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1 Introduction, basic concepts and auxiliary results

This paper deals with estimates P̂n of probability measures P on abstract measurable spaces
(X ,A) based on independent observations

Xi ∼ (X ,A, P ), 1 ≤ i ≤ n . (1)

The error criteria are the φ-divergences Dφ(P̂n, P ) for convex functions φ : (0,∞) 7→ IR strictly

convex at 1 with φ(1) = 0 where Dφ(P̃ , P ) denotes the divergence of Csiszár (1963) defined by
the formula

Dφ(P̃ , P ) =

∫
p φ

(
p̃

p

)
dQ . (2)

In this formula P̃ , P, Q are arbitrary probability measures on (X ,A) such that Q dominates

{P̃ , P}, in symbols Q >> {P̃ , P}, p̃, p are the Radon-Nikodym derivatives dP̃/dQ, dP/dQ and

φ

(
p̃

p

)
= φ(0) , lim

t↓0
φ(t) when p̃ = 0, p > 0 (3)

while

p φ

(
p̃

p

)
= p̃ · φ(∞)

∞ , p̃ · lim
t→∞

φ(t)

t
when p̃ ≥ 0, p = 0 (4)

with the convention 0 · ∞ = 0 in (4). Table 1 presents the best known φ-divergences.
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φ(t), t > 0 Dφ(P̃ , P ) Name

|t− 1| V (P̃ , P ) =
∫ |p̃− p| dµ Total variation

t ln t I(P̃ , P ) =
∫

p̃ ln
p̃

p
dµ Information divergence

− ln t I(P, P̃ ) =
∫

p ln
p

p̃
dµ Reversed information div.

(t− 1) ln t J(P̃ , P ) =
∫

(p̃− p) ln
p̃

p
dµ J-divergence

(t− 1)2 χ2(P̃ , P ) =
∫ (p̃− p)2

p
dµ χ2-divergence

(t− 1)2

t
χ2(P, P̃ ) =

∫ (p̃− p)2

p̃
dµ Reversed χ2-divergence

|t− 1|a, a ≥ 1 χa(P̃ , P ) =
∫

p1−a|p̃− p|a dµ χa-divergence

|ta − 1| 1a , 0 < a < 1 Ma(P̃ , P ) =
∫ |p̃a − pa| 1a dµ Matusita distance of order a

ta − 1
a(a− 1)

, a 6= 0, 1 Ia(P̃ , P ) =
1

a(a− 1)
(∫

p̃ag1−a dµ− 1
)

Power divergence of order a

(t− 1)2

t + 1
LC2(P̃ , P ) =

∫ (p̃− p)2

p̃ + p
dµ Squared Le Cam distance

(1−√t)2 H2(P̃ , P ) =
∫

(
√

p̃−√p)2 dµ Squared Hellinger distance

Table 1: Examples of classical φ-divergences Dφ(P, Q): Generating functions φ, symbols and
formulas for Dφ(P, Q) and names of the divergences. Notice that χ1(P̃ , P ) = V (P̃ , P ),

J(P̃ , P ) = I(P̃ , P ) + I(P, P̃ ), χ2(P̃ , P ) = 2I2(P̃ , P ) and I1/2(P̃ , P ) = 2H2(P̃ , P ) = 2M1/2(P̃ , P ).

The divergence error criteria Dφ(P̂n, P ) are justified by the basic properties of φ-divergences.
Namely, according to Csiszár (1963, 1967) and Liese, Vajda (1987),

0 ≤ Dφ(P̃ , P ) ≤ φ(0) + φ(∞)/∞ (cf. (3), (4))

where Dφ(P̃ , P ) = 0 iff P̃ = P and Dφ(P̃ , P ) = φ(0) + φ(∞)/∞ if P̃ ⊥ P (singularity,

i.e. the supports of P̃ , P are disjoint). Moreover, the φ-divergences with the upper bound

φ(0) + φ(∞)/∞ finite attain this bound only if P̃ ⊥ P . Thus Dφ(P̃ , P ) detects the position of

the pair {P̃ , P} on the scale between the full similarity P̃ = P and the full dissimilarity P̃ ⊥ P .

By the consistency of P̂n in the φ-divergence or in the expected φ-divergence we mean the
convergence

Dφ(P̂n, P )
P−→ 0 as n →∞ (5)

or
E Dφ(P̂n, P ) −→ 0 as n →∞ (6)

respectively.

This definition is meaningless if Dφ(P̂n, P ) is not a random variable, i.e. a measurable
function of the observations X1, . . . , Xn. Here a helpful tool is Theorem 6 in Vajda (1972) by
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which there exists a sequence of partitions

Pn = {An1, . . . , Anmn} ⊂ A, m1 ≤ m2 . . . , (7)

such that the restrictions P̃ (n), P (n) of P̃ , P on the subalgebra An ⊂ A generated by Pn satisfy
the relation

Dφ(P̃ , P ) = sup
n

Dφ(P̃
(n), P (n)) . (8)

By (2),

Dφ(P̃
(n), P (n)) =

∑
A∈Pn

P (A) φ

(
P̃ (A)

P (A)

)
(9)

with the conventions (3), (4) behind the sum. Thus if all P̂ (A), A ∈ A are random variables

then Dφ(P̂n, P ) in (5), (6) is a random variable too. Moreover, since the latter random variable
is nonnegative, the expectation considered in (6) exists and takes on values in the closed interval
[0, φ(0) + φ(∞)/∞].

The consistency in the divergence sense (5) or (6) is usually stronger than the classical
statistical consistency of point estimates. For example, let P be exponential on IR with the
Lebesgue density f(x) = I(x > 0) θ exp{−θx} and P̂n an estimate of P with the Lebesgue

density f̂n(x) = I(x > 0) θ̂n exp{−θ̂nx} where

θ̂n =
n

X1 + . . . + Xn

is the maximum likelihood point estimate of θ. Then θ̂n is consistent in the classical statistical
sense while E I(P, P̂n) = ∞ for all n ≥ 1, i.e. P̂n is not consistent in the expected reversed
information divergence (cf. Example 1 in Vajda and van der Meulen (2001)).

The classical application of the consistency principle (5) or (6) in the nonparametric statis-

tics is the application to the total variation V (P̂n, P ) = V (P, P̂n) which is nothing but the

L1(Q)-distance of the densities p̂n = dP̂n/dQ and p = dP/dQ for Q >> {P̂n, P}. The density
estimates consistent in this distance were systematically studied in the monograph Devroy,
Györfi (1985)) and some references cited there.

Barron (1988) and Barron et al. (1992) studied distribution estimates consistent in the

sense (5) and (6) for the total variation V (P̂n, P ) = V (P, P̂n) and also for the information

divergence I(P̂n, P ) and the reversed information divergence I(P, P̂n). Later Györfi et al.
(1998) and Vajda, van der Meulen (1998, 2001) studied the consistency in the sense of (5) and

(6) for the reversed χ2-divergence χ2(P, P̂n). Berlinet et al. (1998) presented arguments for

evaluation of the estimation errors by means of a wider class of φ-divergences Dφ(P̂n, P ). These
authors studied the consistency for such a wider class including the power divergences of orders
−1 ≤ a ≤ 2.

