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Abstract

This paper simpli�es and clari�es the conditions of the well-known theorem of Morris dealing with
the asymptotic distribution of the Pearson goodness-of-�t statistic when the number of partition cells
depends on sample size. The local character of alternatives implicitly required there is expressed
explicitly, in terms of a Pearson distance between the hypothesis and alternative. Moreover, the paper
extends the theorem of Morris to a wide class of disparity statistics by modifying an earlier argument
of Györ� and Vajda for the asymptotic equivalence of disparity statistics and Pearson statistic.

1 Introduction. In this paper we study the classical statistical problem of testing the
hypothesisH that a probability measure P governing an independent random sample Y1; : : : ; Yn
from a measurable observation space (
;S) equals a given measure P0 on (
;S). If An =
fA1; : : : ; Akng � S is a sequence of partition of 
 and the statistician observes the quantized
values

Xj = #f1 � i � n : Yi 2 Ajg; 1 � j � kn (1)

then the hypothesisH is represented for every n = 1; 2; ::: by the discrete hypothetic distribution

p0 = (p0j = P 0(Aj) : 1 � j � kn)

and the alternative A is represented by the discrete true distribution

p = (pj = P (Aj) : 1 � j � kn):

In what follows we admit that the sets Aj; and consequently also the probabilities p0j and
pj; depend on n but we drop the subscript n: Similarly, instead of kn we write only k: All
convergences and asymptotic relations are considered for n!1 and we suppose that

k = kn !1 and
k�+1

n
= o(1) for some � � 1 (2)

as well as
k� p0min �  for some  > 0 and all n. (3)

The hypothesis H is usually tested on the basis of observations (1) by means of the f -
disparity statistics

Tf;n =
2nDf (bp; p0)

f 00(1)
; f 2 F (4)
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where

Df (bp; p0) = kX
j=1

p0jf

�bpj
p0j

�
(5)

is an f -disparity between the empirical distribution

bp = (bp1 � X1=n; : : : bpk � Xk=n) (6)

and the hypothetical distribution p0 = (p01; : : : ; p
0
k). For details about the expressions behind

the sum in (5) we refer to Menendez et al (1998).

In (4) and elsewhere in the paper, the functions f 2 F are supposed to be continuous on and
twice continuously di¤erentiable in the neighborhood of 1 with the second derivative f 00(1) > 0
and Lipschitz in this neighborhood. Moreover, f(t)� f 0(1)(t� 1) is assumed to be decreasing
on (0; 1) and increasing on (1;1) with f(1) = 0. Then (5) is an f -disparity of distributions bp
and p0: If moreover f is convex on (0;1) then (5) is an f -divergence of distributions bp and p0:
Well known example is f(t) = t ln t leading to the information divergence I(bp; p0) and to the
likelihood ratio statistic

In = 2n
kX
j=1

bpj ln bpj
p0j
= 2

kX
j=1

Xj ln
Xj

np0j
: (7)

Another well known example is f(t) = (t� 1)2 leading to the Pearson divergence �2(bp; p0) and
to the Pearson statistic

�2n = n
kX
j=1

(bpj � p0j)
2

p0j
=

kX
j=1

(Xj � np0j)
2

np0j
: (8)

Györ� and Vajda (2002) investigated the asymptotic normality of the f -disparity statistics
(4) under the hypothesis H. They found conditions on k and p0 such that under H : p0

Tf;n � kp
2k

L�! N(0; 1) (9)

for all f 2 F . In the present paper we investigate the asymptotic normality of the f -disparity
statistics (4) under the alternatives A : p local in the sense

�2(p; p0) = O

 p
k

n

!
: (10)

This locality means that the �2-divergences between A : p and H : p0 tend to zero (see the
assumption (2)).

Notice that for the classical local alternatives

p =

�
1� 1p

n

�
+

1p
n
q (11)

obtained by mixing hypothetic distributions p0 with given �xed alternative distributions q =
(q1; : : : ; qk) we get

�2(p; p0) =
1

n
�2(q; p0): (12)
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Hence these classical local alternatives satisfy our locality condition (10) when the �2-divergence
�2(q; p0) of both mixed distributions is bounded or increases with the moderate rate

p
k. Since

�2(p; p0) � max
1�j�k

jqj=p0j + 1j
kX
j=1

jqj � p0j j

� 2
�
max
1�j�k

qj=p
0
j + 1

�
; (13)

we see from (12) that if all likelihood ratios qj=p0j increase moderately in the sense

max
1�j�k

qj=p
0
j = O(

p
k)

then the classical local alternatives (11) are local also in the present sense (10).

2 Main result. Our main result is the a theorem enabling to extend the asymptotic result
(9) of Gyor� and Vajda from hypotheses H : p0 to the alternatives A : p local in the sense of
(10). More precisely, this theorem enables to extend the asymptotic normality of the Pearson
statistic

�2n � �n
�n

L�! N(0; 1) (14)

established for some �n 2 IR and �n > 0 to the asymptotic normality

Tf;n � �n
�n

L�! N(0; 1) (15)

for all f -disparity statistics Tf;n under consideration.

Theorem. Let under the alternatives A : p satisfying (10) the Pearson statistic �2n be for
some sequences � = �n 2 IR and � = �n = O(

p
k) asymptotically normal in the sense of (14).

Then all f -disparity statistics Tf;n are under the same alternatives asymptotically normal in
the sense of (15).

