A connection between probability and fuzzy logic by means of dialogue games

Libor Běhounek

Institute of Computer Science Academy of Sciences of the Czech Republic

Ondrej Majer

Institute of Philosophy Academy of Sciences of the Czech Republic Structure of the talk:

- 1. T-norm based fuzzy logics
- 2. Dutch book argument for probability
- 3. Dialogue games
- 4. Giles games for Ł
- 5. Games for Π , G (Fermüller)
- 6. Probabilistic frames for all t-norm fuzzy logics
- 7. Conclusions

Fuzzy logic

Strategy:

- Generalize bivalent classical logic to [0,1]
- Impose some restrictions on the truth functions of the connectives
- Derive the semantics and axioms from these postulates

Design choices:

- Truth-functionality of all connectives w.r.t. [0,1]
- Start with conjunction & and require some natural conditions . . . continuous t-norms
- Other connectives determined by & in a natural way

The conditions on &

Commutativity: x * y = y * x

- When asserting two propositions, it does not matter in which order we put them down
- The commutativity of classical conjunction seems not affected by taking into account also fuzzy propositions

Associativity: (x * y) * z = x * (y * z)

• When asserting three propositions, it is irrelevant which two of them we put down first (be they fuzzy or not)

Monotony: $x \le x' \Rightarrow x * y \le x' * y$

• Increasing the truth value of the conjuncts should not decrease the truth value of their conjunction

Classicality: x * 1 = x, x * 0 = 0

- 0,1 represent the classical truth values for crisp propositions
- Fuzzy logic generalizes, not replaces classical logic

Continuity: * *continuous*

• An infinitesimal change of the truth value of a conjunct should not radically change the truth value of the conjunction

We could add further conditions on & (e.g., idempotency), but it has proved convenient to stop here, as it already yields a rich and interesting theory

 \Rightarrow The truth function of & ... a continuous t-norm

Three important t-norms:

- Gödel t-norm G $\dots x * y = \min(x, y)$
- Łukasiewicz t-norm Ł ... $x * y = \max(0, x + y 1)$
- Product t-norm $\sqcap \ldots x * y = x \cdot y$

Truth functions of other connectives:

- $(x \rightarrow y) =_{df} \sup\{z \mid z * x \le y\}$ (the adjoint functor to &) (maximal function for internalized modus ponens)
- $\neg x =_{df} x \to 0$ (reductio ad absurdum)
- $(x \leftrightarrow y) =_{df} (x \rightarrow y) \& (y \rightarrow x)$ (bi-implication)
- min, max (turn out to be definable) $(x \land y) =_{df} x * (x \rightarrow y)$ $(x \lor y) =_{df} ((x \rightarrow y) \rightarrow y) \land ((y \rightarrow x) \rightarrow x)$

Semantics of main t-norm connectives:

	G	Ł	П
x & y	$\min(x,y)$	max(0, x + y - 1)	$x \cdot y$
$x \mathop{ ightarrow} y$ if $x \leq y$	1	1	1
$x \rightarrow y$ if $x > y$	y	$\min(1, 1 - x + y)$	y/x
$\neg x$	$1 - \operatorname{sgn}(x)$	1-x	$1 - \operatorname{sgn}(x)$

$$(x \leftrightarrow y) = 1$$
 iff $x = y$

Evaluation = assignment of particular values in [0, 1] to propositional variables

Evaluation of formulae . . . compositionally = a straightforward generalization of Tarski's conditions to [0, 1]

*-*tautology* ... $e(\varphi) = 1$ for every evaluation e of atoms

Logic PC(*) ... the set of all *-tautologies

The logics of the three important t-norms:

- Gödel logic G
- Łukasiewicz logic Ł
- Product logic Π

Some formulae are *-tautologies for any continuous t-norm * ... *t-tautologies* (e.g., $\varphi \rightarrow \varphi$)

Hájek's Basic (Fuzzy) Logic BL ... the set of all t-tautologies

 $\mathsf{BL} \subset \mathsf{PC}(*) \subset \mathsf{Bool}$

The logics of continuous t-norms proved to be axiomatizable:

$$\square: \neg \neg \varphi \rightarrow ((\varphi \rightarrow (\varphi & \psi)) \rightarrow (\psi & \neg \neg \psi))$$

PC(*): ...

+ deductive rule modus ponens: from φ , $\varphi \rightarrow \psi$ infer ψ

Characterization of continuous t-norms

Theorem (Mostert–Shields, 1957): Each continuous t-norm is an ordinal sum of isomorphic copies of G, \pounds , and Π .

