Fully Probabilistic vs Bayesian DM

Miroslav Kárný

Adaptive Systems Department Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

school@utia.cas.cz

Theme of talk

Domain Decision Making (DM) under uncertainty, incomplete knowledge and limited ability to evaluate

B DM Bayesian DM theory defining the optimal DM strategy ${ }^{\circ} R=\operatorname{Arg} \min E[Z]=$ minimum of expected loss while describing behavior Q of DM loop by probability density function (pdf) $f(Q)$

FP DM Fully probabilistic DM theory defining the optimal strategy $R=\operatorname{Arg} \min D\left[f| |{ }^{\prime} f\right]=\operatorname{KLD}$ of $f(Q)$ on ideal pdf ${ }^{I f}(Q)$ expressing DM aims and constraints

Relationship of B DM of FP DM ?

DM structure and elements

- provides internal aims \& constraints
- designs \& applies DM strategy R : data \rightarrow actions

Data knowledge, observations, goal \& constraint descriptions
Behavior Q considered actions, observations \& internals, i.e., unobserved influences and responses

Bayesian and Fully Probabilistic DM

Optimal B DM strategy ${ }^{\circ} R: \quad \operatorname{Arg} \min \int Z(Q) f(Q) d Q$
expected loss $E[Z]$
Closed-loop model $f(Q)$, conditioned on prior knowledge, factorizes

$$
\begin{aligned}
f(Q) & =f(\text { observations, actions, internals }) \\
& =\underbrace{f(\text { observations, internals } \mid \text { action, data) })}_{\text {chosen environment model }} \times \underbrace{f(\text { action } \mid \text { data })}_{\text {optimized strategy }}
\end{aligned}
$$

FP DM: $\quad Z(Q)=\ln (f(Q) \underbrace{I f(Q))} \Leftrightarrow E[Z]=\underbrace{f(Q) \ln \left(f(Q) /^{I} f(Q)\right) d Q}$ aims- constraints- expressing ideal pdf

KL divergence

Basis of DM under uncertainty revisited

Quest for optimality

- strict partial ordering ${ }_{Q^{*}}$ of behaviors $Q \in Q^{*}$ is assumed to exist
- complete ordering $<_{R^{*}}$ of strategies $R \in R^{*}$ is searched for that
- is based on well-specified assumptions
- respects ordering $<_{Q^{*}}$ of behaviors $Q \in Q^{*}$
- fully exploits knowledge available
- serves to all DM tasks with common information structure
- is generated by a technique avoiding unjustified restrictions

Towards strategy ordering (fixed environment)

$$
\text { Prop } \exists \text { non-unique loss } Z: Q^{*} \rightarrow[-\infty, \infty]: Q_{1}<Q^{*} Q_{2} \Rightarrow Z\left(Q_{\nu}\right)<Z\left(Q_{2}\right)
$$

\{under general topological conditions, Fishburn 1970\}
Def Behavior Q decomposes symbolically to $\left(Q_{R^{\prime}} N\right)$:
Q_{R} a known constituent or determined by the used strategy R $N \in N^{*} \neq \varnothing$ uncertainty, i.e., unknown constituent independent of R

Def Functions $Z_{R}(N) \in Z_{R^{*}}=\left\{Z_{R}(N)=Z\left(Q_{R} N\right), R \in R^{*}\right\}$ of $N \in N^{*} \neq \varnothing$, gained from the loss $Z(Q)$ for various strategies $R \in R^{*}$, are ordered partially by the dominance ordering

$$
Z_{\mathrm{R} 1}<Z_{\mathrm{R} 2} \Leftrightarrow Z_{R 1}(N) \leq Z_{R 2}(N), \forall N \in N^{*} \text {, sharp for enough } N
$$

Prop \exists non-unique "loss" T : $Z_{R^{4}} \rightarrow[-\infty, \infty]: Z_{R I}<Z_{R 2} \Rightarrow T\left(Z_{R 1}\right)<T\left(Z_{R 2}\right)$ \{under general topological conditions\}

