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Abstract: The paper deals with generalized logistic regression models which include
the classical model with binary responses governed by the Bernoulli law depending
on the logistic regression function. The median estimator of the logistic regression
parameters employing smoothed data in the discrete case, introduced in Hobza
et al (2005), is considered. Sensitivity of this estimator to contaminations of the
logistic regression data is studied by simulations and compared with the sensitivity
of some robust estimators previously introduced to logistic regression. The median
estimator is demonstrated to be more robust for higher levels of contamination.
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1 Introduction and basic concepts

In this paper we are interested in estimation of the parameter B, € R? in the
statistical models with independent real valued observations Y3, ..., Y, of the form

Y~ Fﬂ(wiTﬁo) ), 1<i<n (1)

where x; € R? are vectors of explanatory variables (regressors), B, € R¢ is a
vector of true parameters and =/ 22?:1 z;B; denotes the scalar product of

x =(z1,....,xq) €R: and B = (B1,...,8)" € RY. Further,

t

 (t) for every t € R (2)

Cl+4et
is the logistic regression function and F = {Fy : w € (0,1)} is an arbitrary family of
distribution functions on R. The models given by (1), (2) are called general logistic
regression models. In these models m = 7 (z] B,) represents a nonlinear logistic
regression and the distribution function F specifies the random response to this
regression, see e.g. Andersen (1990), Agresti (2002), Pardo et al (2006) and others
cited there.

Important special logistic regression models are obtained if for all = € (0,1)
the random response functions Fy (y) are either a right-continuous distribution
functions with jumps p, (k) = F (k) — F; (k—0),k = 0,1,... summing up to 1,
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or continuous piecewise differentiable distribution functions with densities fr (y) =
dF, (y) /dy, y € R In the first case we speak about discrete models and in the
second case about continuous models.

Of particular attention is the discrete Bernoulli model obtained for the Bernoulli
distribution functions

Fro(y)=Q-mI0<y<+Iy=>1), =we€(01) 3)

with jumps 1—7 and 7 at y = 0 and y = 1. For these functions the problem reduces
to the classical logistic regression with binary observations Y3, ..., Y, taking on value
1 with probabilities 7 (z8,) ,...,m (zXB,) and value 0 with the complementary
probabilities 1 — 7 (27 By) ,...,1 — 7 (2L B) -

In Hobza et al (2005) we proposed the median estimator of parameter 3, which
can be formally defined as follows.

Definition 1.1. The median estimator En of the true parameter 8, in the general
logistic regression model given by (1) and (2) is defined by the formula

Bn:argrrbinzwé—m(ﬂ (:c;‘rﬂ))| (4)

i=1
where m () is for every m € (0,1) the median
m (r) = F1(1/2) = inf {y € R : Fr (y) > 1/2}. (5)

Note that this estimator is in fact member of the class of so-called least absolute
deviation estimators (or briefly L;—estimators) defined by

B =argrrgnZ|Yz~—u(u (z78))] (6)

=1

where p: © - R and u : R — © are given functions. From the extensive litera-
ture dealing with these estimators one can mention Richardson and Bhattacharyya
(1987), Yohai (1987), Pollard (1991), Morgenthaler (1992), Arcones (2001), Liese
and Vajda (2003, 2004) and others cited in these papers.

The median estimator was not previously considered in the logistic regression
because for the most important Bernoulli model (as well as for all other discrete lo-
gistic regression models) the median function m (7) = F-! (1/2) is not sensitive to
small variations of the parameter 7 € (0,1). For example in the Bernoulli model we
have the piecewise constant m(7) = 0 if # < 1/2 and m(w) =1 if # > 1/2. There-
fore the classical median estimator (4) cannot be consistent in these models. The
above mentioned sensitivity means the strict monotonicity of the median function
m(7) on its domain (0,1). The originality of our approach consists in replacing the
models with discrete responses by their standard modifications defined as follows.
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Definition 1.2. The standard modification of a discrete logistic regression model
(1) is the continuous logistic regression model with the observations

Vi=Yi+W;, 1<i<n, (7)

where W; are an independent noise random variables uniformly distributed on the
interval (0, 1) and independently added to the discrete observations Y; of the original
model (1).

The transformation introduced in the previous definition is statistically suffi-
cient since the original observations Y; can be recovered from Y; as the integer
parts [Y;]. At the same time the median functions i (7) = F ! (1/2) of the trans-
formed observations (7) are already one-one on the interval (0,1). For example the

1
|

[ A
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Figure 1: F; (y) full line, F1_, (y) dashed line.

standardly modified Bernoulli model with the discrete probabilities 1 — 7 and = is
the continuous model with the response distribution function

Fe)=0-m) yTO<y<OH+[Q-nm+nr@y-DI(1<y<2) (8)
given in Figure 1. Consequently the median function has the form

m—1/2

m(m) = =1

m € (0,1) 9)
and is strictly increasing on (0, 1).