The special role of the consistency in the total variation V (P̂n, P ) follows from the fact that

every φ-divergence Dφ(P̃ , P ) satisfies the relation

Dφ(P̃ , P ) ≥ Lφ

(
V (P̃ , P )

)
(10)

where Lφ(t) is strictly increasing and convex in the domain 0 ≤ t ≤ 2 with Lφ(0) = 0.

Here Lφ(t) denotes the lower bound of the φ-divergences Dφ(P̃ , P ) over all pairs P̃ , P with
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V (P̃ , P ) ≥ t. This characterization of the lower bound Lφ was proved in Vajda (1995) but for
typical functions φ which are convex at all t ∈ (0,∞) it was proved already in Theorem 3 of

Vajda (1972). The inequality (10) implies that the consistency in the total variation V (P̂n, P )

follows from the consistency in any φ-divergence Dφ(P̂n, P ). The converse is not true. For
example if X = {0, 1} and

P = (1− p, p), P̂n =

(
1− 1

n

n∑
i=1

Xi,
1

n

n∑
i=1

Xi

)

then

E V (P, P̂n) = 2 E

∣∣∣∣∣
1

n

n∑
i=1

Xi − p

∣∣∣∣∣ ≤ 2


E

(
1

n

n∑
i=1

Xi − p

)2



1/2

= 2

√
p(1− p)

n
→ 0

as n →∞ while E I(P, P̂n) = ∞ for all n ≥ 1. The consistency in the total variation (expected
total variation) is thus the weakest of the consistencies considered in (5) or (6).

In this paper we consider sequences of subalgebras An ⊂ A generated by similar partitions
Pn as considered in (7) and the error criteria Dφ(P̂

(n)
n , P (n)) for the restrictions P̂

(n)
n , P (n) of

P̂n, P on An. By the monotonicity of φ-divergences (see e.g. Theorem 1.24 in Liese and Vajda
(1987)),

Dφ(P̂
(n)
n , P (n)) ≤ Dφ(P̂n, P ) (11)

so that

Dφ(P̂
(n)
n , P (n)) =

∑
a∈Pn

P (A) φ

(
P̂n(A)

P (A)

)
(cf. (9)) (12)

is a restricted version of the φ-divergence Dφ(P̂n, P ).

We are interested in the estimates P̂n consistent in the restricted φ-divergence, i.e. satisfying
the condition

Dφ(P̂
(n)
n , P (n))

P−→ 0 as n →∞ , (13)

and those consistent in the expected restricted φ-divergence , i.e. satisfying the condition

E Dφ(P̂
(n)
n , P (n)) −→ 0 as n →∞ . (14)

It is clear from (12) that if the probabilities P̂n(A), A ∈ An, are random variables then

Dφ(P̂
(n)
n , P (n)) in (13), (14) is a random variable and, similarly as E Dφ(P̂n, P ) in (6), the

expectations figuring in (14) exist and take on values in the interval [0, φ(0) + φ(∞)/∞].

We see from (11) that the convergences (13), (14) follow from those in (5), (6) so that the
concepts of consistency considered in the present paper are not stronger than those considered
in the above cited papers. In some situations these concepts are equally strong (they coincide).
Next we list two such situations.

Situation 1. The φ-divergence is total variation (i.e. φ(t) = |t − 1|), the partitions Pn are
nested in the sense that A1 ⊂ A2 ⊂ . . ., the union A1 ∪A2 ∪ . . . generates the σ-algebra A and
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the densities p̂n = dP̂n/dQ are for each A ∈ Pn constant on A. Denote by Pn the probability
measure with a density dPn/dQ = pn where for each A ∈ Pn

pn(x) =
P (A)

Q(A)
for all x ∈ A . (15)

Then by the martingale convergence theorem (see e.g. section VII.4 in Doob (1990))

pn −→ p Q− a.s. for n →∞ (16)

and, by the Lebesgue dominated convergence theorem,

V (Pn, P ) =

∫
|pn − p| dQ −→ 0 for n →∞ .

On the other hand, by the triangle inequality,

V (P̂n, P ) ≤ V (P̂n, Pn) + V (Pn, P )

where V (P̂n, Pn) = V (P̂
(n)
n , P (n)) because both densities p̂n and pn are constant on the sets

A ∈ Pn. Thus (13) or (14) for V (P̂
(n)
n , P (n)) implies (5) or (6) for V (P̂n, P ), respectively.

The following situation is more general. It uses the fact that if p̂n = dP̂n/dQ is constant on
the sets A ∈ Pn then

p̂n(x) =
P̂n(A)

Q(A)
for all x ∈ A .

Hence the density pn of Situation 1 satisfies the relation

∫

A

pn φ

(
p̂n

pn

)
dQ = P (A) φ

(
P̂n(A)

P (A)

)
.

By (2) and (12), this implies for every φ-divergence

Dφ(P̂n, Pn) = Dφ(P̂
(n)
n , P (n)) . (17)

The special case for φ(t) = |t− 1| was used in Situation 1.

Situation 2. For some α > 0, the α-th power Dα
φ(P̃ , P ) of a φ-divergence Dφ(P̃ , P ) is metric, the

densities p̂n = dP̂n/dQ are for each A ∈ Pn constant on A, and the distributions Pn introduced
in Situation 1 satisfy the condition

Dφ(P, Pn) −→ 0 for n →∞ . (18)

Then

Dφ(P̂n, P ) ≤
(
Dα

φ(P̂n, Pn) + Dα
φ(P, Pn)

)1/α

where Dα
φ(P̂n, Pn) = (Dφ(P̂

(n)
n , P (n)))α by (17). Hence under (18) the conditions (13) or (14)

imply (5) or (6) respectively. This means that in Situation 2 the consistencies studied in the
present paper are equally strong as those defined by the conditions (5) or (6) respectively.
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Some conditions for the convergence (18) can be found in the previous literature. For
example, φ(t) = t ln t generates the information divergence for which

I(P, Pn) =

∫
p ln

p

pn

dQ =

∫
p ln p dQ−

∫
pn ln pn dQ

= I(P,Q)− I(P (n), Q(n))

provided I(P,Q) < ∞ where P (n), Q(n) are restrictions of the distributions P, Q on the algebra
An generated by Pn. If (X ,A) is an Euclidean space IRd with the Borel σ-field and Pn is a
rectangular partition of IRd then, by Vajda (2002),

I(P (n), Q(n)) −→ I(P, Q) for n →∞
provided

max
A∈Pn

Q(A) −→ 0 for n →∞ .

Österreicher and Vajda (2003) proved that

φβ(t) =
1

1− β

[
(1 + t1/β)β − 2β−1(1 + t)

]
β > 0, β 6= 1

with the corresponding limit

φ1(t) = ln
2

1 + t
+ t ln

2t

1 + t

are functions strictly convex on (0,∞) and that for α = min{1/2, 1/β} the α-th powers of the
φβ-divergences are metrics on the space of probability measures. In particular,

Dφ1(P̃ , P ) = I(P̃ , (P + P̃ )/2) + I(P, (P + P̃ )/2)

is the φ1-divergence and the square root of this divergence is metric.

