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Structure of the talk:

1. T-norm based fuzzy logics
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3. Dialogue games
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5. Games for Π, G (Fermüller)
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Fuzzy logic

Strategy:

• Generalize bivalent classical logic to [0,1]

• Impose some restrictions on the truth functions of the con-

nectives

• Derive the semantics and axioms from these postulates

Design choices:

• Truth-functionality of all connectives w.r.t. [0,1]

• Start with conjunction & and require some natural conditions

. . . continuous t-norms

• Other connectives determined by & in a natural way



The conditions on &

Commutativity: x ∗ y = y ∗ x
• When asserting two propositions, it does not matter in which

order we put them down

• The commutativity of classical conjunction seems not af-

fected by taking into account also fuzzy propositions

Associativity: (x ∗ y) ∗ z = x ∗ (y ∗ z)

• When asserting three propositions, it is irrelevant which two

of them we put down first (be they fuzzy or not)

Monotony: x ≤ x′ ⇒ x ∗ y ≤ x′ ∗ y
• Increasing the truth value of the conjuncts should not de-

crease the truth value of their conjunction



Classicality: x ∗ 1 = x, x ∗ 0 = 0

• 0,1 represent the classical truth values for crisp propositions

• Fuzzy logic generalizes, not replaces classical logic

Continuity: ∗ continuous

• An infinitesimal change of the truth value of a conjunct

should not radically change the truth value of the conjunction

We could add further conditions on & (e.g., idempotency), but

it has proved convenient to stop here, as it already yields a rich

and interesting theory

⇒ The truth function of & . . . a continuous t-norm



Three important t-norms:

• Gödel t-norm G . . . x ∗ y = min(x, y)

•  Lukasiewicz t-norm  L . . . x ∗ y = max(0, x+ y − 1)

• Product t-norm Π . . . x ∗ y = x · y

Truth functions of other connectives:

• (x→ y) =df sup{z | z ∗ x ≤ y} (the adjoint functor to &)

(maximal function for internalized modus ponens)

• ¬x =df x→ 0 (reductio ad absurdum)

• (x↔ y) =df (x→ y) & (y→ x) (bi-implication)

• min, max (turn out to be definable)

(x ∧ y) =df x ∗ (x→ y)

(x ∨ y) =df ((x→ y)→ y) ∧ ((y→ x)→ x)



Semantics of main t-norm connectives:

G  L Π

x& y min(x, y) max(0, x+ y − 1) x · y

x→ y if x ≤ y 1 1 1

x→ y if x > y y min(1,1− x+ y) y/x

¬x 1− sgn(x) 1− x 1− sgn(x)

(x↔ y) = 1 iff x = y

Evaluation = assignment of particular values in [0,1] to propo-
sitional variables

Evaluation of formulae . . . compositionally
= a straightforward generalization of Tarski’s conditions to [0,1]



∗-tautology . . . e(ϕ) = 1 for every evaluation e of atoms

Logic PC(∗) . . . the set of all ∗-tautologies

The logics of the three important t-norms:

• Gödel logic G

•  Lukasiewicz logic  L

• Product logic Π

Some formulae are ∗-tautologies for any continuous t-norm ∗
. . . t-tautologies (e.g., ϕ→ ϕ)

Hájek’s Basic (Fuzzy) Logic BL . . . the set of all t-tautologies

BL ⊂ PC(∗) ⊂ Bool



The logics of continuous t-norms proved to be axiomatizable:

BL: (ϕ→ ψ)→ ((ψ→ χ)→ (ϕ→ χ))

(ϕ& ψ)→ ϕ

(ϕ& (ϕ→ ψ))→ (ψ & (ψ→ ϕ))

(ϕ→ (ψ→ χ))→ ((ϕ& ψ)→ χ)

((ϕ& ψ)→ χ)→ (ϕ→ (ψ→ χ))

((ϕ→ ψ)→ χ)→ (((ψ→ ϕ)→ χ)→ χ)

0→ ϕ

G: ϕ→ (ϕ& ϕ)

 L: ¬¬ϕ→ ϕ

Π: ¬¬ϕ→ ((ϕ→ (ϕ& ψ))→ (ψ & ¬¬ψ))

PC(∗): . . .

+ deductive rule modus ponens: from ϕ, ϕ→ ψ infer ψ



Characterization of continuous t-norms

Theorem (Mostert–Shields, 1957): Each continuous t-norm is

an ordinal sum of isomorphic copies of G,  L, and Π.