In the above mentioned paper of Hobza et al (2005) we proved under some
regularity assumptions the consistency and asymptotic normality for the median
estimator (4) in the continuous logistic regression model or in a standardly modified
discrete regression model under consideration.

It is known (cf. e. g. Hampel et al (1986), Yohai (1987), Jureckova and Sen
(1996), Zwanzig (1997)) that the median estimator of parameters of linear and non-
linear regression is robust with respect to contamination of observations from the
assumed statistical models. This naturally leads to the hope that the median esti-
mator for the general logistic regression is robust too. The aim of the present paper
is to demonstrate the robustness of the median estimator and to compare it with
the robustness of some well known estimators tailor-made for robust estimation in
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logistic regression. For this comparison were selected the L;-estimators of Morgen-
thaler (1992) and the M-estimators of Bianco and Yohai (1996). These estimators,
and also the MLE, were compared with the median estimator by performances on
simulated noncontaminated and contaminated logistic regression observations.

In the simulation experiment we study particularly the Bernoulli discrete logistic
regression models of the small dimension d = 2. The Bernoulli models are typical
and the small dimensions are simpler and sufficient to provide an insight into the
general properties of estimators. Furthermore, the considered logistic regression
models are the same as used in Bianco and Yohai (1996) for demonstration of
robustness of their estimator.

2 Robustness of the median estimator

From what was said at the end of the previous section it follows that one can
expect more robustness, namely better resistance to the gross errors in observations
Yi,...,Y,, from our median estimator than e.g. from the classical MLE of the
logistic regression parameters. Similar robust alternatives to the classical MLE’s
seem so far been considered only for the logistic regression models with Bernoulli
responses. In this section we compare the median estimator with the L;-estimators
of Morgenthaler (1992) and the M-estimators of Bianco and Yohai (1996) which
are the two most recent estimators considered for robust estimation in logistic
regression with Bernoulli responses known to us. We start with description of the
mentioned estimators.
Morgenthaler (1992) started with the weighted L,-estimator

ﬂgbo) = argmin i |Y; T (iB;‘FﬂH ;
B = \/7T (-’B;‘Fﬂ) (1 -7 (-”%Tﬂ))

more precisely with the solutions ﬂg’) of the system of equations UTEO) (B) =0, for
UL (B) = D" {diag (01 (B) ;-0 (B))}"* (sgn A1 (B) , ., sgn As (B))"

where D = (D;; = 0r (z1 ) /6ﬂj)iT,j:1’ o2 (B) =n (xfB) (1 -7 (x]B)) and sgn
denotes the sign. Since the resulting estimator ,85?) was inconsistent, he proposed
a slight modification B{" which solves the equation A (B) = 0 for the centered
version ULV B) = A (B) — Eg A (B) . One can find an explicit formula for

UTEI) , namely

U (8) = z V7 (@I8) (1 (27B)) (Vi — 7 (7A)) @i (10)

An alternative robust estimator ﬂg) for the logistic regression was proposed by
Bianco and Yohai (1996) who also assumed the Bernoulli responses Y; given in (1)
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for the Fy; (y) of (3). They started with the MLE

B, = argrrgnZDi (8) (11)
where
D; (B) = -Y;lnp; (B) — (1 -Y;)In (1 — p; (B)) (12)

and p; (B) = EgY; = (2] 8). Bianco and Yohai proved nice asymptotic prop-
erties of 3,, like consistency and asymptotic normality with the variances at the
Cramér-Rao lower bound.

However, this estimator is too sensitive to the gross errors (outliers) among the
data (x1,Y1), .., (€, Y,) which are the pairs (x;,Y;) where Y; are not generated by
the Bernoulli model Be (m (21 3,)) . Indeed, typical outliers are Y; = 0 when the
regressors x; are leading to m (7 By) ~ 1 or ¥; = 1 when « (2] 8,) = 0. A simple
source of outliers taking place with a probability 0 < € < 1/2 is the transmission
of the true observations Y; ~ Be (7r (wZTﬂO)) through a binary symmetric channel
BSC(e) with independent inputs Y;, additive (mod 2) independent noise W; ~
Be (e) and independent outputs Z; = Y; + W; (mod 2) presented in Figure 2.
Then the actual data (x1,Z1), ..., (®n, Z,) contain responses Z; generated by the

Figure 2: Binary Symmetric channel BSC(g).

stochastic mixture
(1—¢)Be (71' (a:ZT,BO)) +eBe (1 - (szﬁo)) (13)

of the Bernoulli models with parameters 7 (1 3,) and 1 — 7 (I 8,) .

