Additive decomposition of probability tables

Petr Savický and Jiří Vomlel
Academy of Sciences of the Czech Republic (AV ČR)

Třešt', December 12, 2006

Random variables

Binary random variables $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$:

- X_{1}
coronary hearth disease (states: $0 / 1$)
- $X_{2} \ldots$ high systolic blood pressure (states: $0 / 1$)
- $X_{3} \ldots$ high diastolic blood pressure (states: $0 / 1$)
- $X_{4} \ldots$ high cholesterol (states: 0/1)
- $X_{5} \ldots$ physical activity (states: $0 / 1$)
- $X_{6} \ldots$ family anamnesis (states: $0 / 1$)

Random variables

Binary random variables $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$:

- $X_{1} \ldots$ coronary hearth disease (states: $0 / 1$)
- $X_{2} \ldots$ high systolic blood pressure (states: 0/1)
- $X_{3} \ldots$ high diastolic blood pressure (states: $0 / 1$)
- $X_{4} \ldots$ high cholesterol (states: $0 / 1$)
- $X_{5} \ldots$ physical activity (states: $0 / 1$)
- $X_{6} \ldots$ family anamnesis (states: $0 / 1$)

Random variables

Binary random variables $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$:

- $X_{1} \ldots$ coronary hearth disease (states: $0 / 1$)
- $X_{2} \ldots$ high systolic blood pressure (states: $0 / 1$)
- $X_{3} \ldots$ high diastolic blood pressure (states: 0/1)
- $X_{4} \ldots$ high cholesterol (states: $0 / 1$)
- $X_{5} \ldots$ physical activity (states: $0 / 1$)
- $X_{6} \ldots$ family anamnesis (states: $0 / 1$)

Random variables

Binary random variables $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$:

- $X_{1} \ldots$ coronary hearth disease (states: $0 / 1$)
- $X_{2} \ldots$ high systolic blood pressure (states: $0 / 1$)
- $X_{3} \ldots$ high diastolic blood pressure (states: $0 / 1$)
- $X_{4} \ldots$ high cholesterol (states: 0/1)
- $X_{5} \ldots$ physical activity (states: $0 / 1$)
- $X_{6} \ldots$ family anamnesis (states: $0 / 1$)

Random variables

Binary random variables $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$:

- $X_{1} \ldots$ coronary hearth disease (states: $0 / 1$)
- $X_{2} \ldots$ high systolic blood pressure (states: $0 / 1$)
- $X_{3} \ldots$ high diastolic blood pressure (states: $0 / 1$)
- $X_{4} \ldots$ high cholesterol (states: $0 / 1$)
- $X_{5} \ldots$ physical activity (states: 0/1)
- $X_{6} \ldots$ family anamnesis (states: $0 / 1$)

Random variables

Binary random variables $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$:

- $X_{1} \ldots$ coronary hearth disease (states: $0 / 1$)
- $X_{2} \ldots$ high systolic blood pressure (states: $0 / 1$)
- $X_{3} \ldots$ high diastolic blood pressure (states: $0 / 1$)
- $X_{4} \ldots$ high cholesterol (states: $0 / 1$)
- $X_{5} \ldots$ physical activity (states: $0 / 1$)

Random variables

Binary random variables $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$:

- $X_{1} \ldots$ coronary hearth disease (states: $0 / 1$)
- $X_{2} \ldots$ high systolic blood pressure (states: $0 / 1$)
- $X_{3} \ldots$ high diastolic blood pressure (states: $0 / 1$)
- $X_{4} \ldots$ high cholesterol (states: $0 / 1$)
- $X_{5} \ldots$ physical activity (states: $0 / 1$)
- $X_{6} \ldots$ family anamnesis (states: $0 / 1$)

Discrete probability distribution

Discrete probability distribution $P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)$ can be represented by a table:

