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Institute of Information Theory and Automation∗

Academy of Sciences of the Czech Republic
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Abstract

Relations between two Boolean attributes derived from data can be
quantified by truth functions defined on four-fold tables corresponding
to pairs of the attributes. Several classes of such quantifiers (implica-
tional, double implicational, equivalence ones) with truth values in the
unit interval were investigated in the frame of the theory of data min-
ing methods. The definition of double implicational quantifiers is based
on the idea of conjunction of both directions implications (similarly for
equivalence). In the fuzzy logic theory, there are well-defined classes of
fuzzy operators, namely t-norms representing various types of evaluations
of fuzzy conjunction (and t-conorms representing fuzzy disjunction).

In the paper, it is presented that each t-norm applied to an implica-
tional quantifier gives a double implicational quantifier. Analogously, each
t-conorm applied to a double implicational quantifier gives an equivalence
quantifier. Logical properties of obtained quantifiers are discussed. The
method is illustrated by examples of well-known quantifiers and operators.

1 Introduction

The theory of observational quantifiers was established in the frame of the
GUHA method of mechanized hypothesis formation [4]. It should be stressed
that this method is one of the earliest methods of data mining. The method was
during years developed and various procedures were implemented e.g. in the
systems PC-GUHA [6], Knowledge Explorer [3], and 4FT-Miner [15]. Further
investigations of its mathematical and logical foundations can be found in [8],
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ψ ¬ψ
ϕ a b
¬ϕ c d

Table 1: Four-fold table of ϕ and ψ

[13], [14]. We concentrate to the most widely used observational quantifiers,
called in [14] four-fold table quantifiers. So far this quantifiers were treated in
classical logic as 0/1-truth functions. Some possibilities of fuzzy logic approach
are discussed in [8].

Several classes of quantifiers (implicational, double implicational, equiva-
lence ones) with truth values in the unit interval are investigated in [9]. Such
type of quantifications of rules derived from databases is used in modern meth-
ods of knowledge discovery in databases (see e.g. [16]). On the other hand, there
is a connection between four-fold table quantifiers and measures of resemblance
or similarity applied on Boolean vectors [2].

In [9], a special method of construction of double implicational quantifiers
from implicational ones (and vice versa) is described. This method provides a
logically strong one-to-one correspondence between classes of implicational and
so called Σ-double implicational quantifiers. An analogical construction is used
to introduce similar correspondence between classes of Σ-double implicational
and Σ-equivalence quantifiers.

In the given paper, another method of construction is investigated. It is
based on well-defined classes of fuzzy operators, namely t-norms representing
various types of evaluations of fuzzy conjunction (and t-conorms representing
fuzzy disjunction).

In Section 2, basic notions and classes of quantifiers are recalled, and some
examples of quantifiers of different types are given. Notions of t-norms and
t-conorms are defined in the frame of fuzzy logic in Section 3.

In Section 4, it is proved that each t-norm applied to an implicational quan-
tifier gives a double implicational quantifier. The method is illustrated by ex-
amples of well-known quantifiers and operators.

Analogously, each t-conorm applied to a double implicational quantifier gives
an equivalence quantifier (Section 5).

2 Classes of quantifiers

For two Boolean attributes ϕ and ψ (derived from given data), corresponding
four-fold table 〈a, b, c, d〉 (Table 1) is composed from numbers of objects in data
satisfying four different Boolean combinations of attributes:

a is the number of objects satisfying both ϕ and ψ,
b is the number of objects satisfying ϕ and not satisfying ψ,
c is the number of objects not satisfying ϕ and satisfying ψ,
d is the number of objects not satisfying ϕ and not satisfying ψ.
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To avoid degenerated situations, we shall assume, that all marginals of the
four-fold table are non-zero:

a+ b > 0, c+ d > 0, a+ c > 0, b+ d > 0.