Notice that in the class of φβ-divergences all upper bounds

φβ(0) + φβ(∞)/∞ =

{
2(2β−1 − 1)/(β − 1) if β 6= 1

2 ln 2 if β = 1
(19)

are finite. For all bounded divergences we can give the following simple condition for the
convergence (18).

Proposition 1 All bounded φ-divergences satisfy (18) if the partitions Pn are nested in the
sense that the corresponding algebras An monotonically increase and their union generates A.

Proof. Each φ under consideration defines the same divergence as the nonnegative convex
function

φ̃(t) = φ(t)− φ
′
+(1)(t− 1), 0 < t < ∞ (20)

where φ
′
+(1) denotes the right hand derivative at 1. Obviously, φ(0) + φ(∞)/∞ is finite iff

φ̃(0) + φ̃(∞)/∞ is finite. Thus we can assume that φ is nonnegative with φ(0) + φ(∞)/∞
finite. By Jensen’s inequality,

φ(t) ≤
(

1− t

s

)
φ(0) +

t

s
φ(s) = φ(0) + t · φ(s)− φ(0)

s
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so that
0 ≤ φ(t) ≤ φ(0) + t φ(∞)/∞ . (21)

By (2),

Dφ(P, Pn) =

∫
pn φ

(
p

pn

)
dQ .

By (16), the integrand tends Q-a.s. to p φ(1) = 0. By (21), it is bounded above by the Q-
integrable function pnφ(0) + p φ(∞)/∞. Thus the desired convergence (18) follows from the
Lebesgue bounded convergence theorem for integrals. ¤

In the important case where (X ,A) is the Borel line, Györfi et al. (1998) found a relatively
simple condition guaranteeing (18) for the χ2-divergence Dφ(P, Pn) = χ2(P, Pn) with infinite
φ(0) + φ(∞)/∞. The problem of convergence (18) is of its own interest with applications
beyond the scope of the above considered Situation 2. In the Appendix we show that a certain
modification of the condition of Györfi et al. guarantees (18) for a wide class of φ-divergences,
e.g. for all those considered in Table 1 except the total variation and some of the χa-divergences.

Let us finish this introductory section by specifying the class of estimates P̂n studied in this
paper. As shown by Devroy and Györfi (1990), no estimate P̂n is consistent in total variation
for all distributions P on nontrivial observation spaces (X ,A). Using the inequality (10) we
can extend this negative conclusion to the consistency in an arbitrary φ-divergence. However,
as shown in the papers cited above, consistent estimates P̂n may exist for all distributions P
dominated by a σ-finite measure (which is in fact equivalent to the domination by a probability
measure Q).

For P << Q one can consider the Q-shaped histogram estimates P̂n dominated by Q with
the densities

p̂n =
dP̂n

dQ
,

mn∑
j=1

IAnj

Ynj

nQ(Anj)
(22)

where I stands for the indicator function and

Ynj =
n∑

i=1

IAnj
(Xi)

are the random counts of observations in the bins Anj of the finite partitions Pn (see (7)). If Q
has a density q with respect to a σ-finite measure λ on (X ,A) then

dP̂n

dλ
=

mn∑
j=1

IAnj
q

Ynj

nQ(Anj)
, (23)

i.e. the density of P̂n is shaped by q inside the partition sets Anj.

The histogram estimates (22), (23) are computationally simpler than the kernel estimates,
and in some sense they are also simpler than the histogram estimates based on infinite partitions.
However, similarly as the histograms based on the infinite partitions, they encounter problems
arising from empty bins which may appear with nonzero probabilities.

To avoid such problems, Barron (1988) proposed the modified Q-shaped histogram P̃n where
(23) is replaced by the density

dP̃n

dλ
= (1− εn)

dP̂n

dλ
+ εn q

7



for dP̂n/dλ given by (23) and 0 < εn < 1 decreasing to 0 for n → ∞. Formally simpler is the
density

p̃n =
dP̃n

dQ
= (1− εn)p̂n + εn

where p̂n is given by (22). We shall consider the version with ε = mn/(n + mn), i.e.

p̃n =
dP̃n

dQ
=

n

n + mn

p̂n +
mn

n + mn

(24)

for mn →∞ and mn/n → 0 as n →∞. This estimate is called Barron estimate in the sequel.

Barron et al. (1992) proved the consistency of the Barron estimator in the L1-error and the
expected L1-error for all densities f ∈ FQ, where FQ is the class of all probability densities with
respect to Q, and for partitions Pn defined by Q and mn satisfying mn → ∞ and mn/n → 0
for n increasing to infinity. Under I(P,Q) < ∞ and some additional conditions they proved
also the consistency in the information divergence and reversed information divergence and in
the expected versions of these divergences. Györfi et al. (1998) presented arguments in favor

of the reversed χ2-divergence error χ2(P, P̃n) and proved the consistency in the expected χ2-
divergence under some additional regularity assumptions on the density f . They obtained also
the optimal rate of convergence E χ2(P, P̃n) = O(n−2/3) .

Berlinet et al. (1998) was the first paper dealing with the asymptotic properties of the
Barron estimator when the errors are expressed by more general φ-divergences. Under some
regularity assumptions about the distribution P , the interval partitions Pn and the divergence
generating function φ, they proved that the Barron estimator is consistent in the φ-divergence
and the expected φ-divergence, i.e. that limn→∞ Dφ(P, P̃n) = 0 a.s. and limn→∞ E Dφ(P, P̃n) =
0.

Our paper goes in some respect deeper than Berlinet et al. (1998). For the Barron estimate
we prove results about the consistency in the reduced φ-divergences and expected reduced
φ-divergences which are considerably stronger than similar results of Berlinet et al. These
results are summarized in Theorems 1 and 2 and Proposition 2 in the next section. Note that
the asymptotic normality of the error I(P, P̃n) was proved in Berlinet et al. (1997) and the

asymptotic normality of the error χ2(P, P̃n) was proved in Vajda and van der Meulen (1998).

Results about the asymptotic normality of general φ-divergence errors Dφ(P̃n, P ) established
in Hobza (2003) will be presented in a forthcoming paper.