Discrete probability distribution

Discrete probability distribution $P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)$ can be represented by a table:

| | | X_{6} | 0 | | | | 1 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | X_{5} | 0 | | 1 | 0 | | 1 | | |
| | | X_{4} | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| X_{1} | X_{2} | X_{3} | | | | | | | | |
| 0 | 0 | 0 | 0.0342 | 0.0315 | 0.0319 | 0.0306 | 0.0314 | 0.0328 | 0.0343 | 0.0325 |
| | | 1 | 0.0284 | 0.0295 | 0.0307 | 0.0289 | 0.0318 | 0.0302 | 0.0319 | 0.0288 |
| | 1 | 0 | 0.0287 | 0.0305 | 0.0332 | 0.0282 | 0.0308 | 0.0319 | 0.0311 | 0.0295 |
| | | 1 | 0.0286 | 0.0296 | 0.0276 | 0.0317 | 0.0304 | 0.0256 | 0.0282 | 0.0252 |
| 1 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0001 |
| | | 1 | 0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0005 | 0.0002 | 0.0004 |
| | 1 | 0 | 0.0000 | 0.0004 | 0.0002 | 0.0002 | 0.0006 | 0.0010 | 0.0006 | 0.0020 |
| | | 1 | 0.0003 | 0.0014 | 0.0009 | 0.0016 | 0.0029 | 0.0063 | 0.0029 | 0.0068 |

Querries

Conditional probability $P\left(X_{1} \mid X_{6}=0\right)$

i.e., probability of coronary hearth disease given negative family anamnesis Bayes rule

$\sum_{X_{i}=0}^{1} P\left(\ldots, X_{i}=x_{i}, \ldots\right)$ denotes marginalizing out variable X_{i}.

Querries

Conditional probability $P\left(X_{1} \mid X_{6}=0\right)$,
i.e., probability of coronary hearth disease given negative family anamnesis Bayes rule

Querries

Conditional probability $P\left(X_{1} \mid X_{6}=0\right)$,
i.e., probability of coronary hearth disease given negative family anamnesis Bayes rule

$$
P\left(X_{1} \mid X_{6}=0\right)=\frac{P\left(X_{1}, X_{6}=0\right)}{P\left(X_{6}=0\right)}
$$

Querries

Conditional probability $P\left(X_{1} \mid X_{6}=0\right)$,
i.e., probability of coronary hearth disease given negative family anamnesis Bayes rule

$$
\begin{aligned}
P\left(X_{1} \mid X_{6}=0\right) & =\frac{P\left(X_{1}, X_{6}=0\right)}{P\left(X_{6}=0\right)} \\
& =\frac{P\left(X_{1}, X_{6}=0\right)}{\sum_{x_{1}=0}^{1} P\left(X_{1}=x_{1}, X_{6}=0\right)}
\end{aligned}
$$

Querries

Conditional probability $P\left(X_{1} \mid X_{6}=0\right)$,
i.e., probability of coronary hearth disease given negative family anamnesis Bayes rule

$$
\begin{aligned}
P\left(X_{1} \mid X_{6}=0\right) & =\frac{P\left(X_{1}, X_{6}=0\right)}{P\left(X_{6}=0\right)} \\
& =\frac{P\left(X_{1}, X_{6}=0\right)}{\sum_{x_{1}=0}^{1} P\left(X_{1}=x_{1}, X_{6}=0\right)}
\end{aligned}
$$

$\sum_{x_{i}=0}^{1} P\left(\ldots, X_{i}=x_{i}, \ldots\right)$ denotes marginalizing out variable X_{i}.

Computation of $P\left(X_{1}, X_{6}=0\right)$

$$
\begin{aligned}
& P\left(X_{1}, X_{6}=0\right)= \\
& \quad \sum_{x_{2}=0}^{1} \sum_{x_{3}=0}^{1} \sum_{x_{4}=0}^{1} \sum_{x_{5}=0}^{1} P\left(X_{1}, x_{2}=x_{2}, x_{3}=x_{3}, x_{4}=x_{4}, x_{5}=x_{5}, x_{6}=0\right)
\end{aligned}
$$