Definition 1 A four-fold table quantifier ∼ is an arbitrary [0, 1]-valued func-
tion defined for all four-fold tables 〈a, b, c, d〉. We shall write ∼ (a, b) if the
value of the quantifier ∼ depends only on a, b; ∼ (a, b, c) if the value of the
quantifier ∼ depends only on a, b, c; ∼ (a, b, c, d) if the value of the quantifier
∼ depends on all a, b, c, d.

The most common examples of quantifiers are following ones:

Example 1 Quantifier ⇒� of basic implication (corresponds to the notion of
a confidence of an association rule, see [1],[4],[5]):

⇒� (a, b) = a
a+b .

Example 2 Quantifier ⇔� of basic double implication (Jaccard 1900, [2],[5]):
⇔� (a, b, c) = a

a+b+c .

Example 3 Quantifier ≡� of basic equivalence (Kendall, Sokal-Michener 1958,
[2],[5]):

≡� (a, b, c, d) = a+d
a+b+c+d .

If the four-fold table 〈a, b, c, d〉 represents the behaviour of the derived at-
tributes ϕ and ψ in given data, then we can interpret above quantifiers in the
following way:

The quantifier of basic implication calculates the relative frequency of objects
satisfying ψ out from all objects satisfying ϕ, so it is measuring in a simple way
the validity of implication ϕ⇒ ψ in data. The higher is a and the smaller is b,
the better is validity ⇒� (a, b) = a

a+b .
The quantifier of basic double implication calculates the relative frequency

of objects satisfying ϕ∧ψ out from all objects satisfying ϕ∨ψ, so it is measuring
in a simple way the validity of bi-implication (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ) in data. The
higher is a and the smaller are b, c, the better is validity ⇔� (a, b, c) = a

a+b+c .
The quantifier of basic equivalence calculates the relative frequency of objects

supporting correlation of ϕ and ψ out from all objects, so it is measuring in a
simple way the validity of equivalency ϕ ≡ ψ in data. The higher is a, d and
the smaller are b, c, the better is validity ≡� (a, b, c, d) = a+d

a+b+c+d .
Properties of basic quantifiers are in the core of the general definition of

several useful classes of quantifiers [4], [5], [14]:
(1) I - class of implicational quantifiers,
(2) DI - class of double implicational quantifiers,
(3) ΣDI - class of Σ-double implicational quantifiers,
(4) E - class of equivalence quantifiers,
(5) ΣE - class of Σ-equivalence quantifiers.
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Remark. ”Equivalence quantifiers” is a term introduced by Rauch (see [14])
instead the original term ”associational quantifiers” from the book by Hájek -
Havránek [4].

Each class of quantifiers ∼ is characterized in the following definition by a
special truth preservation condition of the form: fact that the four-fold table
〈a′, b′, c′, d′〉 is in some sense (implicational, ...) better than 〈a, b, c, d〉 implies
that ∼ (a′, b′, c′, d′) ≥ ∼ (a, b, c, d).

Definition 2 Let a, b, c, d, a′, b′, c′, d′ mean frequencies from arbitrary pairs of
four-fold tables 〈a, b, c, d〉 and 〈a′, b′, c′, d′〉.

(1) A quantifier ∼ (a, b) is implicational, ∼ ∈ I, if always
a′ ≥ a ∧ b′ ≤ b implies ∼ (a′, b′) ≥ ∼ (a, b).

(2) A quantifier ∼ (a, b, c) is double implicational, ∼ ∈ DI, if always
a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c implies ∼ (a′, b′, c′) ≥ ∼ (a, b, c).

(3) A quantifier ∼ (a, b, c) is Σ-double implicational, ∼ ∈ ΣDI, if always
a′ ≥ a ∧ b′ + c′ ≤ b+ c implies ∼ (a′, b′, c′) ≥ ∼ (a, b, c).

(4) A quantifier ∼ (a, b, c, d) is equivalence, ∼ ∈ E, if always
a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c ∧ d′ ≥ d implies ∼ (a′, b′, c′, d′) ≥ ∼ (a, b, c, d).