2 Main results

Restrict ourselves for simplicity to the partitions Pn = {An1, . . . , Anmn} introduced in (7) which
are uniform in the sense that Q(Anj) = 1/mn and put for n = 1, 2, . . .

qn =

(
qnj , Q(Anj) =

1

mn

: 1 ≤ j ≤ mn

)
. (25)

Further, put

pn =
(
pnj , P (Anj) : 1 ≤ j ≤ mn

)
(26)
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and for
Y n = (Ynj : 1 ≤ j ≤ mn) ∼ Multinomial(n,pn) (27)

define the empirical distributions

p̂n =

(
p̂nj =

Ynj

n
: 1 ≤ j ≤ mn

)
(28)

which estimate the true pn. Finally, put

p̃n = (1− εn) p̂n + εnqn, εn =
mn

n + mn

. (29)

By (12),

Dφ

(
P̃ (n)

n , P (n)
)

= Dφ (p̃n,pn) =
mn∑
j=1

pnj φ

(
p̃nj

pnj

)
(30)

where

Dφ(p̃,p) =
m∑

j=1

pj φ

(
p̃j

pj

)
(31)

stands in accordance with (2) for the φ-divergence of distributions p̃ = (p̃1, . . . , p̃m) and p =
(p1, . . . , pm) on the finite observation space X = {1, . . . , m}.

We restrict ourselves to the φ-divergences for the restricted class of the above considered
functions φ satisfying the following assumptions.

φ - assumptions

φ is finite and convex on (0,∞) extended on [0,∞) by the rule

φ(0) = lim
t→0+

φ(t) ,

twice continuously differentiable in a neighborhood of 1, satisfying the condition

φ(1) = φ′(1) = 0, φ′′(1) > 0 (32)

with the second derivative φ′′(t) Lipschitz in this neighborhood.

Here φ′′(1) > 0 and the continuity of φ′′ implies the strict convexity in the neighborhood of 1
and φ′(1) = 0 implies that φ is positive on [0,∞)− 1 (cf. (20)).

We suppose that the partitions Pn satisfy the following assumptions.
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Pn-assumptions

It holds
lim

n→∞
mn = ∞ and lim

n→∞
mn

n
= 0 (33)

and there exists β ≥ 1 such that

lim inf
n→∞

mβ
n min

1≤j≤mn

pnj > 0 (34)

and
m1+β

n

n
= o(1) . (35)

Remark 1 Since for every pn it holds min1≤j≤mn pnj ≤ 1/mn, (34) cannot hold for β < 1.

Our main results are the following two theorems and the following proposition.

Theorem 1 If the partitions Pn satisfy the Pn-assumptions, then for all φ satisfying the φ-
assumptions the Barron estimator P̃n is consistent in the reduced φ-divergence, i.e.

Dφ

(
P̃ (n)

n , P (n)
)

= oP (1) as n →∞ . (36)

Theorem 2 If the partitions Pn satisfy the Pn-assumptions, and if there exists n1 ∈ IN such
that

sup
n>n1

E
(
Dφ

(
P̃ (n)

n , P (n)
))2

< +∞ , (37)

then for all φ satisfying the φ-assumptions the Barron estimator P̃n is consistent in the expected
reduced φ-divergence, i.e.

E Dφ

(
P̃ (n)

n , P (n)
)

= o(1) as n →∞ . (38)

Since it is difficult to check the condition (37) directly we have found a simple condition on
the divergence function φ sufficient for (37).

Proposition 2 If the partitions Pn satisfy the Pn-assumptions then the condition

φ

(
1

t

)
+ φ(t) = O(tk) for t →∞ and some k ∈ IN (39)

is sufficient for (37).

Remark 2 The condition (39) on the convex function φ is weaker than the condition tφ(1/t)+
φ(t) = O(t2) for t → ∞ assumed in Berlinet et al. (1998). We allow φ(t) to increase polyno-
mially and not only quadratically in the neighborhood of t = 1 and t = ∞. Here it is to be
mentioned that we treat consistency in the reduced φ-divergences only. However, as argued in
the previous section, for some φ-divergences this is equivalent to the consistency in the same
non-reduced sense as in Berlinet et al. (1998).
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Remark 3 Let us note that the same results as Theorems 1, 2 and Proposition 2 can be
stated also in the case of Q-shaped histogram P̂n (see Hobza (2003)). The only difference is
that instead of the condition (39) we need to suppose φ(0) < ∞ and φ(t) = O(tk) for t →∞.
The reason is that the Q-shaped histogram can attain zero value with positive probability (due

to empty cells) and thus φ(0) = ∞ would imply infinite value of E Dφ(P̂
(n)
n , P (n)). This does

not affect the Barron estimator which is positive with Q-probability 1 and thus φ(0) = ∞ is
admitted.

Remark 4 Define φ∗ conjugated to φ in the sense that

φ∗(t) = t φ

(
1

t

)
for all t > 0 . (40)

It can be proved (cf. Lemma 1 on page 41 in Hobza (2003)) that if the function φ satisfy the
φ-assumptions then also the conjugated function φ∗ satisfies the φ-assumptions and

Dφ∗(P, Q) = Dφ(Q,P )

for all distributions P, Q. If, moreover, φ satisfies (39) then it holds

φ∗
(

1

t

)
+ φ∗(t) =

1

t
φ(t) + t φ

(
1

t

)
= O(tk+1) ,

i.e. φ∗ satisfies the condition (39) too. Hence if φ satisfies the φ-assumptions and (39) then the
conditions of Theorem 2 are satisfied also for φ∗ and thus this theorem implies also

E Dφ

(
P (n), P̃ (n)

n

)
= o(1) .

However, similar conclusion does not apply to the Q-shaped histogram P̂n, since the conditions
φ(0) < ∞ and φ(t) = O(tk) do not imply φ∗(0) < ∞.

The proofs of the above stated theorems will be divided into several steps. The basic idea
is to show the desired asymptotic relations for the particular χ2-divergence and then, with
the help of an inequality from Lemma 9 below, to extend these relations to the remaining
φ-divergences. Therefore the first two lemmas that follow state the consistency of the Barron
estimate in the reduced and expected reduced χ2-divergence.

Lemma 1 If the partitions Pn satisfy the Pn-assumptions then the Barron estimator P̃n is
consistent in the reduced chi-square divergence, i.e.

χ2 (p̃n,pn)
P−→ 0, n →∞.

Proof. Since the distribution of Ynj is Bi(n, pnj), for all j = 1, . . . , mn, it holds

E (p̂nj − pnj)
2 =

1

n2
E (Ynj − npnj)

2 =
pnj(1− pnj)

n
. (41)

Using the relations E (p̂nj − pnj) = 0, |pnj − qnj| ≤ 1 and 0 < εn < 1 we conclude that for all
j = 1, . . . , mn

E (p̃nj − pnj)
2 = E ((1− εn)(p̂nj − pnj)− εn(pnj − qnj))

2 ≤ pnj

n
+ ε2

n(pnj − qnj)
2 . (42)

11



Thus, using the Markov inequality and (34), (35), we obtain for all ε > 0

P
(
χ2 (p̃n,pn) > ε

)
= P

(
mn∑
j=1

(p̃nj − pnj)
2

pnj

> ε

)
≤ 1

ε

mn∑
j=1

E (p̃nj − pnj)
2

pnj

≤ 1

ε


mn

n
+ ε2

n


1 +

1

mn min
1≤j≤mn

pnj





 −→ 0, n →∞ .

¤

Lemma 2 If the partitions Pn satisfy the Pn-assumptions then the Barron estimator P̃n is
consistent in the expected reduced chi-square divergence, i.e.

