Functional Adaptive Controller for MIMO Systems with Dynamic Structure of Neural Network

Ladislav KRÁL, Ivo PUNČOCHÁŘ, Jindřich DUNÍK

Department of Cybernetics University of West Bohemia Pilsen, Czech Republic

10th International PhD Workshop on Systems and Control Young Generation Viewpoint Hluboká nad Vltavou, September 22-26, 2009

Contents

- **2** Problem statement
- **3** Controller design
- **4** Numerical example

6 Conclusion

Introduction $\bullet \circ$	Problem statement \circ	Controller design 0000000	Example 0000	Conclusion 0
Introductio	on			

Overview

- Adaptive control of nonlinear stochastic systems
- Modeling of nonlinear systems using neural networks (e.g. radial basis function, multilayer perceptron)
- Functional adaptive control nonlinear functions and parameters of the system are unknown
- Basic approaches to adaptive control
 - 1 certainty equivalence control
 - ② cautious control
 - 3 DUAL CONTROL
 - \blacksquare estimation of the neural network parameters
 - structure optimization of the neural network
 - \clubsuit dual control design

o●	O Problem statement	0000000	0000	0
Introducti	on – approach	es, motivation	and goal	

Dual control design

- Several different dual control methods: Inovation Dual Control (IDC), Bicriterial Dual Control (BDC), Wide-sense dual control, ...
- Linear systems with unknown parameters are mostly considered
- Only IDC (*Fabri and Kadirkamanathan '01*) and BDC (*Šimandl '05*) were used for nonlinear systems with unknown functions where BDC achieves better results
- Both these works on the functional adaptive control are limited to single-input single-output (SISO) systems and functional adaptive control for multivariable stochastic systems has not been studied yet
 - \blacksquare motivation

Goal

To design a functional adaptive controller for a nonlinear stochastic discrete-time MIMO system where a neural network with dynamically optimized structure serves as a model of a system

Introduction	Problem statement	Controller design	Example	Conclusion
00	•	000000	0000	0
Problem s	tatement			

Nonlinear stochastic discrete-time system

$$\boldsymbol{y}_k = \boldsymbol{f}(\boldsymbol{x}_{k-1}) + \boldsymbol{G}(\boldsymbol{x}_{k-1})\boldsymbol{u}_{k-1} + \boldsymbol{e}_k,$$

vector $\boldsymbol{f}(\boldsymbol{x}_{k-1})$ and matrix $\boldsymbol{G}(\boldsymbol{x}_{k-1})$ contain unknown nonlinear functions

$$\begin{aligned} \boldsymbol{x}_{k-1} &\triangleq [\boldsymbol{y}_{k-p}^T, \dots, \boldsymbol{y}_{k-1}^T, \boldsymbol{u}_{k-1-s}^T, \dots, \boldsymbol{u}_{k-2}^T]^T \text{ is known measurable state} \\ \boldsymbol{y}_k &= [y_k^{(1)}, \dots, y_k^{(n)}]^T \text{ is output} \\ \boldsymbol{u}_k &= [u_k^{(1)}, \dots, u_k^{(m)}]^T \text{ is input} \\ \boldsymbol{e}_k &= [e_k^{(1)}, \dots, e_k^{(n)}]^T \text{ is additive white noise, pdf } \mathcal{N} \{ \boldsymbol{0}, \boldsymbol{\Xi} \} \end{aligned}$$

Bicriterial dual controller

$$\boldsymbol{u}_{k} = \boldsymbol{h}_{k}\left(\boldsymbol{r}_{k+1}, \boldsymbol{I}_{k}\right)$$

output \boldsymbol{y}_k should follow reference signal $\boldsymbol{r}_k = [r_k^{(1)}, \ldots, r_k^{(n)}]^T$ \boldsymbol{I}_k contains information received up to time k

Introduction	Problem statement	Controller design	Example	Conclusion
00		000000	0000	
Bicriterial	dual controller	– basic idea		

The bicriterial dual controller design is based on two separate criteria. Each of those criteria introduces one of opposing aspects between estimation and control: **caution** and **probing**.