- Idempotent elements form a closed set ... G
- The intervals between are isomorphic to Ł or Π
- Values from different intervals evaluate as in G

Notation: $L \oplus \Pi$, $L \oplus \Pi \oplus \Pi$, ...

Theorem: $BL = t \oplus t \oplus t \oplus ...$

Simple Giles game – atomic propositions

- two players (Me and You, Proponent and Opponent) are betting on results of some yes/no experiment (' the spin of the particle will be +')
- each event *E* (result of experiment) is expressed by an atomic proposition *e* and has certain (objective) probability of occurrence, or dually a *risk value* <e>*
- a bet is given by a multiset of your events (propositions) f₁, ..., f_n against a multiset of my events e₁.... e_m

 $[f_1....f_n | e_1....e_m]$

Simple Giles game – payoffs

- payoffs for the game $[f_1, ..., f_n | e_1, ..., e_m]$
- I pay you 1 ε for each of my events $e_1, ..., e_m$ which does not occur
- you pay me 1 \in for each of your events $f_1, ..., f_n$ which does not occur
- the payoff for the empty multiset of events [|...] or [...] is 0
- the game is fair (from my point of view) if my total risk is not greater than yours

 $\Sigma_{l} < f_{i} > * \geq \Sigma_{j} < e_{j} > *$

<u>Giles game – complex propositions</u>

- in general there is no straightforward correspondence between (compound) propositions of a fuzzy logic and events
- payoffs are defined just on the basis of events
- bets on complex propositions shall be *transformed* onto bets on atomic propositions
- we shall have a fair transformation rule which transforms fair bets onto fair bets
- instead of the correspondence between *propositions* (*formulae*) of *classical logic* and *events* we have a correspondence between *propositions* of *fuzzy logic* and *bets on events*

<u>Giles game for Ł – the transformation rule</u>

- the connectives in Ł are interdefinable, we define the game for the material implication \rightarrow and the constant for contradiction \perp
- \perp corresponds to the atomic event which never happens (impossible event) The ' \rightarrow ' rule:
- You can *attack* my bet on $A \rightarrow B$ by betting on A and forcing me to bet on B
- You may explicitly refuse to attack $A \rightarrow B$

$$[e_1, ..., e_{m-1} | A \rightarrow B, f_1, ..., f_n]$$

 $[e_1, ..., e_{m-1}, | f_1, ..., f_n] (refuse) \qquad [e_1, ..., e_{m-1}, A | f_1, ..., f_n, B] (attack)$

- I can attack your bet the same way
- ' \rightarrow ' rule is the same as in a dialogue game for classical logic (Lorenzen 1950's)
- implication is a conditional betting rule: 'if you bet on A, I am ready to bet on B'

Giles game for Ł

- the game starts in a state [| F] i.e. with Myself betting on some proposition F
- the game ends if there are no compound propositions
- the game is a win for me if I have a strategy to end the game in a position where my risk is not greater than your risk

<u>Correspondence theorem (Giles 1958, Fermüller 2005)</u>

I have a winning strategy for the Giles game [| *F*] for a given assignment of risk values <> iff *F* is a true statement of Lukasiewicz logic under the assignment of (fuzzy) values corresponding to <>. Analogously, I have a winning strategy for the game [| *F*] for any assignment of risk values iff *F* is a tautology of Lukasiewicz logic.

Giles game for Π and G - rules

- primitive connectives: &, \rightarrow , \perp
- initial state: [|*F*], terminal states: all *e*_i's and *f*_j's atomic
- arbitrary order of turns

Opponent's turns:

[*F*|*G*,*A* & *B*] just rewrite as

- $[F|G,A \to B]$
- Opponent grants $A \rightarrow B$: continue with [F|G]
- Opponent attacks $A \rightarrow B$:
 - \circ (a+) Proponent concedes: continue with [*F*,*A* |*G*,*B*]

[*F*|*G*,*A*, *B*]

o (a-) Proponent insists on validity: continue with [A | B]

Proponent's turns:

dual (dtto on the right-hand side) Notice the *role switch* in (a-) here: implication is defended by the player who insists on it

Giles game for Π and G - payoffs

- the rules of the game are uniform for all three logics, for L the extension of the implication clause is trivial
- they differ in calculating payoffs: in the terminal state $[f_1, ..., f_n | e_1, ..., e_m]$

The payoffs for G: $\min \langle f_i \rangle \leq \min \langle e_j \rangle$

"My least probable event is more probable than that of yours."

The payoffs for Π : $\Pi < f_i > \leq \Pi < e_i >$

"Probability of all of my events happening is greater than that for you."