E χ2 (p̃n, pn) −→ 0, n →∞.

Proof. Since

E χ2 (p̃n,pn) = E
mn∑
j=1

(p̃nj − pnj)
2

pnj

=
mn∑
j=1

E (p̃nj − pnj)
2

pnj

,

the proof can be finished in the same way as the proof of Lemma 1. ¤
We will also need the following result.

Lemma 3 Under the Pn-assumptions, for all but finitely many n,

E |p̃nj − pnj|3 ≤ 2
√

3
(pnj

n

) 3
2

, 1 ≤ j ≤ mn .

Proof. The proof follows similar steps as the proof of Lemma 2 in Györfi and Vajda (2002).
A detailed version can be found in Hobza (2003, Lemma 17 on page 70). ¤

The next step is to prove (37) for the χ2-divergence.

Lemma 4 Under the Pn-assumptions there exists n0 ∈ IN such that

sup
n>n0

E
(
χ2 (p̃n,pn)

)2
< +∞ .

Proof. The proof can be carried out in a similar straightforward way as the previous proofs
but it is technically more complicated and therefore too long. However, since the chi-square
divergence χ2 (p̃n,pn) is the φ-divergence for φ(t) = (t− 1)2 and for this φ

φ(0) = 1 and φ(t) = O(t2), t →∞ ,

the desired result follows from Proposition 2 proved below without reference to the results of
this section. ¤

In the next lemma, as well as in the sequel, we consider for probability distributions p =
(p1, . . . , pm), q = (q1, . . . , qm) the relative deviation

∆(p, q) = max
1≤j≤m

∣∣∣∣
pj

qj

− 1

∣∣∣∣ . (43)

12



Remark 5 In the sequel we use the inequality

∣∣∣∣Dφ(p, q)− φ′′(1)

2
χ2(p, q)

∣∣∣∣ ≤
Lφ

2

m∑
j=1

|pj − qj|3
q2
j

, (44)

valid for all φ satisfying the φ-assumptions and for all discrete probability distributions p, q
with sufficiently small ∆(p, q). This is nothing but a discrete version of Lemma 9 in the next
section. This version follows by multiplying both sides of (62) by qj, substituting t = pj/qj and
summing up both sides over 1 ≤ j ≤ m.

Lemma 5 Under the Pn-assumptions it holds

∆ (p̃n,pn)
P−→ 0 as n →∞ ,

for ∆(p, q) defined by (43).

Proof. Applying the Chebyshev inequality, we obtain for arbitrary n and ε > 0

P (∆ (p̃n,pn) > ε) = P

(
max

1≤j≤mn

∣∣∣∣
p̃nj

pnj

− 1

∣∣∣∣ > ε

)

≤ P

(
mn⋃
j=1

(∣∣∣∣
p̃nj

pnj

− 1

∣∣∣∣ > ε

))
≤

mn∑
j=1

P

(∣∣∣∣
p̃nj

pnj

− 1

∣∣∣∣ > ε

)

≤
mn∑
j=1

1

ε2
E

(
p̃nj

pnj

− 1

)2

=
1

ε2

mn∑
j=1

E (p̃nj − pnj)
2

p2
nj

.

Thus, using the upper bound (42) and the Pn-assumptions, we find that

P (∆ (p̃n, pn) > ε) ≤ 1

ε2


 mn

n min
1≤j≤mn

pnj

+ ε2
n


mn +

1

mn( min
1≤j≤mn

pnj)
2





 = o(1) (45)

as n →∞. ¤

Next follows the last lemma needed for proving Theorems 1 and 2.

Lemma 6 If the partitions Pn satisfy the Pn-assumptions and (37) is fulfilled then

E

∣∣∣∣Dφ (p̃n,pn) − φ′′(1)

2
χ2 (p̃n,pn)

∣∣∣∣ −→ 0, n →∞

for all φ satisfying the φ-assumptions.

Proof. Let us denote

Zn ,
∣∣∣∣Dφ (p̃n, pn) − φ′′(1)

2
χ2 (p̃n,pn)

∣∣∣∣ .

For all n, ε > 0 and sufficiently small δ > 0

P (Zn > ε) ≤ P (Zn > ε, ∆ (p̃n, pn) ≤ δ) + P (∆ (p̃n,pn) > δ) .

13



From Lemma 5 it follows P (∆ (p̃n,pn) > δ) = o(1) and under the condition ∆ (p̃n,pn) ≤ δ we
get from (44) that

Zn ≤ Lφ

2

mn∑
j=1

|p̃nj − pnj|3
p2

nj

. (46)

Thus, by the Markov inequality,

P (Zn > ε) ≤ P

(
Lφ

2

mn∑
j=1

|p̃nj − pnj|3
p2

nj

> ε

)
+ o(1) ≤ Lφ

2ε

mn∑
j=1

E |p̃nj − pnj|3
p2

nj

+ o(1) .

Using Lemma 3 we obtain

P (Zn > ε) ≤
√

3Lφ

ε

mn∑
j=1

1

n
3
2 p

1
2
nj

+ o(1) ≤
√

3Lφ

ε
· mn

n
3
2 ( min

1≤j≤mn

pnj)
1
2

+ o(1) .

The Pn-assumptions (34) and (35) then imply

Zn
P−→ 0, n →∞ . (47)

Finally, to prove E Zn → 0 it suffices to show that {Zn} is uniformly integrable (see e.g.
Theorem A, p. 14 in Serfling (1980)). We shall check for γ = 1 the sufficient condition

sup
n

E |Zn|1+γ < ∞

for uniform integrability of the sequence {Zn}. It holds

E Z2
n ≤ E (Dφ (p̃n,pn))2 +

(
φ′′(1)

2

)2

E
(
χ2 (p̃n,pn)

)2
. (48)

Thus (37) and Lemma 4 imply that there exists n2 ∈ IN (n2 = max{n0, n1}) such that
supn>n2

E Z2
n < +∞, which finishes the proof. ¤

Proof of Theorem 1. By (47),
∣∣∣∣Dφ (p̃n,pn) − φ′′(1)

2
χ2 (p̃n, pn)

∣∣∣∣
P−→ 0, n →∞ .

Thus the desired statement follows from Lemma 1 and the Slutsky theorem. ¤

Proof of Theorem 2. Lemma 4 and (37) justify to use Jensen’s inequality and to write for
all n > max{n0, n1}∣∣∣∣ E Dφ (p̃n,pn) − φ′′(1)

2
E χ2 (p̃n,pn)

∣∣∣∣ ≤ E

∣∣∣∣Dφ (p̃n,pn) − φ′′(1)

2
χ2 (p̃n,pn)

∣∣∣∣ .

Therefore Lemma 6 implies
∣∣∣∣ E Dφ (p̃n, pn) − φ′′(1)

2
E χ2 (p̃n,pn)

∣∣∣∣ −→ 0 , n →∞.