Computation of $P\left(X_{1}, X_{6}=0\right)$

$$
\begin{aligned}
& P\left(X_{1}, X_{6}=0\right)= \\
& \quad \sum_{x_{2}=0}^{1} \sum_{x_{3}=0}^{1} \sum_{x_{4}=0}^{1} \sum_{x_{5}=0}^{1} P\left(x_{1}, x_{2}=x_{2}, x_{3}=x_{3}, x_{4}=x_{4}, x_{5}=x_{5}, x_{6}=0\right)
\end{aligned}
$$

| | | X_{6} | 0 | | | | 1
 0 | | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | X_{5} | 0 | | 1 | | | | | |
| | | X_{4} | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| X_{1} | X_{2} | X_{3} | | | | | | | | |
| 0 | 0 | 0 | 0.0342 | 0.0315 | 0.0319 | 0.0306 | 0.0314 | 0.0328 | 0.0343 | 0.0325 |
| | | 1 | 0.0284 | 0.0295 | 0.0307 | 0.0289 | 0.0318 | 0.0302 | 0.0319 | 0.0288 |
| | 1 | 0 | 0.0287 | 0.0305 | 0.0332 | 0.0282 | 0.0308 | 0.0319 | 0.0311 | 0.0295 |
| | | 1 | 0.0286 | 0.0296 | 0.0276 | 0.0317 | 0.0304 | 0.0256 | 0.0282 | 0.0252 |
| 1 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0001 |
| | | 1 | 0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0005 | 0.0002 | 0.0004 |
| | 1 | 0 | 0.0000 | 0.0004 | 0.0002 | 0.0002 | 0.0006 | 0.0010 | 0.0006 | 0.0020 |
| | | 1 | 0.0003 | 0.0014 | 0.0009 | 0.0016 | 0.0029 | 0.0063 | 0.0029 | 0.0068 |

Computation of $P\left(X_{1}, X_{6}=0\right)$

$$
\begin{aligned}
& P\left(X_{1}, X_{6}=0\right)= \\
& \quad \sum_{x_{2}=0}^{1} \sum_{x_{3}=0}^{1} \sum_{x_{4}=0}^{1} \sum_{x_{5}=0}^{1} P\left(x_{1}, x_{2}=x_{2}, x_{3}=x_{3}, x_{4}=x_{4}, x_{5}=x_{5}, x_{6}=0\right)
\end{aligned}
$$

Computation of $P\left(X_{1}, X_{6}=0\right)$

$$
\begin{aligned}
& P\left(X_{1}, X_{6}=0\right)= \\
& \quad \sum_{x_{2}=0}^{1} \sum_{x_{3}=0}^{1} \sum_{x_{4}=0}^{1} \sum_{x_{5}=0}^{1} P\left(x_{1}, x_{2}=x_{2}, x_{3}=x_{3}, x_{4}=x_{4}, x_{5}=x_{5}, x_{6}=0\right)
\end{aligned}
$$

Computation of $P\left(X_{1}, X_{6}=0\right)$

$$
\begin{aligned}
& P\left(X_{1}, x_{6}=0\right)= \\
& \quad \sum_{x_{2}=0}^{1} \sum_{x_{3}=0}^{1} \sum_{x_{4}=0}^{1} \sum_{x_{5}=0}^{1} P\left(x_{1}, x_{2}=x_{2}, x_{3}=x_{3}, x_{4}=x_{4}, x_{5}=x_{5}, x_{6}=0\right)
\end{aligned}
$$

		X_{6}	0			1			
		X_{5}	0		1				
X_{1}	X_{2}	X_{3}	0	1	0	1	0	1	0

Computational complexity

- Probability distribution over n binary variables $P\left(X_{1}, \ldots, X_{n}\right)$.
- Generally, the computation of $P\left(X_{i} \mid X_{j}=x_{j}\right)$ requires $2\left(2^{n-2}-1\right)$ additions.
- It is exponential in number of variables and thus intractable for larger n !
- If one addition takes $0.001 \mu \mathrm{~s}\left(=\frac{1}{1 G H z}\right)$ then for $n=50$ we need 13 days to compute the marginal distribution!

Computational complexity

- Probability distribution over n binary variables $P\left(X_{1}, \ldots, X_{n}\right)$.
- Generally, the computation of $P\left(X_{i} \mid X_{j}=x_{j}\right)$ requires $2\left(2^{n-2}-1\right)$ additions.
- It is exponential in number of variables and thus intractable for larger n !
- If one addition takes $0.001 \mu \mathrm{~s}\left(=\frac{1}{1 \mathrm{GHz}}\right)$ then for $n=50$ we need 13 days to compute the marginal distribution!

