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Motivation

The problem
• having large overdetermined linear system Ax = b, find a solution

minimising ||Ax − b||
• the matrix is sparse, however the number of equation can be large

(hundreds of thousand)

The Methods
• classical approach:

• Least Mean Squares
• Minimisation Techniques

• alternative: Kaczmarz Method
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Kaczmarz Method

Principles
• geometrically, the system with n equation and m variables represents n

hyperplanes in m-dimensional space
• the solution is a point in the space
• having an initial estimation, orthogonal projections onto the hyperplanes

are performed (inner iteration)
• the process is iterated (outer iteration)
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Extended Kaczmarz Method

Need for Improvement
• the classical Kaczmarz method does not converge every time to the least

square solution
• extension: in each outer iteration, first the right-hand side vector is

corrected
• the correction is performed as orthogonal projection of the initial RHS

onto the columns
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Original vs. Extended

Kaczmarz
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Reconstructed Images

Synthetic Data
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Reconstructed Images

Phantom Data
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Igor Peterlík, Radovan Jiřík (UBMI) Ultrasound Transmission Tomography Using Algebraic Reconstruction TechniquesDAR Třešt’ 2006 7 / 17
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Further Improvement

Regularisation Technique
• usual technique for “smoothing” the solution
• special square matrix added to the system
• directly incorporated into the Kaczmarz method (adding m equations)
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Igor Peterlík, Radovan Jiřík (UBMI) Ultrasound Transmission Tomography Using Algebraic Reconstruction TechniquesDAR Třešt’ 2006 8 / 17



Partitioning Scheme

The Idea
• both the original and extended method are strictly sequential, since the

computation in inner k -th iteration depends on the (k − 1)-th inner
iteration

• the straight forward possibility is to partition the matrix into blocks, which
are then processed separately (in parallel)

• partitioning is static and regular

Partitioning
• the original KM: the matrix is partitioned into row blocks, the inner

iterations are performed separately in each block
• the extended KM:

• 1st phase: column partitioning
• 2st phase: row partitioning
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Partitioned Original KM

Partitioned Kaczmarz
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Partitioned Extended KM

Partitioned Extended Kaczmarz
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Measurements

Data
• the experiments were performed on both synthetic (127400 eq.) and

phantom data (81000 eq)
• since the partitioning modifies the inner data-dependency inside the

method, accuracy and convergence were analysed as well

Accuracy
• the accuracy was measured by the residual r = ||Ax − b|| which proved

to be experimentally equivalent to the image difference

∆(a, b) =
√∑

m
∑

n [aref (m, n) − a(m, n)]2.

• the stopping criterium is given by relative residual r (k)/r (k−1)

Convergence
• the relation between the number of the outer iterations and the number of

partitions
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Accuracy

Number of partitions versus the residual
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• partitioning improves the accuracy of the original Kaczmarz method
• the accuracy of the extended method remains invariant
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Convergence

Number of Iterations vs. Partitioning
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Analysis
• the convergence depends on the number of the partitions
• original method: for 2,4,8,16 —

the convergence get better, for larger number of the partitions, increasing
number of the outer iteration

• extended method: only for 2 is better, for larger number of the partitions
get still worse
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Parallel Efficiency of Original Method

Synth. Data
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Parallel Efficiency of Extended Method
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Summary

Conclusion
• comparison of the original and the extended version: the extended do

better job
• partitioning scheme —

makes sense for the original method:
• phantom data: max 15× speed-up with 16 blocks (on 16 CPUs)
• synthetic data: max 28× speed-up with 16 blocks (on 16 CPUs)

• not too much for the extended:
• phantom data: max 2.3× speed-up with 4 blocks (on 4 CPUs)
• synthetic data: max 2.6× speed-up with 4 blocks (on 4 CPUs)

• when the accuracy of the original method is sufficient, then the
parallelisation can be applied with this method

Future Work
• larger set of equations (including the reflected signals)
• relaxation and regularisation extensions
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