• Idempotent elements form a closed set . . . G

• The intervals between are isomorphic to  L or Π

• Values from different intervals evaluate as in G

Notation:  L⊕Π,  L⊕Π⊕Π, . . .

Theorem: BL =  L⊕  L⊕  L⊕ . . .



 1 

Simple Giles game – atomic propositions 
 

• two players (Me and You, Proponent and Opponent) are betting on results of 

some yes/no experiment (‘ the spin of the particle will be +’)  

• each event E (result of experiment) is expressed by an atomic proposition e and 

has certain (objective) probability of occurrence, or dually a risk value <e>* 

• a bet is given by a multiset of your events (propositions) f1, ..., fn against a 

multiset of my events e1.... e m 

 

     [f1....fn | e1....em] 
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Simple Giles game – payoffs 
 

• payoffs for the game [f1, ..., fn | e1, ...,em] 

• I pay you 1Є for each of my events e1, ...,em which does not occur 

• you pay me 1Є for each of your events f1, ..., fn  which does not occur 

• the payoff for the empty multiset of events [ |... ] or [ ...| ] is 0 

• the game is fair (from my point of view) if my total risk is not greater than yours 

 

    ΣI<fi>*≥ Σj<ej>* 



 3 

Giles game – complex propositions 

 

• in general there is no straightforward correspondence between (compound) 

propositions of a fuzzy logic and events 

• payoffs are defined just on the basis of events 

• bets on complex propositions shall be transformed onto bets on atomic 

propositions 

• we shall have a fair transformation rule which transforms fair bets onto fair bets 

• instead of the correspondence between propositions (formulae) of classical logic 

and events we have a correspondence between propositions of fuzzy logic and 

bets on events 
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Giles game for Ł – the transformation rule 
• the connectives in Ł are interdefinable, we define the game for the material 

implication → and the constant for contradiction ⊥ 

• ⊥ corresponds to the atomic event which never happens (impossible event) 

The ‘→’ rule: 

• You can attack my bet on A→B by betting on A and forcing me to bet on B 

• You may explicitly refuse to attack A→B 

[e1, ..., em-1| A→B, f1, ..., fn]   

      

[e1, ..., em-1, | f1, ..., fn] (refuse)   [e1, ..., em-1, A | f1, ..., fn, B] (attack) 

• I can attack your bet the same way 

• ‘→’ rule is the same as in a dialogue game for classical logic (Lorenzen 1950’s) 

• implication is a conditional betting rule: ‘if you bet on A, I am ready to bet on B’ 
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Giles game for Ł 
 

• the game starts in a state [ | F ] i.e. with Myself betting on some proposition F 

• the game ends if there are no compound propositions 

• the game is a win for me if I have a strategy to end the game in a position where 

my risk is not greater than your risk 

 

Correspondence theorem (Giles 1958, Fermüller 2005) 

I have a winning strategy for the Giles game [ | F ] for a given assignment of risk 

values <> iff F is a true statement of Lukasiewicz logic under the assignment of 

(fuzzy) values corresponding to <>. Analogously, I have a winning strategy for the 

game [ | F ] for any assignment of risk values iff F is a tautology of Lukasiewicz logic. 
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Giles game for Π and G - rules 
• primitive connectives: &, → , ⊥ 

• initial state: [  |F ], terminal states: all ei's and fj's atomic 

• arbitrary order of turns 

Opponent's turns: 

[F |G,A & B]  just rewrite as    [F |G,A, B] 

[F |G,A → B] 

• Opponent grants A → B:     continue with [F |G] 

• Opponent attacks A → B: 

o (a+) Proponent concedes:   continue with [F,A |G,B ] 

o (a-) Proponent insists on validity:  continue with [A | B] 

Proponent's turns:  

dual (dtto on the right-hand side) Notice the role switch in (a-) here: 
implication is defended by the player who insists on it 
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Giles game for Π and G - payoffs 
• the rules of the game are uniform for all three logics, for L the extension of the 

implication clause is trivial 

• they differ in calculating payoffs: in the terminal state [f1, ..., fn | e1, ...,em] 

The payoffs for G:  min<fi> ≤ min <ej> 

“My least probable event is more probable than that of yours.” 

 

The payoffs for Π:  Π<fi> ≤ Π<ej> 

“Probability of all of my events happening is greater than that for you.” 