Computational complexity

- Probability distribution over n binary variables $P\left(X_{1}, \ldots, X_{n}\right)$.
- Generally, the computation of $P\left(X_{i} \mid X_{j}=x_{j}\right)$ requires $2\left(2^{n-2}-1\right)$ additions.
- It is exponential in number of variables and thus intractable for larger n !
- If one addition takes $0.001 \mu \mathrm{~s}\left(=\frac{1}{1 \mathrm{GHz}}\right)$ then for $n=50$ we need 13 days to compute the marginal distribution!

Computational complexity

- Probability distribution over n binary variables $P\left(X_{1}, \ldots, X_{n}\right)$.
- Generally, the computation of $P\left(X_{i} \mid X_{j}=x_{j}\right)$ requires $2\left(2^{n-2}-1\right)$ additions.
- It is exponential in number of variables and thus intractable for larger n !
- If one addition takes $0.001 \mu s\left(=\frac{1}{1 G H z}\right)$ then for $n=50$ we need 13 days to compute the marginal distribution!

Can we decrease the complexity?

Yes, if we exploit the internal structure of the probability distribution $P\left(X_{1}, \ldots, X_{n}\right)$. For example, if

which requires only $n-2$ additions and $2(n-1)$ multiplications!

Can we decrease the complexity?

Yes, if we exploit the internal structure of the probability distribution $P\left(X_{1}, \ldots, X_{n}\right)$. For example, if

$$
P\left(X_{1}, \ldots, X_{n}\right)=\psi\left(X_{1}\right) \cdot \ldots \cdot \psi\left(X_{n}\right)
$$

then computation of $P\left(X_{1}, X_{n}=0\right)$ can be performed as

which requires only $n-2$ additions and $2(n-1)$ multiplications!

Can we decrease the complexity?

Yes, if we exploit the internal structure of the probability distribution $P\left(X_{1}, \ldots, X_{n}\right)$. For example, if

$$
P\left(X_{1}, \ldots, X_{n}\right)=\psi\left(X_{1}\right) \cdot \ldots \cdot \psi\left(X_{n}\right)
$$

then computation of $P\left(X_{1}, X_{n}=0\right)$ can be performed as
$P\left(X_{1}, X_{n}=0\right)$

Can we decrease the complexity?

Yes, if we exploit the internal structure of the probability distribution $P\left(X_{1}, \ldots, X_{n}\right)$. For example, if

$$
P\left(X_{1}, \ldots, X_{n}\right)=\psi\left(X_{1}\right) \cdot \ldots \cdot \psi\left(X_{n}\right)
$$

then computation of $P\left(X_{1}, X_{n}=0\right)$ can be performed as

$$
\begin{aligned}
& P\left(X_{1}, X_{n}=0\right) \\
& \quad=\sum_{x_{2}=0}^{1} \ldots \sum_{x_{n-1}=0}^{1} \psi\left(X_{1}\right) \cdot \psi\left(X_{2}=x_{2}\right) \cdot \ldots \cdot \psi\left(X_{n-1}=x_{n-1}\right) \cdot \psi\left(X_{n}=0\right) \\
& =\psi\left(X_{1}\right)\left(\sum_{x_{2}=0}^{1} \psi\left(X_{2}=x_{2}\right)\right) \cdots\left(\sum_{x_{n-1}=0}^{1} \psi\left(x_{n-1}=x_{n-1}\right)\right) \psi\left(x_{n}=0\right.
\end{aligned}
$$

which requires only $n-2$ additions and $2(n-1)$ multiplications!

Can we decrease the complexity?