Combining this with Lemma 2 we obtain the desired result E Dφ (p̃n,pn) → 0 , n →∞. ¤

To prove Proposition 2 we need an upper bound on the function φ and a new upper bound
on the expectation of powers of a simple function of binomially distributed random variable X.
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Lemma 7 Let the function φ be convex on (0,∞) with φ(1) = 0. If φ satisfies the condition

φ

(
1

t

)
+ φ(t) = O(tk) for t →∞ and some k ∈ IN

then there exist C1 > 0, C2 > 0 such that

φ(t) ≤ C1
1

tk
+ C2t

k for all t ∈ (0,∞) . (49)

Proof. The proof can be carried out in a similar way as the proof of Lemma 7 in Berlinet et
al. (1998). For more details see the proof of Lemma 21 on page 76 in Hobza (2003). ¤

Lemma 8 If a random variable X has binomial distribution with parameters n and p then for
all r ∈ IN ,

E

(
1

X + 1

)r

≤ r!

(n + 1)r pr
.

Proof. By the definition of binomial distribution,

E

(
1

X + 1

)r

=
n∑

i=0

(
1

i + 1

)r (
n
i

)
pi(1− p)n−i

For all i = 0, . . . , n it holds

(
1

i + 1

)r

=

(
1

i + 1
· 1

i + 2
· · · 1

i + r

)
·
(

1 +
1

i + 1

)
·
(

1 +
2

i + 1

)
· · ·

(
1 +

r − 1

i + 1

)

≤
(

1

i + 1
· 1

i + 2
· · · 1

i + r

)
· r! ,

since all the functions (1 + j/(i + 1)) , j = 1, . . . , r − 1, are decreasing as functions of i and
thus attain their maximum at i = 0. Using this result we obtain

E

(
1

X + 1

)r

≤ r!
n∑

i=0

n!

(n− i)!(i + r)!
pi(1− p)n−i

= r!
1

(n + 1) · · · (n + r)

n∑
i=0

(n + r)!

(n− i)!(i + r)!
pi(1− p)n−i

≤ r!

(n + 1)r

n+r∑
j=r

(
n + r

j

)
pj−r(1− p)n+r−j

≤ r!

(n + 1)rpr

n+r∑
j=0

(
n + r

j

)
pj(1− p)n+r−j =

r!

(n + 1)rpr
.

¤

Remark 6 This lemma is a generalization of Lemma 1 playing a fundamental role in the paper
of Barron et al. (1992). It was presented there for r = 1.
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Now we can deal with the proof of Proposition 2.

Proof of Proposition 2. By the Schwarz inequality, for all n ∈ IN

E (Dφ (p̃n, pn))2 = E

(
mn∑
j=1

pnj φ

(
p̃nj

pnj

))2

≤
mn∑
j=1

p2
nj E φ2

(
p̃nj

pnj

)
+ 2

mn∑
j=1

mn∑

`=j+1

pnjpn`

(
E φ2

(
p̃nj

pnj

)
E φ2

(
p̃n`

pn`

)) 1
2

. (50)

From the definition of the Barron estimate P̃n, particularly from the definition of the probability
vector p̃n corresponding to the distribution P̃

(n)
n (cf. (24)), it follows that p̃nj 6= 0 for all

1 ≤ j ≤ mn. Thus we can use Lemma 7 to obtain the following upper bound

E φ2

(
p̃nj

pnj

)
≤ C2

1 E

(
pnj

p̃nj

)2k

+ 2 C1C2 + C2
2 E

(
p̃nj

pnj

)2k

. (51)

We shall upperbound the expectations

E

(
pnj

p̃nj

)2k

and E

(
p̃nj

pnj

)2k

. (52)

Let us start with the first of them. Since

1− εn =
nεn

mn

=
n

n + mn

,

we get for all n and 1 ≤ j ≤ mn

E

(
pnj

p̃nj

)2k

= p2k
nj E

(
1

(1− εn)
Ynj

n
+ εnqnj

)2k

= (npnj)
2k

(
n + mn

n

)2k

E

(
1

Ynj + 1

)2k

.

Further, Ynj are binomially distributed with parameters n, pnj. Thus using Lemma 8 we obtain
for all n and 1 ≤ j ≤ mn

E

(
pnj

p̃nj

)2k

≤ (2k)!

(
n + mn

n

)2k

where (2k)!

(
n + mn

n

)2k

−→ (2k)! (cf. (33)) .

Hence, there exists such nA ∈ IN and a finite real constant K1 > 0 such that

E

(
pnj

p̃nj

)2k

≤ K1 (53)

for all n > nA and for all 1 ≤ j ≤ mn. The second expectation of (52) satisfies for all n and
1 ≤ j ≤ mn

E

(
p̃nj

pnj

)2k

= E

(
(1− εn)

p̂nj

pnj

+ εn
qnj

pnj

)2k

=
2k∑
i=0

(
2k
i

)
(1− εn)2k−i

(
εn

qnj

pnj

)i

E

(
p̂nj

pnj

)2k−i

≤
2k∑
i=0

(
2k
i

)(
εn

qnj

pnj

)i

E

(
p̂nj

pnj

)2k−i

. (54)
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From formula (3) on p. 51 in Johnson and Kotz (1969) we know that a binomially distributed
X with parameters (n, p) satisfies the relation

E Xr =
r∑

`=1

Sr,` µ(`)(X), r ∈ IN,

where µ(`)(X) = n(n− 1) · · · (n− `+1) · p` and Sr,` are so called Stirling numbers of the second
kind defined for all natural numbers r and 1 ≤ ` ≤ r. Since

µ(`)(X) ≤ n`p`,

we have an upper bound

E Xr ≤
r∑

`=1

Sr,` n`p` . (55)

Now, we can use formula (55) to get for all 1 ≤ r ≤ 2k and all 1 ≤ j ≤ mn

E

(
p̂nj

pnj

)r

=
1

(npnj)r
E (Ynj)

r ≤ 1

(npnj)r

r∑

`=1

Sr`n
`p`

nj

=
r∑

`=1

Sr`
1

(npnj)r−`
≤

r∑

`=1

Sr`


mβ

n

n
· 1

mβ
n min

1≤j≤mn

pnj




r−`

→ Srr = 1 ,

since the remaining terms in the sum tend by the Pn-assumptions to zero. This means that
there exist a finite real constant K > 0 and for all 1 ≤ r ≤ 2k natural numbers nr such that
for all n > nr

E

(
p̂nj

pnj

)r

< K . (56)

If we choose nK = max{n1, . . . , n2k} then for every n > nK (56) holds for all 1 ≤ r ≤ 2k and
1 ≤ j ≤ mn. At the same time, (34) and (35) imply

εn
qnj

pnj

≤ mβ
n

n + mn

· 1

mβ
n min

1≤j≤mn

pnj

−→ 0

which means that there exist J > 0 and nJ ∈ IN such that for all n > nJ , εn(qnj/pnj) < J .
Combining this with (54) and (56), we get for all n > nB = max{nJ , nK} and for all 1 ≤ j ≤ mn

E

(
p̃nj

pnj

)2k

≤
2k∑
i=0

(
2k
i

)
J iK = K(1 + J)2k , K2 < +∞ .

