Fuzzy transform in image processing

Irina Perfilieva, Marek Vajgl, Viktor Pavliska University of Ostrava, IRAFM

Summary

- Fuzzy transformation
- Image compression
- Image fusion
- Conclusion

Main method for

- Image compression
- Image fusion

Image compression

Source image

Array of pixels / bytes
 Forward fuzzy transformation
 Components

Components

Inverse fuzzy transformation
 Array of pixels / bytes
 Reconstructed image

First results

Original image

Reconstructed image

Basic transformation

Original image (3 MB)

Basic transformation (1 MB)

Basic transformation

Original image (3 MB)

Basic transformation (1 MB)

Improvements

- D transformation
- Using split value
 - Lower & upper component
- Source image split
 - Up->Down
- Variable ppb
 - Variable pixel count per image R/G/B component
 - Variable pixel count per image Y/Cb/Cr component

2D transformation

Basic transformation (1 MB)

2D transformation (550 kB)

2D transformation

Basic transformation (1 MB)

2D transformation (550 kB)

Improvements

- D transformation
- Using split value
 - Lower & upper component
- Source image split
 - Up->Down
- Variable ppb
 - Variable pixel count per image R/G/B component
 - Variable pixel count per image Y/Cb/Cr component

Use split value

Original image (3 MB)

Using split value (1,17 MB)

Use split value

Original image (3 MB)

Using split value (1,17 MB)

Improvements

- D transformation
- Using split value
 - Lower & upper component
- Source image split
 - \circ Up->Down
- Variable ppb
 - Variable pixel count per image R/G/B component
 - Variable pixel count per image Y/Cb/Cr component

Source image split

Original image (3 MB)

Source image split (1,13 MB)

Source image split

Original image (3 MB)

Source image split (1,13 MB)

Improvements

- D transformation
- Using split value
 - Lower & upper component
- Source image split
 - Up->Down
- Variable ppb
 - Variable pixel count per image R/G/B component
 - Variable pixel count per image Y/Cb/Cr component

Variable ppb / RGB

Original image (3 MB)

Variable ppb RGB8 (740 kB)

Variable ppb / RGB

Original image (3 MB)

Variable ppb RGB8 (740 kB)

Improvements

- D transformation
- Using split value
 - Lower & upper component
- Source image split
 - Up->Down
- Variable ppb
 - Variable pixel count per image R/G/B component
 - Variable pixel count per image Y/Cb/Cr component

Variable ppb / YCbCr

Original image (3 MB)

Variable ppb / YCb3Cr20 (430 kB)

Variable ppb / YCbCr

Original image (3 MB)

Variable ppb / YCb3Cr20 (430 kB)

Future work

- Improve implementation
 YCrCb together with source image split
- Create file-format
 - And optimalization
 - = compare ability
- Improve algorithm speed

Image fusion

- A set of source images
 - E.g. Photos with different focus
- Find sharp parts (the best parts)
 - → extract
 - ➔ create new image

(better than previous ones)

Image fusion

- Sharp part extraction problem
 - Solved via Forward and inverse fuzzy transformation
- Main idea
 - Weak point of FT is edge
 - The more fuzzy image
 - The better result after fuzzy transformation

Image fusion

Source images

→ recursively transform via fuzzy transformation

- ➔ good parts have high difference between origin and reconstruction
 - ➔ find those high differences
 - use them to reconstruct sharp image

Example

Example

Example

Real example

Real example

Real example

Future work

- Improve performance
- Ghosts in very fuzzy images
 - Adapt the process
- Images does not fit
 ???

Thank you for your attention...