(5) A quantifier ∼ (a, b, c, d) is Σ-equivalence, ∼ ∈ ΣE, if always
a′ + d′ ≥ a+ d ∧ b′ + c′ ≤ b+ c implies ∼ (a′, b′, c′, d′) ≥ ∼ (a, b, c, d).

Example 4 ⇒�∈ I, ⇔�∈ ΣDI, ≡�∈ ΣE.

Proposition 1 I ⊂ DI ⊂ E, ΣDI ⊂ DI, ΣE ⊂ E.

In [9], one-to-one correspondence with strong logical properties was shown
i) between classes of quantifiers I,ΣDI by means of the relation:
⇔∗ (a, b, c) = ⇒∗ (a, b+ c),
and, analogously,
ii) between classes of quantifiers ΣDI,ΣE by means of the relation:
≡∗ (a, b, c, d) = ⇔∗ (a+ d, b, c).
In the given paper, another method of construction based on fuzzy logic

approach is investigated.

3 Fuzzy connectives

In fuzzy logic (for the deep theory see [7]), truth values of formulae are numbers
from the unit interval (or in the general case elements of some lattice of possible
values). Truth functions of connectives like conjunction and disjunction can
vary from obvious min/max operators to such ones connected with some special
theory or application. We shall recall the commonly used definitions of classes
of operators and give several examples which will be used further.

Definition 3 A binary operator ⊗ on the unit interval is called t-norm if
(1) ⊗ is commutative and associative,
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(2) for all x, x′, y, y′ such that x′ ≥ x, y′ ≥ y also x′ ⊗ y′ ≥ x⊗ y,
(3) for all z: z ⊗ 1 = 1⊗ z = z.

Example 5 Following t-norms are often used:
Minimum t-norm:
x⊗M y = min(x, y).
Product t-norm:
x⊗P y = x · y.
Lukasiewicz’s conjunction:
x⊗L y = max(0, x+ y − 1).
Pseudo-bayesian (Hamacher) t-norm (used in PROSPECTOR-like expert

systems):
x⊗B y = x·y

x+y−x·y .

Definition 4 A binary operator ⊕ on the unit interval is called t-conorm if
(1) ⊕ is commutative and associative,
(2) for all x, x′, y, y′ such that x′ ≥ x, y′ ≥ y also x′ ⊕ y′ ≥ x⊕ y,
(3) for all z: z ⊕ 0 = 0⊕ z = z.

Example 6 Following t-conorms are often used:
Maximum t-conorm:
x⊕M y = max(x, y).
Co-product t-conorm:
x⊗P y = x+ y − x · y.
Lukasiewicz’s disjunction:
x⊕L y = min(1, x+ y).
Pseudo-bayesian t-conorm (used in PROSPECTOR-like expert systems):
x⊕B y = x·(1−y)+(1−x)·y

1−x·y .

4 Combining implicational quantifiers for dou-
ble implicational ones

Let ⇒∗ be an implicational quantifier. There is a natural task to construct
double implicational quantifiers ⇔∗ using various types of fuzzy conjunction of
both implications ϕ ⇒∗ ψ, ψ ⇒∗ ϕ. The proof of the following theorem is
obvious; examples of its applications are, maybe, more interesting.

Theorem 1 Let ⇒∗ be an implicational quantifier and ⊗ be a t-norm. Then
the quantifier ⇔∗ constructed for all four-fold tables 〈a, b, c, d〉 from ⇒∗ by the
formula

⇔∗ (a, b, c) = ⇒∗ (a, b) ⊗ ⇒∗ (a, c)
is a double implicational quantifier satisfying the property
⇔∗ (a, b, c) ≤ min(⇒∗ (a, b), ⇒∗ (a, c))
for all four-fold tables 〈a, b, c, d〉.

5



Remark. From the (fuzzy) logic point of view, it means that in all models
(data) the formulae ϕ⇒∗ ψ, ψ ⇒∗ ϕ are at least so true as the formula ϕ⇔∗ ψ,
i.e. deduction rules ϕ⇔∗ψ

ϕ⇒∗ψ , ϕ⇔
∗ψ

ψ⇒∗ϕ are correct.