Substituting this and (53) into (51), we get for all n > nC = max{nA, nB} and for all 1 ≤ j ≤ mn

E φ2

(
p̃nj

pnj

)
≤ C2

1K1 + 2C1C2 + C2
2K2 , K3 < +∞ .

Applying this bound in the formula (50), we finally get

E (Dφ (p̃n,pn))2 ≤ K3

mn∑
j=1

p2
nj + 2K3

mn∑
j=1

mn∑

`=j+1

pnjpn` ≤ 3K3

and thus
sup
n>n1

E (Dφ (p̃n, pn))2 < +∞
for n1 = nC . ¤

17



Appendix

In this section we state conditions on the supposed model guaranteeing relation (18) for a wide
class of φ-divergences.

Let us consider on the Borel line (IR,B) probability distributions P, Q where P is dominated
by Q with a density p(x) w.r.t. Q. Further, let Pn = {Anj : j ∈ J} be an interval partition
of IR. Under this setup the density function pn of the distribution Pn (defined by (15)) with
respect to Q can be written in the form

pn(x) =
P (An(x))

Q(An(x))
, where An(x) = Anj ∈ Pn if x ∈ Anj,

for x ∈ IR, n = 1, 2, . . .. The functions pn(x) can be viewed as random variables on the
probability space (IR,B, Q), namely pn = EQ (p|Pn), where EQ (·|Pn) is the corresponding
conditional expectation EQ with respect to the σ-field of B generated by Pn, i.e.

EQ (p|Pn)x =
1

Q(An(x))

∫

An(x)

p dQ =
P (An(x))

Q(An(x))
.

Let FQ be the set of all probability densities with respect to Q, i.e.

FQ = {f ∈ L1(Q) : f ≥ 0,

∫
f dQ = 1} .

Definition 1 The sequence of partitions Pn is called Q-approximating if for every f ∈ FQ

lim
n→∞

EQ (f |Pn) = f Q− a.s. (57)

Similar property of partitions figuring in the definition of Barron estimator was required in
Barron et al. (1992), Györfi et al. (1998) and other papers dealing with this estimator.

Remark 7 Applying (57) to the positive and negative part of any h ∈ L1(Q), one easily
obtains that (57) is equivalent to

lim
n→∞

EQ (h|Pn) = h Q− a.s. for all h ∈ L1(Q).

Now we will try to outline what this condition means and when it is satisfied.

Proposition 3 Let the distribution Q on (IR,B) be non-atomic in the sense that Q({x}) = 0
for all x ∈ IR. If Pn is Q-approximating then

lim
n→∞

Q(An(x)) = 0 for all x ∈ IR . (58)

Proof. If (58) doesn’t hold then there is x ∈ IR such that

lim
n→∞

Q(An(x)) > 0 .

Since Q is non-atomic, the intervals An(x) cannot shrink to a singleton {x} when n → ∞.
Thus, there exists a nonempty interval (a, c) and an increasing sequence ni, i = 1, 2, . . . , such
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that 0 < Q((a, c)) < 1 and (a, c) ⊂ Ani
(x) for all i. Further, there exists a < b < c such that

Q((a, b)) belongs to (0, Q((a, c))). Let us define

h(x) = 1 x ∈ (a, b)

= 0 otherwise.

Then h ∈ L1(Q) and for all x ∈ (a, b) and the sequence Ani
it holds

lim
i→∞

EQ (h|Pni
)x = lim

i→∞
1

Q(Ani
)

∫ b

a

dQ = lim
i→∞

Q(a, b)

Q(Ani
)
≤ Q(a, b)

Q(a, c)
< h(x) = 1 ,

which contradicts (57). ¤

Remark 8 In practical applications probability distributions are usually defined on (bounded
or unbounded) intervals where their densities are almost everywhere positive. Thus they dom-
inate on their supports the Lebesgue measure. If we moreover consider only the Q-a.e. contin-
uous densities f then (58) is also sufficient condition for the Q-approximating property (57) of
the partition Pn. This can be seen from the relations

∣∣∣∣
1

Q(An(x))

∫

An(x)

f(y) dQ(y)− f(x)

∣∣∣∣ =

∣∣∣∣
1

Q(An(x))

∫

An(x)

f(y)− f(x) dQ(y)

∣∣∣∣

≤ 1

Q(An(x))

∫

An(x)

|f(y)− f(x)| dQ(y) ≤ sup
y∈An(x)

|f(y)− f(x)| .

Remark 9 The condition (57) is fulfilled also for all partitions Pn which are nested in the sense
σ(P1) ⊂ σ(P2) . . . (where σ(Pi) denotes the σ-field generated by Pi) and their union generates
the σ-field B of Borel sets in IR. This follows for all Q from the Lévy martingale convergence
theorem (see e.g. Section VII.4 in Doob (1990)).

In order to be able to prove property (18) we need another condition. Let us suppose
p ∈ L3(Q) and define on (IR,B, Q) the conditional expectations

yn = EQ (p2|Pn) and zn = EQ (p3|Pn) .

We consider also the convex function φ(t) = t3 − 1, t ∈ (0,∞) and the corresponding power
divergence I∗3 (P,Q) = 6 I3(P,Q) (cf. Table 1).

Definition 2 The sequence of partitions Pn is called (P, Q)-approximating for P and Q with
I3(P, Q) < ∞ if it is Q-approximating and the corresponding random sequences yn/pn and
zn/p

2
n are uniformly Q-integrable.

Remark 10 Since by definition

I3(P, Q) =
1

6

(∫
p3 dQ− 1

)

the conditions
I3(P,Q) < ∞ and p ∈ L3(Q)

are equivalent.
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Now we present two conditions sufficient for the uniform Q-integrability. The first one states
that it suffices to suppose that the density p = dP/dQ is Q-a.s. bounded away from zero. This
takes place for some densities considered in the statistical theory as well as in the practise.

Proposition 4 Let P be a probability measure dominated by probability measure Q with density
p = dP/dQ and I3(P, Q) < ∞. If there exists γ > 0, such that

p(x) ≥ γ Q− a.s. ,

then every Q-approximating sequence of partitions Pn is also (P, Q)-approximating.

Proof. According to Remark 10, p ∈ L3(Q) and thus also p ∈ L2(Q). We have to prove that
the sequences yn/pn and zn/p

2
n are uniformly Q-integrable. By definition,

yn(x)

pn(x)
=

yn(x)
1

Q(An(x))

∫
An(x)

p dQ
≤ 1

γ
yn(x)

and
zn(x)

(pn(x))2
=

zn(x)(
1

Q(An(x))

∫
An(x)

p dQ
)2 ≤

1

γ2
zn(x) .

Thus, it remains to show the uniform Q-integrability of the sequences yn and zn. We do this
for zn since for yn the proof is similar. Since p ∈ L3(Q) and the sequence Pn is supposed to be
Q-approximating we know that zn → p3 Q-a.s. . Further,

EQ (zn) = EQ (EQ (p3|Pn)) = EQ (p3) < ∞

and the uniform Q-integrability of the random sequence zn follows e.g. from Lemma B on page
15 in Serfling (1980). ¤

The next lemma provides another sufficient condition for the uniform integrability in Defi-
nition 2.