 The payoffs for L:
 $1 - \sum (1 - \langle f_i \rangle) \le 1 - \sum (1 - \langle e_j \rangle)$

 ie.
 $\sum (1 - \langle f_i \rangle) \ge \sum (1 - \langle e_j \rangle)$

Probabilistic justification of fuzzy logics

Evaluation of terminal sequents:

Łukasiewicz:	we sum the inverted results	(cf. Ł)
Gödel:	we take the <i>minimum</i>	(cf. G)
Product:	we take the <i>product</i>	(cf. П)

Questions:

- Can we generalize the results to other PC(*)'s and BL?
- Can the formula be interpreted as a bet on some event?

Problem: Fuzzy logic is truth-functional w.r.t. [0, 1] Probability is not truth-functional w.r.t. [0, 1] (events need not be independent)

However, there are systems of events on which probability is truth-functional w.r.t. [0,1] (for non-identical events); we shall call them truth-functional frames

Examples:

•
$$A_i \text{ independent} \Rightarrow \mathsf{P}(A_i \cap A_j) = \mathsf{P}(A_i) \cdot \mathsf{P}(A_j)$$
 (cf. Π)

•
$$A_i \text{ disjoint} \Rightarrow \mathsf{P}(A_i \cup A_j) = \mathsf{P}(A_i) + \mathsf{P}(A_j)$$
 (cf. Ł)

•
$$A_i \cong \operatorname{Chain} \Rightarrow \mathsf{P}(A_i \cap A_j) = \min(\mathsf{P}(A_i), \mathsf{P}(A_j))$$
 (cf. G)

First approximation: To get a fuzzy logic, evaluate probabilistically in a truth-functional frame Why the first approximation does not work:

- 1. The evaluation is still not fully truth-functional: $P(A_i \cap A_i) = P(A_i)$
- 2. Only (strong) conjunction and disjunction, involutive negation, 0 and 1 can be expressed by means of set-operations on the frame; fuzzy implication does not correspond to any set-operation \Rightarrow we get only a *fragment* of fuzzy logic
- 3. Truth-functional frames only give a sound, not complete semantics of fuzzy logics. Example: $P(A_i \cap A_j) = 0$ is true for all disjoint events, but $(\varphi \& \psi) \leftrightarrow 0$ is not a theorem of Ł

The failures are remedied by the dialogue-betting game:

The complex formula has been decomposed by the dialogue game according to the meanings of connectives to an 'equivalent' bet $[F \mid G]$ involving only atoms

The bet $[F \mid G]$ is interpreted as follows:

- Atoms are event types (multiple occurrences of the same variable are assigned different events, but with the same probability)
- Proponent bets on the event $\bigcap G$, Opponent on $\bigcap F$
- Proponent wins iff $P(\cap G) \ge P(\cap F)$

The choice of the truth-functional frame determines the resulting fuzzy logic:

- \square : independent events
- **L**: complements of disjoint events
- G: comparable events

Theorem: There is a frame for any logic of a continuous t-norm

Hint: The frame is a combination of the above three by the Mostert-Shields decomposition of the t-norm.

 \Rightarrow Fuzzy logic is a way of reasoning about probabilities of limited sets of events (independent, disjoint, comparable, ...)

Dutch book and Giles game

To compare fuzzy and probabilistic games we use the framework of the game theory. A Dutch Book can be seen as a nondeterministic two-person game:

- Bettor assigns probabilities (quotients) q₁,..., q_n to a finite set of events
 E₁, ...E_n
- Bookie sets the signs $sgn_1, \dots sgn_n$ for q_1, \dots, q_n
- Nature's move makes (some of) the events $E_1, \ldots E_n$ happen
- the payoff Σ sgn_i(|| E_i ||*S- q_i *S)

The bet $q_1, ..., q_n$ on $E_1, ..., E_n$ is said to be *Dutch bookable* iff the Bookie has a strategy (i.e. a choice of signs $sgn_1, ..., sgn_n$) such that for any move of the Nature (any subset of $E_1, ..., E_n$ happening) his payoff is positive, i.e. a strategy which leads to an *immediate loss* of the Bettor (The DB-game is non zero sum.)

Dutch book and Giles game

Giles game for tautologies

- Opponent chooses the assignment *v* of atoms
- the game for *F* with the assignment *v* is played
- payoffs

The Giles bet on *F*, *v* is said to be *unfair* if the Opponent has a strategy such that the Proponent's *expected* loss is greater than the Opponents one.

Dutch book and Giles game

The penalty for inconsistency in a DB is stronger than the one in GB (sure loss x expected loss). The only immediate loss in GB is when betting on contradiction.

- in DB game this means loss in any play no matter what is Nature's move
- in GG the situation is different the inconsistence with respect to tautologicity leads to an expected loss