To restrict the influence of the outliers (z;,0) with probabilities m (2] 8y) =
1 — &; close to 1 and the outliers (z;, 1) with probabilities m (' 3,) = d; close to
0, both of them leading to large D; (8y) = — Ind;, Bianco and Yohai proposed the
modified estimator

BY = arg ngn Z [0 (Di (B)) + G (i (B)) + G (1 — s (B))] (14)

where
p) = (1-4) 10 <y<a+510>0 (15)
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is a hard-limiter defined on the real line and specified by a limiting constant ¢ > ln 2,
D; (B) is defined by (12) and terms involving the function

™

G(n) = /p' (=Int)dt formwe€ (0,1) (16)
0

represent a bias correction. Under some regularity assumptions about the regressors
x1,..., Ly these authors proved that ﬂg) consistently estimates 3.

In the simulation experiment we compare our median estimator Bn with the
Morgenthaler estimator ﬂg) and the Bianco-Yohai estimator ﬂg) in the same lo-
gistic regression model as used in Bianco and Yohai (1996) to demonstrate the
robustness of their estimator ,8%2). The estimates 5;1) are evaluated as solutions
of the equation ) (B8) = 0 for U (8) defined by (10) and the estimates 8
are evaluated by the minimization specified in (14). The constant ¢ used in (15)
is —In0.03 =~ In33.3, the same as used in the simulations of Bianco and Yohai.
In addition to the estimates 3, BS) and 553) we evaluate also the MLE’s 3,,.
All four these estimates are evaluated from the same simulated data, namely the
independent realizations

Y; ~ (1—¢)Be(r (z]By)) +eBe (1 -7 (zfBy)), 1<i<n (cf. (13))

for a fixed By = (Bo1, Bo2) and x; = (1,&;) where &; are random mutually indepen-
dent N(0,1)—distributed regressors. The same four specifications will be used as
in Bianco and Yohai (1996), defined by the expectations

Er (] B,) € {0.2,0.3,0.4,0.5}. (17)

These expectations coincide with the probabilities Pr (¥; = 1) and are one-one re-
lated to the parameters 8y = (Bo1, So2) - Values of the corresponding parameters
are given under the Tables 1-4 below.

In Tables 1-4 one can find for £ € {0,0.05,0.1,0.15,0.2} and n € {400, 800, 1600}
the mean absolute errors

1000
1

MAE(n) = 505> - (1B (1) = Bor| + 1Bu2 (1) = fool)

for 1000 simulated realizations of (Y7,...,Y,;) and the corresponding 1000 values
B, (1) = (B (1), Bn2 (1)) of the MLE B,, = (Bn1,Bn2), and the same errors also
for the estimators ﬂg), ﬂf) and Bn denoted briefly as Morg, B&Y and Median.
The values of all four these estimates were computed by using the subroutines for
minimization and solving equations from the standard IMSL numerical package.
Using Tables 1-4 one compare performances of these four estimators measured
by the corresponding mean absolute errors MAE(n). We see from the first rows
that if there is not contamination (¢ = 0) then the best estimator is MLE. For light
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¢ | (B1,B2) | MAE(400) NEF | MAE(800) NEF | MAE(1600) NEF
MLE 0.246 0 0.176 0 0.126 0
0 | Morg 0.270 0 0.193 0 0.135 0
B&Y 0.340 0 0.232 0 0.161 0
Median 1.128 7 0.678 0 0.378 0
MLE 1.011 0 1.037 0 1.048 0
0.05 | Morg 0.731 16 0.760 3 0.768 0
B&Y 0.525 0 0.520 0 0.528 0
Median 1.118 0 0.634 0 0.514 0
MLE 1.368 0 1.414 0 1.441 0
01 | Morg 3.518 1826 4.836 2568 5.114 3391
B&Y 0.796 0 0.888 0 0.942 0
Median 1.070 1 0.789 0 0.792 0
MLE 1.814 0 1.819 0 1.819 0
0.15 Morg - - - - - -
B&Y 1.590 0 1.608 0 1.609 0
Median 1.317 2 1.336 0 1.369 0
MLE 2.029 0 2.036 0 2.036 0
0.2 Morg - - - - - -
B&Y 1.940 1.951 0 1.953 0
Median 1.643 0 1.716 0 1.737 0

Table 1: Mean absolute errors MAE(n) of the four estimators in the model
of Bianco and Yohai with Pr(Y=1)=0.2 and the true parameters (Bo1,802) =
(—2.82,2.82). Column NEF presents the numbers of simulated observation vec-
tors (Y1, ...,Yy) for which the evaluation of the corresponding estimates failed. If
NEF exceeds 10000, neither MAE(n) nor NEF is presented.

and medium contaminations (0 < £ < 0.1) the best is the estimator ,['],(12) of Bianco
and Yohai. For heavier contamination (¢ > 0.1) the best is the median estimator
B

The Morgenthaler’s ﬁg) is outperformed by B&Y and Median in each of the
present contamination model. Moreover, it faces evaluation problems when the
equations (10) are solved using the corresponding IMSL subroutines. This is indi-
cated by the NEF numbers increasing with the contamination € to unacceptable
levels for € > 0.05. Note that NEF is the count of the simulated realizations of
(Y1, ..., Yy) for which either the estimate cannot be evaluated or it is evaluated but
its absolute error exceeds 100.