Strategy ordering \& its representation

Re1 Arg min any subset of $R^{*} T\left(Z_{R}\right)$ is non-dominated
Prop Rel $\Rightarrow Z_{R I}<Z_{R 2} \Leftrightarrow T\left(Z_{R I}\right)<T\left(Z_{R 2}\right)$, i.e., T orders R^{*} completely
\{simple contradiction\}
Re2 T universal for all orders $<_{Q^{*}}$ with common N^{*}, i.e., acts on $Z_{R^{*}}^{*}=\bigcup_{<Q^{*}} Z_{R^{*}}$ containing continuous Z s on compact support T sufficiently smooth and constant preserving T locally additive, i.e., $T\left(Z_{1}+Z_{2}\right)=T\left(Z_{\nu}\right)+T\left(Z_{2}\right)$ for $Z_{l} \times Z_{2}=0$

Prop
$\operatorname{Re} 2 \Rightarrow T(Z)=\int U(Z(Q), Q) f(Q) d Q$
U utility function shaping the loss in dependence on behavior
$f(Q)$ the pdf describing behavior Q of closed decision loop
\{ i) representation of local functional; ii) basic theorem of probability theory, M. Rao "Measure Theory"; iii) existence pdf \}

Representation leading to FP DM

Def Let ${ }^{\circ} R \in \operatorname{Arg} \min _{R^{*}} \int U(Z(Q), Q) f(Q) d Q$ and denote $I f(Q)=f(Q)$ for the optimal strategy ${ }^{\circ} R$
U, Z not uniquely determined by the ordering $<_{Q^{*}}$, those leading to the same $I f(Q)$ are equivalent
Re3 Representative $W(Z(Q), f(Q))=U(Z(Q), Q)$ of equivalence class depending on $f(Q)$ smoothly and with $W(Z(Q)$, , $f(Q))=$ constant is searched for

Prop
$\mathrm{Re} 3 \Rightarrow T(Z)$ is affine transformation of the KLD of $f(Q)$ on ${ }^{I f}(Q) \Leftrightarrow$ FP DM
\{a copy of variation arguments of Bernardo 1978\} Relationships of B DM of FP DM ?

Relationship of FP DM to BDM

$$
\text { Prop To any pair }[L(Q)=U(Z(Q), Q), f(Q)] \exists I^{I} f(Q) \Rightarrow \mathrm{E}[L]=\mathrm{D}\left[f^{\prime} \|{ }^{I} f\right]
$$

$$
\left\{\text { Construction }{ }^{I} f(Q)=f(Q) \exp [-L(Q)-b(L-E[L])]\right\}
$$

Troubles

- Is the inclusion B DM to FP DM legitimate?
- Generic solution of FP DM randomized
- Optimized functional depends on $f(Q)$ in non-linear way
- Reduction of FP DM on B DM sometimes artificial: FP DM with a set of ideal pdfs is highly desirable

Good news on FP DM

Prop

Optimal randomized strategy is given by an explicit formula depending on solution of an integral equation
\{Dynamic Programming \& elementary properties of KLD\}
\Rightarrow Simplicity of the approximated mapping simplifies approximate DP

Prop
Ideal pdf can be constructed as a conservative aim-oriented modification of the current closed-loop description
\{Find the best reachable $f(Q)$ and make a conservative compromise between it and the current one $\}$
\Rightarrow Automatic aim elicitation (... a way towards practice)
\Rightarrow Ideal respects reality and provides robust solutions
(... quadratic criteria for heavy-tailed disturbances are non-sense)

Good news on FP DM

Props \exists a rich toolset creating global pdf from low-dimensional pdfs

(unless low-dimensional pdfis are incompatible or conditional)
$\Rightarrow \quad$ FP DM fits to DM with multiple decision makers ${ }^{\text {as }}$ knowledge sharing \Leftrightarrow creation of global pdf

- aim sharing \Leftrightarrow creation of global ideal pdf of cooperating neighbors followed by marginalization to respective decision makers

Summarizing (read advertising) statement
FP DM is a rich, relatively new research domain heading to potentially useful practical tool taking us closer to the dreamt DM perpetual motion (a crazy dream, isn't it?) and fully scalable multiple DM