The caution control component

$$J_{k}^{c} = E\left\{(\boldsymbol{y}_{k+1} - \boldsymbol{r}_{k+1})^{T} \boldsymbol{Q}_{k+1}(\boldsymbol{y}_{k+1} - \boldsymbol{r}_{k+1}) + \boldsymbol{u}_{k}^{T} \boldsymbol{S}_{k+1} \boldsymbol{u}_{k} | \boldsymbol{I}_{k}\right\},$$

$$\boldsymbol{u}_{k}^{c} = \operatorname{argmin}_{\boldsymbol{u}_{k}} J_{k}^{c}$$

$$\boldsymbol{u}_{k}^{c} = \operatorname{argmin}_{\boldsymbol{u}_{k}} J_{k}^{c}$$

$$\boldsymbol{u}_{k}^{c} = \operatorname{argmin}_{\boldsymbol{u}_{k}} J_{k}^{c}$$

$$\boldsymbol{u}_{k}^{c} = \operatorname{argmin}_{\boldsymbol{u}_{k}} J_{k}^{c}$$

The final control
$$\boldsymbol{u}_k = \operatorname*{argmin}_{\boldsymbol{u}_k \in \Omega_k} J_k^a.$$

Graphical interpretation for single input systems

Introduction	Problem statement	Controller design	Example	Conclusion
00	0	000000	0000	0
Bicriterial	dual controlle	r - cont'd		

Bicriterial dual controller

- Computational demands
 - Caution component unconstrained minimization of convex function (analytical computation)
 - Probing component constrained minimization of concave function (vertex enumeration)

•
$$\boldsymbol{u}_k = \boldsymbol{h}_k(\boldsymbol{\eta}, \boldsymbol{r}_{k+1}, \hat{\boldsymbol{\theta}}_{k+1|k}, \boldsymbol{P}_{k+1|k}) \Rightarrow \boldsymbol{\eta}$$
 - designer parameter
 $\Rightarrow \boldsymbol{r}_{k+1}$ - known variables
 $\Rightarrow \hat{\boldsymbol{\theta}}_{k+1|k}, \boldsymbol{P}_{k+1|k}$ - estimation

Introduction	Problem statement	Controller design	Example	Conclusion
00		000000	0000	
Neural ne	twork – model	choice		

Model of the system

- The unknown nonlinear functions $f(x_{k-1})$ and $G(x_{k-1})$ are approximated by Multi-Layer Perceptron (MPL) networks \longrightarrow model
- There are various structures of neural network for MIMO systems
- Recommendation \blacksquare two neural networks $\hat{f}^{(i)}$, $\hat{g}^{(i \cdot)}$ for each of n outputs $y_k^{(i)}$ of the system

$$\begin{aligned} \hat{\boldsymbol{y}}_{k} &= \hat{\boldsymbol{f}}(\boldsymbol{x}_{k-1}, \boldsymbol{w}_{k}^{f}, \boldsymbol{c}_{k}^{f}) + \hat{\boldsymbol{G}}(\boldsymbol{x}_{k-1}, \boldsymbol{w}_{k}^{g}, \boldsymbol{c}_{k}^{g}) \boldsymbol{u}_{k-1} \\ \hat{\boldsymbol{y}}_{k}^{(i)} &= \hat{f}^{(i)} + \sum_{j=1}^{m} \hat{g}^{(ij)} \boldsymbol{u}_{k-1}^{(j)}, \quad \text{for } i = 1, \dots, n \\ \hat{f}^{(i)} &= (\boldsymbol{c}_{k}^{f_{i}})^{T} \phi^{f_{i}}(\boldsymbol{x}_{k-1}^{a}, \boldsymbol{w}_{k}^{f_{i}}) \\ \hat{g}^{(ij)} &= (\boldsymbol{c}_{k}^{g_{ij}})^{T} \phi^{g_{i}}(\boldsymbol{x}_{k-1}^{a}, \boldsymbol{w}_{k}^{g_{i}}) \end{aligned}$$
$$\boldsymbol{\Theta}_{k} = \left[(\boldsymbol{c}_{k}^{f})^{T}, (\boldsymbol{w}_{k}^{f})^{T}, (\boldsymbol{c}_{k}^{g})^{T}, (\boldsymbol{w}_{k}^{g})^{T} \right]^{T} \implies \hat{\boldsymbol{\Theta}}_{k+1|k}, \boldsymbol{P}_{k+1|k} =? \end{aligned}$$

