AΘt−1 + But−1 + F

yt = CΘt + G

where

Θt =
[

ξt

Ot

]
is a state vector holding information about waiting queue lengthsξt and detected input
lane occupanciesOt, ut is an input variable which represents green settings for a signal
plan cycle at this intersection. MatrixA defines transition from an old state to the new
one. It is composed from information about waiting queue development, and mutual in-
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Figure 4. Simple urban traffic network with four controlled junctions and four agents.

fluence of queues at one lane on other lanes. MatrixB models throughput of the junction,
and vectorF is composed from the observed incoming traffic intensity. Output vector

yt =
[

ηt

O′
t

]
contains information about outgoing traffic intensityηt and output arm occupanciesO′

t.
C is a matrix of coefficients transforming waiting queue data into outgoing traffic inten-
sities and vectorG models the influence of current incoming traffic and past queues on
outgoing traffic.

This model can be transcribed into the following probabilistic internal and observa-
tion models:

f(Θt|Θt−1, ut−1) = N (AΘt−1 + But−1 + F,Q) (11)

f(yt|Θt) = N (CΘt + G, R) (12)

whereN (µ, σ) is a Gaussian probability distribution andQ andR are allowed variances.
The internal model (11) describes the probability distribution of queue lengths at an
intersection at timet given the green settingsut−1 and incoming traffic dataΘt−1 at
time t− 1. The observation model (12) yields probability distribution of outgoing traffic
intensity of the modelled junction at timet, given the queue pdf from the internal model.

5.2. Ideal distributions

The global aim of the proposed UTC approach is to minimise waiting queues at every
junction. As said in Section 4, agents attempt to reach this aim by exchanging their ideal
pdfs, defined on their common data. In our case, agents share information about traffic
intensity at particular intersection arms. Hence, the exchanged ideal pdfs specify wishes
about intensity of outgoing and incoming traffic.
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We propose to model the ideal pdfs as follows:

bIf (ξt) = tN (0, Vξ, 〈0, ξmax〉) , (13)

bIf(It|ξt) = tN (I (ξt) , VI , 〈0, Imax〉) , (14)

bIf(ηt|ξt) = tN (ηmax, Vη, 〈0, ηmax〉) . (15)

Here,tN (0, U, 〈0, ξmax〉) denotes a Gaussian distribution with mean value0 and vari-
anceVξ, truncated on the interval〈0, ξmax〉. ξmax denotes maximal allowed queue length.
The ideal (13) favours minimal queue lengths value, since estimatesf (ξt) with lower
mean value are closer to the ideal that those with larger mean value. The ideal pdf (14)
models the agents wishes for input intensities coming from its neighbours. The requested
mean valueI (ξt) is changing with the current traffic conditions. The varianceVI ex-
presses the “strength” of the request; higherVI allows higher deviation from idealI (·)
and leaves the agent more room for adapting to other requests.Imaxis the maximum pos-
sible intensity at the arm (or lane) in concern. In order to communicate these wishes to
the neighbours, they must be independent of the internal quantityξt. This can be achieved
by marginalization, i.e.bIf(It|ξt) → bIf(It).

Note that output intensities of one intersection are input intensities of its neighbours,
i.e. ηt,[1] → It,[2]. Hence, the communicated ideals on input intensitiesf

(
It,[2]

)
will be

merged with ideals on output intensitiesf
(
ηt,[1]

)
.

5.3. Control cycle

The proposed control cycle of a single agent follows the decomposition from Section
4.3:

1. read: The agent reads observed data from the environment and checks for incom-
ing communication from some neighbour.

2. learn: Observed data of the agent (measured traffic intensities) are used to in-
crease its knowledge about current traffic conditions, namely pdfs of waiting
queue lengths and unobserved intensities of traffic flow.

3. merge: If a message from some neighbour arrived, its pdf is merged with the
agent’s pdfs — either with the current knowledge or with ideal pdfs. In the latter
case, FPD procedure that evaluates Eq. (6) is called after the merge in order to
reflect the change in ideal aims in the optimal DM strategy.

4. adapt: The agent uses the updated knowledge to adapts its DM strategy. Hence,
the strategy can be changes in reaction to the changed traffic conditions or in
reaction to the message from the neighbour.

5. decide: Based on the adapted strategy, the agent decides about its signal plan
parameters for the next period. The signal values are typically taken as expected
values of the adapted strategy pdf. Decisions whether and what to communicate
with agent’s neighbour is also made in this moment.

6. write: The chosen signal plan is written to the intersection controller. Optionally,
communication message is sent to the chosen neighbour.
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6. Conclusion

The Bayesian methodology provides a consistent theory of decision making under un-
certainty. We have presented an extension of this methodology in the area of multi-agent
systems. Since the Bayesian approach formalizes all available knowledge in the form of
probability density functions, we had to formalize the key features of agents—i.e. com-
munication and negotiation—using probability calculus. We have shown that the formal-
ization can be achieved using techniques of fully probabilistic design and merging of
pdfs.

The work presented in this paper is a conceptual outline of the approach. In spite of
the fact that the key techniques are available, many practical issues must be solved before
it is ready for real application. The presented application in urban traffic control will be
used as testing environment for further research and development of Bayesian agents.
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