 

The payoffs for L:  1-∑(1-<fi>) ≤ 1-∑(1-<ej>) 

ie.         ∑(1-<fi>) ≥  ∑(1-<ej>) 



Probabilistic justification of fuzzy logics

Evaluation of terminal sequents:

 Lukasiewicz: we sum the inverted results (cf.  L)

Gödel: we take the minimum (cf. G)

Product: we take the product (cf. Π)

Questions:

• Can we generalize the results to other PC(∗)’s and BL?

• Can the formula be interpreted as a bet on some event?



Problem:
Fuzzy logic is truth-functional w.r.t. [0,1]
Probability is not truth-functional w.r.t. [0,1]

(events need not be independent)

However, there are systems of events on which probability is
truth-functional w.r.t. [0,1] (for non-identical events); we shall
call them truth-functional frames

Examples:
• Ai independent ⇒ P(Ai ∩Aj) = P(Ai) · P(Aj) (cf. Π)
• Ai disjoint ⇒ P(Ai ∪Aj) = P(Ai) + P(Aj) (cf.  L)
• Ai a ⊆-chain ⇒ P(Ai ∩Aj) = min(P(Ai),P(Aj)) (cf. G)

First approximation: To get a fuzzy logic, evaluate probabilisti-
cally in a truth-functional frame



Why the first approximation does not work:

1. The evaluation is still not fully truth-functional:

P(Ai ∩Ai) = P(Ai)

2. Only (strong) conjunction and disjunction, involutive nega-

tion, 0 and 1 can be expressed by means of set-operations

on the frame; fuzzy implication does not correspond to any

set-operation ⇒ we get only a fragment of fuzzy logic

3. Truth-functional frames only give a sound, not complete se-

mantics of fuzzy logics. Example: P(Ai ∩Aj) = 0 is true for

all disjoint events, but (ϕ& ψ)↔ 0 is not a theorem of  L



The failures are remedied by the dialogue–betting game:

The complex formula has been decomposed by the dialogue

game according to the meanings of connectives to an ‘equiv-

alent’ bet [F | G] involving only atoms

The bet [F | G] is interpreted as follows:

• Atoms are event types (multiple occurrences of the same

variable are assigned different events, but with the same

probability)

• Proponent bets on the event
⋂
G, Opponent on

⋂
F

• Proponent wins iff P (
⋂
G) ≥ P (

⋂
F )



The choice of the truth-functional frame determines the resulting

fuzzy logic:

Π: independent events

 L: complements of disjoint events

G: comparable events

Theorem: There is a frame for any logic of a continuous t-norm

Hint: The frame is a combination of the above three by the

Mostert-Shields decomposition of the t-norm.

⇒ Fuzzy logic is a way of reasoning about probabilities of limited

sets of events (independent, disjoint, comparable, . . . )
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Dutch book and Giles game 
To compare fuzzy and probabilistic games we use the framework of the game 

theory. A Dutch Book can be seen as a nondeterministic two-person game: 

• Bettor – assigns probabilities (quotients) q1,…, qn to a finite set of events 

E1, …En 

• Bookie – sets the signs sgn1, …sgnn for q1,…, qn 

• Nature’s move – makes (some of) the events E1, …En happen 

• the payoff Σsgni(||Ei ||*S-qi*S) 

The bet q1,…, qn on E1, …En is said to be Dutch bookable iff the Bookie has a 

strategy (i.e. a choice of signs sgn1, …sgnn) such that for any move of the 

Nature (any subset of E1, …En happening) his payoff is positive, i.e. a strategy 

which leads to an immediate loss of the Bettor (The DB-game is non zero sum.) 

   

 



 10 

Dutch book and Giles game 
 

Giles game for tautologies 

• Opponent chooses the assignment v of atoms 

• the game for F with the assignment v is played 

• payoffs 

 

The Giles bet on F, v is said to be unfair if the Opponent has a strategy such that 

the Proponent’s expected loss is greater than the Opponents one. 
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Dutch book and Giles game 
 

The penalty for inconsistency in a DB is stronger than the one in GB (sure loss x 

expected loss). The only immediate loss in GB is when betting on contradiction. 

• in DB game this means loss in any play no matter what is Nature’s move 

• in GG the situation is different – the inconsistence with respect to tautologicity 

leads to an expected loss 

 

 

 

 

 

 