Example 7 For the basic implication ⇒� (a, b) = a
a+b ,

the basic double implication
⇔� (a, b, c) = a

a+b+c
is the result of applying the pseudo-bayesian operator
x⊗B y = x·y

x+y−x·y :

⇒� (a, b) ⊗B ⇒� (a, c) = a
a+b ⊗B a

a+c =
a

a+b · a
a+c

a
a+b + a

a+c−
a

a+b · a
a+c

= a
a+b+c .

Example 8 For the basic implication ⇒� (a, b) = a
a+b ,

the double implication quantifier
⇔P (a, b, c) = a2

(a+b)·(a+c)
is the result of applying the product operator
x⊗P y = x · y:
⇒� (a, b) ⊗P ⇒� (a, c) = a

a+b ⊗P a
a+c = a

a+b · a
a+c = a2

(a+b)·(a+c) .

Example 9 For the basic implication ⇒� (a, b) = a
a+b ,

the double implication quantifier
⇔L (a, b, c) = max(0, a2−bc

(a+b)·(a+c) )
is the result of applying Lukasiewicz’s operator
x⊗L y = max(0, x+ y − 1)
⇒� (a, b) ⊗L ⇒� (a, c) = a

a+b ⊗L a
a+c = max(0, a

a+b + a
a+c − 1) =

max(0, a2−bc
(a+b)·(a+c) ).

5 Combining double implicational quantifiers for
equivalency ones

Let⇔∗ be a double implicational quantifier. Similarly as in the previous section,
there is a natural task to construct equivalency quantifiers ≡∗ using various
types of fuzzy disjunction of both double implications ϕ⇔∗ ψ,¬ϕ⇔∗ ¬ψ. The
proof of the following theorem is also obvious; examples of its applications are
more complicated, so only the most interesting one is provided.

Theorem 2 Let ⇔∗ be a double implicational quantifier and ⊕ be a t-conorm.
Then the quantifier ≡∗ constructed for all four-fold tables 〈a, b, c, d〉 from ⇔∗ by
the formula

≡∗ (a, b, c, d) = ⇔∗ (a, b, c) ⊕ ⇔∗ (d, b, c)
is a double implicational quantifier satisfying the property
≡∗ (a, b, c, d) ≥ max(⇔∗ (a, b, c), ⇔∗ (d, b, c))
for all four-fold tables 〈a, b, c, d〉.
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Remark. From the (fuzzy) logic point of view, it means that in all models
(data) the formula ϕ ≡∗ ψ is at least so true as the formulae ϕ⇔∗ ψ,¬ϕ⇔∗ ¬ψ,
i.e. deduction rules ϕ⇔∗ψ

ϕ≡∗ψ , ¬ϕ⇔
∗¬ψ

ϕ≡∗ψ are correct.

Example 10 For the basic double implication
⇔� (a, b, c) = a

a+b+c
the basic equivalence
≡� (a, b, c, d) = a+d

a+b+c+d
is the result of applying the pseudo-bayesian operator
x⊕B y = x·(1−y)+(1−x)·y

1−x·y :
⇔� (a, b, c) ⊕B ⇔� (d, b, c) = a

a+b+c ⊕B d
d+b+c

=
a

a+b+c · (1− d
d+b+c )+(1− a

a+b+c ) · d
d+b+c

1− a
a+b+c · d

d+b+c

= a+d
a+b+c+d .

6 Conclusion

The results presented in the paper (and the others presented in [9], [11]) indicate
a possible role of propositional fuzzy logic in data mining research. Association
rules quantified in data can be treated as fuzzy logic formulae in such a way that
fuzzy logic instruments could be used for describing and analyzing the structure
of knowledge discovered from databases. In particular, some symmetric types
of four-fold table quantifiers are related to fuzzy propositional connectives (con-
junction and disjunction) in a very natural way, as it is stated in Theorems 1
and 2.
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