Yes, if we exploit the internal structure of the probability distribution $P\left(X_{1}, \ldots, X_{n}\right)$. For example, if

$$
P\left(X_{1}, \ldots, X_{n}\right)=\psi\left(X_{1}\right) \cdot \ldots \cdot \psi\left(X_{n}\right)
$$

then computation of $P\left(X_{1}, X_{n}=0\right)$ can be performed as

$$
\begin{aligned}
& P\left(X_{1}, X_{n}=0\right) \\
& \quad=\sum_{x_{2}=0}^{1} \ldots \sum_{x_{n-1}=0}^{1} \psi\left(X_{1}\right) \cdot \psi\left(X_{2}=x_{2}\right) \cdot \ldots \cdot \psi\left(X_{n-1}=x_{n-1}\right) \cdot \psi\left(X_{n}=0\right) \\
& \quad=\psi\left(X_{1}\right)\left(\sum_{x_{2}=0}^{1} \psi\left(X_{2}=x_{2}\right)\right) \cdot \ldots \cdot\left(\sum_{x_{n-1}=0}^{1} \psi\left(X_{n-1}=x_{n-1}\right)\right) \psi\left(X_{n}=0\right)
\end{aligned}
$$

Can we decrease the complexity?

Yes, if we exploit the internal structure of the probability distribution $P\left(X_{1}, \ldots, X_{n}\right)$. For example, if

$$
P\left(X_{1}, \ldots, X_{n}\right)=\psi\left(X_{1}\right) \cdot \ldots \cdot \psi\left(X_{n}\right)
$$

then computation of $P\left(X_{1}, X_{n}=0\right)$ can be performed as

$$
\begin{aligned}
& P\left(X_{1}, X_{n}=0\right) \\
& \quad=\sum_{x_{2}=0}^{1} \ldots \sum_{x_{n-1}=0}^{1} \psi\left(X_{1}\right) \cdot \psi\left(X_{2}=x_{2}\right) \cdot \ldots \cdot \psi\left(X_{n-1}=x_{n-1}\right) \cdot \psi\left(X_{n}=0\right) \\
& \quad=\psi\left(X_{1}\right)\left(\sum_{x_{2}=0}^{1} \psi\left(X_{2}=x_{2}\right)\right) \cdot \ldots \cdot\left(\sum_{x_{n-1}=0}^{1} \psi\left(X_{n-1}=x_{n-1}\right)\right) \psi\left(X_{n}=0\right)
\end{aligned}
$$

which requires only $n-2$ additions and $2(n-1)$ multiplications!

What can we do if we are not so lucky?

Not allways distribution $P\left(X_{1}, \ldots, X_{n}\right)$ has such a nice internal structure as in the previous case.
However, we can exploit also more complicated internal structures. Either
(1) multiplicative decomposition or
(2) additive decomposition

What can we do if we are not so lucky?

Not allways distribution $P\left(X_{1}, \ldots, X_{n}\right)$ has such a nice internal structure as in the previous case.
However, we can exploit also more complicated internal structures. Either by:
(1) multiplicative decomposition or
(2) additive decomposition

What can we do if we are not so lucky?

Not allways distribution $P\left(X_{1}, \ldots, X_{n}\right)$ has such a nice internal structure as in the previous case.
However, we can exploit also more complicated internal structures. Either by:
(1) multiplicative decomposition or

What can we do if we are not so lucky?

Not allways distribution $P\left(X_{1}, \ldots, X_{n}\right)$ has such a nice internal structure as in the previous case.
However, we can exploit also more complicated internal structures. Either by:
(1) multiplicative decomposition or
(2) additive decomposition

Multiplicative decomposition

If $C_{i} \subset\{1, \ldots, n\}, i \in\{1, \ldots, k\}$ are edges of a decomposable hypergraph and

$$
P\left(X_{1}, \ldots, X_{n}\right)=\psi\left(X_{C_{1}}\right) \cdot \ldots \cdot \psi\left(X_{C_{k}}\right)
$$

then in order to get $P\left(X_{1}, X_{n}=0\right)$ we need the number of additions and multiplications proportional to the state space of the largest set C_{i}, i.e., to

Multiplicative decomposition

If $C_{i} \subset\{1, \ldots, n\}, i \in\{1, \ldots, k\}$ are edges of a decomposable hypergraph and

$$
P\left(X_{1}, \ldots, X_{n}\right)=\psi\left(X_{C_{1}}\right) \cdot \ldots \cdot \psi\left(X_{C_{k}}\right)
$$

then in order to get $P\left(X_{1}, X_{n}=0\right)$ we need the number of additions and multiplications proportional to the state space of the largest set C_{i}, i.e., to

