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Introduction

The methods for learning probabilistic conditional independence (CI)
structure models can be divided into two groups:

the methods based on significance tests,
the methods based on the maximization of a suitable quality
criterion.

Note that some methods can be classified in both groups. Moreover,
there is a simulation method, namely MCMC, applicable to learning
graphical models which does not belong to either of these two groups.

Most of the learning methods were developed for learning Bayesian
network models.
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Quality criteria

This talk deals with methods for learning Bayesian networks based on
the maximization of a quality criterion.

Let N be a finite non-empty set of variables,
DAGS (N) will denote the class of acyclic directed graphs over the
set of nodes N,
DATA (N, d) will denote the set of all databases over N of the
length d , d ≥ 1 (some finite sample spaces are fixed).

Definition
Quality criterion (for learning Bayesian networks) is a real function Q
on DAGS (N)× DATA (N, d).

A quality criterion should be consistent, but there are other reasonable
requirements.
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Equivalence of graphs

One statistical model can be described by different graphs. Two graphs
G, H ∈ DAGS (N) are Markov equivalent if they define the same class
of Markovian distributions.

Definition
Two graphs G, H ∈ DAGS (N) are independence equivalent if they
define the same collection of CI restrictions. Let us write G ≈ H then.

There exists a graphical characterization of independence equivalence
(Verma and Pearl 1991).
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Graphical characterization of equivalence

Theorem
G ≈ H iff they have the same underlying graph and immoralities.

An immorality in a chain graph is its induced subgraph of this form:
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Score-equivalent criteria

Definition
A quality criterion Q is score-equivalent iff
∀G, H ∈ DAGS (N), ∀D ∈ DATA (N, d)

whenever G ≈ H then Q(G, D) = Q(H, D) .

Most of the criteria used in practice are score-equivalent:

MLL (maximized log-likelihood criterion),
AIC (Akaike’s information criterion),
BIC (Jeffrey-Schwarz criterion),
some Bayesian criteria (this depends on the choice of ‘priors’).
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Decomposable criteria

Definition
A quality criterion Q is decomposable if there exists a collection of
functions qi|B : DATA (B ∪ {i}, d) → R, i ∈ N, B ⊆ N \ {i} such that
∀G ∈ DAGS (N), ∀D ∈ DATA (N, d)

Q(G, D) =
∑

i∈N qi|paG(i)(D{i}∪paG(i))

where DA denotes the restriction of a database D for A ⊆ N.

This technical requirement was brought by researchers in computer
science in connection with the method of local search.

All criteria used in practice are (strongly) decomposable.
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Problem of representative choice

How to represent a Bayesian network model in the memory of a
computer?

There are two basic methods:
represent it by arbitrary G ∈ DAGS (N) in the respective
independence equivalence class,
represent it by a special unique representative.

The most popular graphical representative is the essential graph. It is
a chain graph obtained from the equivalence class G by a special
construction.

Later, I will mention an alternative algebraic representative, called the
standard imset.
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Local search methods

Direct maximization of a quality criterion is typically infeasible. To avoid
this problem various heuristic local search methods were developed.

The basic idea is that one introduces a neighborhood structure in the
set DAGS (N), respectively in the set DAGS (N)/≈. Instead of the
global maximum of Q one is trying to find a local maximum with
respect to that neighborhood structure.

Every graph G (respectively equivalence class G) is assigned a
relatively small set of neighboring graphs (respectively equivalence
classes) nei (G). They typically differ in the presence of one edge.

The point is that, for a decomposable criterion Q, the difference
Q(G, D)−Q(H, D) for neighboring graphs G, H ∈ DAGS (N) is easy to
compute.
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Inclusion neighborhood

Is there a natural neighborhood structure for DAGS (N)/≈?

Let I(G) denote the collection of CI restrictions given by
G ∈ DAGS (N). Given K , L ∈ DAGS (N), I(K ) ⊂ I(L) means
I(K ) ⊆ I(L) but I(K ) 6= I(L).

If I(K ) ⊂ I(L) and there is no G ∈ DAGS (N) such that
I(K ) ⊂ I(G) ⊂ I(L) then we will say that I(L) is an upper inclusion
neighbor of I(K ), respectively I(K ) is a lower inclusion neighbor of
I(L). We will then write I(K ) @ I(L).

The inclusion neighborhood was characterized in graphical terms.

There are some arguments why general neighborhood structure in a
local search method should include the inclusion neighborhood.
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Algebraic approach

The basic idea is to describe a Bayesian network model by a certain
integral vector. This is motivated by a more general algebraic method
for describing probabilistic CI structures.

Definition
An imset over N is an integer-valued function on the power set of N.

Given A ⊆ N, δA is the identifier of the set A.

Definition
Given CI statement a ⊥⊥ b |C, a, b ∈ N, a 6= b, C ⊆ N \ {a, b} the
respective elementary imset has the form

u〈a,b|C〉 = δ{a,b}∪C + δC − δ{a}∪C − δ{b}∪C .
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Standard imsets

Definition
Let G ∈ DAGS (N). Then the respective standard imset has the form

uG = δN − δ∅ +
∑

c∈N{δpaG(c) − δ{c}∪paG(c)} .

Note that every standard imset is a structural imset, that is, a
combination of elementary imsets with non-negative rational
coefficients.
In particular, it describes a certain special probabilistic CI structure:
the one that corresponds to the respective Bayesian network model.

As the standard imset has many ‘zeros’ it can be easily kept in the
memory of a computer.
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Some basic results on standard imsets

Lemma
Given G, H ∈ DAGS (N) one has G ≈ H iff uG = uH .

Thus, the standard imset can serve as a unique representative of the
respective Bayesian network model.

Lemma
Given K , L ∈ DAGS (N) one has I(K ) @ I(L) iff uL − uK is an
elementary imset.
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Studený (ÚTIA AVČR) An algebraic approach to learning December 9-12, 2006 14 / 18



Some basic results on standard imsets

Lemma
Given G, H ∈ DAGS (N) one has G ≈ H iff uG = uH .

Thus, the standard imset can serve as a unique representative of the
respective Bayesian network model.

Lemma
Given K , L ∈ DAGS (N) one has I(K ) @ I(L) iff uL − uK is an
elementary imset.
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Standard imsets and quality criteria

Theorem
Let Q be a score-equivalent decomposable criterion. Then it has the
following form: ∀G ∈ DAGS (N), ∀D ∈ DATA (N, d)

Q(G, D) = kQ(D) +
∑
S⊆N

uG(S) · tQD (S)

= kQ(D) + 〈uG, tQD 〉 .

where tQD is a real vector representing the database D (relative to Q)
and kQ(D) is a constant (depending on data). In particular, for any pair
of graphs K and L, Q(L, D)−Q(K , D) = 〈uL − uK , tQD 〉.

Thus, from purely mathematical point of view, the maximization of a
quality criterion leads to the problem of maximization of a (shifted)
linear function.
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Discussion

To utilize fully the algebraic approach to the local search methods one
has to be able to describe the inclusion neighborhood in terms of the
standard imset.

There exists characterization of inclusion neighborhood of a given
G ∈ DAGS (N)/≈ in terms of the respective essential graph.

For this reason, it is desirable to translate graphical representatives
into algebraic ones and conversely. There exists a formula which
gives the standard imset on the basis of the essential graph and a
two-stage inverse algorithm (Vomlel Studený 2004).

The middle stage of that procedure is a certain sequence of variable
sets, which can perhaps be visualizes in the form of a hierarchical
junction tree (Puch, Smith and Bielza 2003).
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That’s all.

Thank you for your attention!
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