Proposition 5 A Q-approximating sequence of partitions Pn is (P, Q)-approximating for a
probability measure P dominated by Q if there exist positive α and β for which

3

α
+

2

β
< 1 (59)

and the density p = dP/dQ satisfies the conditions

p ∈ Lα(Q) and
1

p
∈ Lβ(Q) .

Proof. The proof of this assertion is a slightly adapted version of the proof of Proposition 2
in Györfi et al. (1998). For more details see the proof of Lemma 4 on page 49 in Hobza (2003).
¤

Now we state the main result of this section.
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Theorem 3 If I3(P,Q) < +∞ and the sequence of partitions Pn is (P, Q)-approximating then

Dφ(P, Pn) = o(1), n →∞ ,

for all φ satisfying the φ-assumptions.

Remark 11 By Lemma 1 of Györfi et al. (1998) in the particular case of the χ2-divergence
Dφ(·, ·) = χ2(·, ·) a weaker form of (P,Q)-approximating property is sufficient where the uniform
Q-integrability of zn/p

2
n is not required. The uniform integrability of yn/pn cannot be omitted.

Indeed, the cited paper presented an example demonstrating that the convergence

χ2(P, Pn) = o(1)

need not hold without the uniform Q-integrability of yn/pn even if the partitions Pn are nested
and generate B, i.e. if they are Q-approximating.

The proof of Theorem 3 will be divided into several steps.

Let us consider probability distributions P, P̃ dominated by Q with corresponding densities
p, p̃ and the relative deviation

∆P,P̃ (x) =

∣∣∣∣
p(x)

p̃(x)
− 1

∣∣∣∣ . (60)

By Table 1,

χ3(P, P̃ ) =

∫ |p− p̃|3
p̃2

dQ.

Lemma 9 For all distributions P, P̃ with ∆P,P̃ sufficiently small Q-a.s., and for all functions
φ satisfying the φ-assumptions,

∣∣∣∣Dφ(P, P̃ )− φ
′′
(1)

2
χ2(P, P̃ )

∣∣∣∣ ≤
Lφ

2
χ3(P, P̃ ) ≤ 3 Lφ I3(P, P̃ )

where Lφ is the Lipschitz constant from the φ-assumptions.

Proof. By the φ-assumptions, there exist δφ > 0 and Lφ > 0 such that
∣∣∣φ′′(t)− φ

′′
(1)

∣∣∣ ≤ Lφ|t− 1| if |t− 1| < δφ. (61)

By the Taylor expansion of φ(t) in the neighborhood of t = 1 we get for all t with sufficiently
small |t− 1|

φ(t) = φ(1) + φ
′
(1)(t− 1) +

φ
′′
(t∗)
2

(t− 1)2,

where |t∗ − 1| ≤ |t− 1|. Using (32) we obtain

φ(t)− φ
′′
(1)

2
(t− 1)2 =

φ
′′
(t∗)− φ

′′
(1)

2
(t− 1)2

and applying (61) on the right-hand side we get

∣∣∣∣φ(t)− φ
′′
(1)

2
(t− 1)2

∣∣∣∣ ≤
Lφ

2
|t− 1|3. (62)
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If ∆P,P̃ is small enough Q-a.s. then, by multiplying the inequality by p̃, substituting t = p/p̃
and integrating on both sides, we get

∫ ∣∣∣∣∣p̃ φ

(
p

p̃

)
− φ

′′
(1)

2
p̃

(
p

p̃
− 1

)2
∣∣∣∣∣ dQ ≤ Lφ

2

∫
p̃

∣∣∣∣
p

p̃
− 1

∣∣∣∣
3

dQ.

Thus also,
∣∣∣∣∣
∫

p̃ φ

(
p

p̃

)
dQ− φ

′′
(1)

2

∫
p̃

(
p

p̃
− 1

)2

dQ

∣∣∣∣∣ ≤
Lφ

2

∫
p̃

∣∣∣∣
p

p̃
− 1

∣∣∣∣
3

dQ,

which means ∣∣∣∣Dφ(P, P̃ )− φ
′′
(1)

2
χ2(P, P̃ )

∣∣∣∣ ≤
Lφ

2
χ3(P, P̃ ).

The inequality χ3(P, P̃ ) ≤ I∗3 (P, P̃ ) can be easily seen from the facts that I∗3 (P, P̃ ) = Dφ(P, P̃ )
for φ(t) = t3 − 3(t− 1)− 1 where |t− 1|3 ≤ φ(t) for all t ∈ (0,∞). ¤

Lemma 10 If χ2(P, Q) < +∞, Pn is Q-approximating and the random sequence yn/pn is
uniformly Q-integrable then

χ2(P, Pn) = o(1), n →∞ .

Proof. See Györfi et al. (1998). ¤

Lemma 11 If I3(P,Q) < +∞, Pn is Q-approximating and the random sequence zn/p2
n is

uniformly Q-integrable then

I3(P, Pn) = o(1), n →∞ .

Proof. By definition,

6 I3(P, Pn) =

∫
p3

p2
n

dQ− 1

and I3(P, Q) < +∞ implies p ∈ L3(Q). Since Pn is Q-approximating, zn tends Q-a.s. to p3

and pn to p when n →∞. Consequently,

ρn =
zn

p2
n

tends Q-a.s. to p and from the uniform Q-integrability of ρn it follows (cf. e.g. Theorem A on
page 14 in Serfling (1980))

lim
n→∞

EQ (ρn) = EQ (p) = 1 .

The assertion of the lemma follows from here and from the equalities

EQ (ρn) =

∫

IR




1
Q(An(x))

∫
An(x)

p3(x) dQ(x)
(

P (An(x))
Q(An(x))

)2


 dQ(x)

=

∫

IR

1

Q(An(x))

(∫

An(x)

p3(x)

p2
n(x)

dQ(x)

)
dQ(x)

= EQ

(
EQ

(
p3

p2
n

∣∣∣Pn

))
= EQ

(
p3

p2
n

)
= 6 I3(P, Pn) + 1 ,
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where we have used property of conditional expectation w.r.t. a σ-field. ¤
Proof of Theorem 3. Since Pn is Q-approximating, pn tends Q-a.s. to p as n → ∞.
Consequently, p/pn tends to 1 Q-a.s. and

∆P,Pn =

∣∣∣∣
p

pn

− 1

∣∣∣∣

tends to zero Q-a.s. Thus, by Lemma 9

∣∣∣∣Dφ(P, Pn)− φ
′′
(1)

2
χ2(P, Pn)

∣∣∣∣ ≤ 3 Lφ I3(P, Pn)

for sufficiently large n. Since I3(P, Q) < +∞ implies χ2(P, Q) < +∞ (this can be seen in the
manner used at the end of proof of Lemma 9), the proof is completed by applying Lemmas 10
and 11. ¤
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