Multiplicative decomposition

If $C_{i} \subset\{1, \ldots, n\}, i \in\{1, \ldots, k\}$ are edges of a decomposable hypergraph and

$$
P\left(X_{1}, \ldots, X_{n}\right)=\psi\left(X_{C_{1}}\right) \cdot \ldots \cdot \psi\left(X_{C_{k}}\right)
$$

then in order to get $P\left(X_{1}, X_{n}=0\right)$ we need the number of additions and multiplications proportional to the state space of the largest set C_{i}, i.e., to

$$
2^{\left|C_{i}\right|}
$$

Additive decomposition

$$
P\left(X_{1}, \ldots, X_{n}\right)=\sum_{q=1}^{r} \psi_{q}\left(X_{1}\right) \cdot \ldots \cdot \psi_{q}\left(X_{n}\right)
$$

In order to get $P\left(X_{1}, X_{n}=0\right)$ we need $r(n-1)$ multiplications and

 $r(n-2)$ additions.
Additive decomposition

$$
P\left(X_{1}, \ldots, X_{n}\right)=\sum_{q=1}^{r} \psi_{q}\left(X_{1}\right) \cdot \ldots \cdot \psi_{q}\left(X_{n}\right)
$$

In order to get $P\left(X_{1}, X_{n}=0\right)$ we need $r(n-1)$ multiplications and $r(n-2)$ additions.

Additive decomposition

- The problem of finding the additive decomposition with minimal r corresponds to the problem of determining tensor rank.
- Determining tensor rank is an NP-hard problem.
- However, we have constructed explicit decomposition for some usefull probability distributions: noisy-or, noisy-and, noisy-add, noisy-max, noisy-min, etc.
- The above decompositions require low rank r, e.g., $r=2$ for noisy-or and noisy-and,
- consequently, for these decompositions, computations of $P\left(X_{i} \mid X_{j}=x_{j}\right)$ is efficient - it has linear complexity with respect to n

Additive decomposition

- The problem of finding the additive decomposition with minimal r corresponds to the problem of determining tensor rank.
- Determining tensor rank is an NP-hard problem.
- However, we have constructed explicit decomposition for some usefull probability distributions: noisy-or, noisy-and, noisy-add, noisy-max, noisy-min, etc.
- The above decompositions require low rank r, e.g., $r=2$ for noisy-or and noisy-and,
- consequently, for these decompositions, computations of $P\left(X_{i} \mid X_{j}=X_{j}\right)$ is efficient - it has linear complexity with respect to n

Additive decomposition

- The problem of finding the additive decomposition with minimal r corresponds to the problem of determining tensor rank.
- Determining tensor rank is an NP-hard problem.
- However, we have constructed explicit decomposition for some usefull probability distributions: noisy-or, noisy-and, noisy-add, noisy-max, noisy-min, etc.
- The above decompositions require low rank r, e.g., $r=2$ for noisy-or and noisy-and,
- consequently, for these decompositions, computations of $P\left(X_{i} \mid X_{j}=x_{j}\right)$ is efficient - it has linear complexity with respect to n

Additive decomposition

- The problem of finding the additive decomposition with minimal r corresponds to the problem of determining tensor rank.
- Determining tensor rank is an NP-hard problem.
- However, we have constructed explicit decomposition for some usefull probability distributions: noisy-or, noisy-and, noisy-add, noisy-max, noisy-min, etc.
- The above decompositions require low rank r, e.g., $r=2$ for noisy-or and noisy-and,
- consequently, for these decompositions, computations of $P\left(X_{i} \mid X_{j}=x_{j}\right)$ is efficient - it has linear complexity with respect to n

Additive decomposition

- The problem of finding the additive decomposition with minimal r corresponds to the problem of determining tensor rank.
- Determining tensor rank is an NP-hard problem.
- However, we have constructed explicit decomposition for some usefull probability distributions: noisy-or, noisy-and, noisy-add, noisy-max, noisy-min, etc.
- The above decompositions require low rank r, e.g., $r=2$ for noisy-or and noisy-and,
- consequently, for these decompositions, computations of $P\left(X_{i} \mid X_{j}=x_{j}\right)$ is efficient - it has linear complexity with respect to n.