Proof. It su¢ ces to prove that the f -disparity statistics Tf;n satisfy for all su¢ ciently small
" > 0 the relation

P

�
jTf;n � �2njp

k
> "

�
= o(1) : (16)

Let us start with the observation that the top four inequalities on p. 65 in Györ� and Vajda
(2002) hold for arbitrary distributions pn = (pn1; : : : ; pnkn) with positive probabilities pnj. This
means that for all su¢ ciently small " > 0 there exist constants c(") > 0 such that for all n

P

�
jTf;n � �2njp

k
> "

�
� c(")

�
nAnp
k
+Bn

�
(17)

where

An =

kX
j=1

E jbpj � p0j j3

(p0j)
2

(18)
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and

Bn =
kX
j=1

E (bpj � p0j)
2

(p0j)
2

: (19)

Applying �rst (3) and then the Schwarz inequality and (10), (2) we get

kX
j=1

pj
p0j

�

s
k�



kX
j=1

pj � p0jq
p0j

+ k

=

�
k�+1 �2n



�1=2
+ k

= k

�
1 +O

�
k�+1=2

n

��1=2
= k(1 + o(1)): (20)

Further, from (2) and (3) we obtain the auxiliary inequality

n
kX
j=1

jpj � p0j j3

(p0j)
2

�

s
k�


 n

where

 n � n

"
kX
j=1

(pj � p0j)
2

p0j

#1=2 kX
j=1

(pj � p0j)
2

p0j

=
�
n2�2(p; p0)3

�1=2 � �O�k3=2
n

��1=2
(cf. (10))

so that

n

kX
j=1

jpj � p0j j3

(p0j)
2

=

�
O

�
k�+3=2

n

��1=2
: (21)

Now, using the Jensen inequality for the convex function �(t) = jtj3; we get the elementary
inequality

jt1 + t2j3 � 4(jt1j3 + jt2j3):
Hence we can apply in (18) for all 1 � j � k the inequality

E jbpj � p0j j3 � 4(E jbpj � pjj3 + jpj � p0j j3) (22)

and in (19) the inequality

E (bpj � p0j)
2 � E (bpj � pj)

2 + (pj � p0j)
2: (23)

Using the fact that the random vector (X1; : : : ; Xk) = n(bp1; : : : bpk) is multinomially distributed,
(X1; : : : ; Xk) = np̂ �Mn(p; k); (24)
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we get
E (bpj � pj)

2 � pj
n

(25)

and using Lemma 2 in Györ� and Vajda (2002) we get also

E jbpj � pjj3 � 2
�pj
n

�3=2
: (26)

Therefore (18), (22) and (26) imply

nAnp
k
� 8p

nk

kX
j=1

p
3=2
j

(p0j)
2
+
4np
k

kX
j=1

jpj � p0j j3

(p0j)
2

(27)

and (19), (23) and (25) imply

Bn �
1

n

kX
j=1

pj
(p0j)

2
+

kX
j=1

�
pj � p0j
p0j

�2
: (28)

By (3) and (??),

1p
nk

kX
j=1

p
3=2
j

(p0j)
2
�

�
k��1

n

�1=2 kX
j=1

pj
p0j

!3=2

=

�
k�+1(1 + o(1))

n

�1=2
= o(1) (cf. (2)) :

By (21) and (2),

np
k

kX
j=1

jpj � p0j j3

(p0j)
2

=

�
O

�
k�+1=2

n

��1=2
= o(1)

so that we get from (27)
nAnp
k
= o(1) : (29)

Similarly we get from (28) and (3)

Bn � k�

n

"
kX
j=1

pj
p0j
+ �2(p; p0)

#

� k�

n

"
k(1 + o(1)) +O

 p
k

n

!#
(cf. (20) and (10))

= O

�
k�+1

n

�
= o(1) (cf. (2)). (30)

By (17), the asymptotic relations (29) and (30) imply the desired relation (16).
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3 Discussion. It is possible to deduce from Theorem 5.1 of Morris (1975) that if the
assumptions of our Theorem hold with (10) replaced by the more precise locality condition

n�2(p; p0)p
k

�! �

and p0max = o(1) then the asymptotic normality law (14) holds for the Pearson statistic �2n and
the sequences

� = �n = k +
p
k� and � = �n =

p
2k:

Our Theorem under the same conditions guarantees the similar asymptotic normality law

Tf;n � k �
p
k�p

2k

L�! N(0; 1) (31)

for all f -disparity statistics Tf;n under consideration. Among others it guarantees the concrete
limit law

2In � k �
p
k�p

2k

L�! N(0; 1) (32)

for the likelihod ratio statistic In: This law is presented in a more general form inTheorem
5.2 of the cited Morris paper. But the conditions given there theorem are incomparably more
complicated than those given here and not easily veri�able in our model. Also the proof of
Theorem 5.2 is incomparably more complicated than that given here. On the other hand, our
theorem is not only simpler, but it presents the asymptotic normality law for many statistics
Tf;n di¤erent from In, e.g. for the Freeman-Tukey statistic

H2
n = 4n

kX
j=1

�pbpj �qp0j

�2
= 4

p
n

kX
j=1

�p
Xj �

q
np0j

�2
obtained for f(t) = (

p
t� 1)2 from the squared Hellinger distance H2(bp; p0).

Asymptotic laws are interesting not only for the Pearson and likelihood ratio statistics �2n
and In, but also for the remaining statistics Tf;n with f 2 F . In spite of that the particular
statistic In is preferable to many others from the asymptotic e¢ ciency point of view (see Quine
and Robinson (1985), Györ� et al. (2000), Beirlant et al. (2001) and the more recent results of
Harremoës and Vajda (2007,2008)), the non-asymptotic e¢ ciency considerations often prefer
Tf;n di¤erent from In, e.g. the Freeman-Tukey�s H2

n.
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