As a conclusion maybe said that the comparisons confirm the expected fact
that for noncontaminated data the MLE dominates all three remaining estimators.
On the other hand, they also confirm that even for lightly contaminated data this
relation is reversed. Another conclusion clearly demonstrated is that for heavier
contaminations and larger sample sizes the median estimator is more robust than
any of the remaining three estimators.
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e | (B1,B2) | MAE(400) NEF | MAE(800) NEF | MAE(1600) NEF

MLE 0.263 0 0.194 0 0.136 0
0 Morg 0.295 0 0.211 0 0.149 0
B&Y 0.365 0 0.249 0 0.173 0
Median 1.105 7 0.671 0 0.404 0
MLE 1.102 0 1.137 0 1.145 0
0.05 | Morg 0.753 17 0.791 2 0.792 0
B&Y 0.553 0 0.543 0 0.537 0
Median 1.056 1 0.629 0 0.526 0
MLE 1.488 0 1.535 0 1.562 0

0.1 Morg 2.470 1622 2.526 2086 3.153 3024
B&Y 0.804 0 0.898 0 0.948 0
Median 0.959 5 0.835 0 0.809 0
MLE 1.943 0 1.948 0 1.948 0
0.15 Morg - - - - - -
B&Y 1.637 0 1.654 0 1.657 0
Median 1.395 1 1.364 0 1.402 0
MLE 2.161 0 2.168 0 2.168 0
0.2 Morg - - - - - -
B&Y 2.031 0 2.043 0 2.046 0
Median 1.810 0 1.769 0 1.799 0

Table 2: The same as in Table 1 for Pr(Y = 1) = 0.3 and (Bo1, Bo2) = (—2.16,3.71).

e | (B1,B:) | MAE(400) NEF | MAE(800) NEF | MAE(1600) NEF

MLE 0.264 0 0.187 0 0.137 0
0 Morg 0.288 0 0.205 0 0.149 0
B&Y 0.346 0 0.244 0 0.171 0
Median 1.169 5 0.607 0 0.396 0
MLE 1.018 0 1.049 0 1.056 0
0.05 | Morg 0.686 19 0.718 1 0.718 0
B&Y 0.510 0 0.492 0 0.484 0
Median 1.028 4 0.614 0 0.489 0
MLE 1.378 0 1.413 0 1.439 0

0.1 Morg 2.359 1643 2.347 2009 2.378 2845
B&Y 0.742 0 0.814 0 0.871 0
Median 0.888 2 0.736 0 0.729 0
MLE 1.786 0 1.793 0 1.793 0
0.15 Morg - - - - - -
B&Y 1.481 0 1.507 0 1.511 0
Median 1.275 0 1.237 0 1.281 0
MLE 1.985 0 1.993 0 1.993 0
0.2 Morg - - - - - -
B&Y 1.856 0 1.869 0 1.870 0
Median 1.563 0 1.622 0 1.638 0

Table 3: The same as in Table 1 for Pr(Y = 1) = 0.4 and (Bo1, Bo2) = (—1.16,4.20).
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¢ | (B1,B2) | MAE(400) NEF | MAE(800) NEF | MAE(1600) NEF
MLE 0.262 0 0.182 0 0.128 0
0 | Morg 0.283 0 0.196 0 0.139 0
B&Y 0.342 0 0.229 0 0.159 0
Median 0.963 4 0.559 0 0.341 0
MLE 0.886 0 0.893 0 0.887 0
0.05 | Morg 0.626 14 0.626 0 0.614 0
B&Y 0.477 0 0.445 0 0.427 0
Median 0.882 6 0.537 1 0.439 0
MLE 1.173 0 1.188 0 1.199 0
01 | Morg 1.684 1762 1.695 2004 1.579 2686
B&Y 0.664 0 0.709 0 0.736 0
Median 0.887 3 0.673 0 0.644 0
MLE 1.502 0 1.492 0 1.484 0
0.15 Morg - - - - - -
B&Y 1.263 0 1.262 0 1.258 0
Median 1.129 0 1.070 0 1.084 0
MLE 1.662 0 1.654 0 1.646 0
0.2 Morg - - - - - -
B&Y 1.558 0 1.552 0 1.545 0
Median 1.337 4 1.357 0 1.368 0

Table 4: The same as in Table 1 for Pr(Y = 1) = 0.5 and (Bo1, Bo2) = (0,4.36).
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