Estimation model

• Neural network can be rewritten into state space estimation model

$$egin{aligned} m{\Theta}_{k+1} &= m{\Theta}_k \ m{y}_k &= \hat{m{f}}(m{x}_{k-1}, m{w}_k^f, m{c}_k^f) + \hat{m{G}}(m{x}_{k-1}, m{w}_k^g, m{c}_k^g)m{u}_{k-1} + m{e}_k \end{aligned}$$

- The measurement equation is nonlinear
- It is possible to use non-linear estimation methods Extended Kalman Filter (EKF)
- Prior information about parameters given by pdf $\mathcal{N}\{\hat{\boldsymbol{\Theta}}_{0|-1}, \boldsymbol{P}_{0|-1}\}$

Introduction	Problem statement	Controller design	Example	Conclusion
00	0	0000000	0000	0
Neural ne	twork – dynam	nic structure o	ptimizatic	n

Optimization of the neural network structure is performed on-line by pruning insignificant connections from the neural network

Three basic steps of the optimization algorithm

• Check whether the neural network is already trained using prediction error ε_k

$$\Delta_k = \left| \frac{1}{k+1} \sum_{t=0}^k \varepsilon_t^2 - \frac{1}{k} \sum_{t=0}^{k-1} \varepsilon_t^2 \right|$$

• If the prediction error is steady sort the parameters of the neural network according their "significancy" E_i

$$E_i = \frac{\hat{\theta}_i^2}{P_i}$$

• Try to set to zero (i.e. leave out) as many insignificant parameters as possible

$$T = \frac{1}{k+1} (\hat{\boldsymbol{\Theta}}_{[1,N]} - \hat{\boldsymbol{\Theta}})^T \mathbf{P}^{-1} (\hat{\boldsymbol{\Theta}}_{[1,N]} - \hat{\boldsymbol{\Theta}})$$

Introduction	Problem statement	Controller design	Example	Conclusion
00		000000	0000	
Bicriteria	l dual control a	lgorithm		

Algorithm

At the beginning

- initialization
- At each time instant \boldsymbol{k}
 - step 1: measurement of the output \boldsymbol{y}_k of the system
 - step 2: estimation of neural network parameters by EKF
 - step 2: dynamic optimization of neural network structure
 - step 3: generation of input \boldsymbol{u}_k using bicriterial dual approach

 $k \to k+1$

Introduction	Problem statement	Controller design	Example	Conclusion
00	0	0000000	●000	O
Numerical	example			

Benchmark system with two inputs and two outputs

$$\begin{split} y_k^{(1)} &= \frac{0.7y_{k-1}^{(1)}y_{k-1}^{(1)}y_{k-2}^{(2)}}{1+(y_{k-1}^{(1)})^2+(y_{k-2}^{(2)})^2} + \frac{0.1u_{k-1}^{(2)}}{1+3(y_{k-1}^{(1)})^2+(y_{k-1}^{(2)})^2} + u_{k-1}^{(1)} + 0.25u_{k-2}^{(1)} + 0.5u_{k-2}^{(2)} + e_k^{(1)}, \\ y_k^{(2)} &= \frac{0.5y_{k-1}^{(2)}\sin y_{k-2}^{(2)}}{1+(y_{k-1}^{(2)})^2+(y_{k-2}^{(1)})^2} + 0.5u_{k-2}^{(2)} + 0.3u_{k-2}^{(1)} + u_{k-1}^{(2)} \Big(0.1u_{k-2}^{(2)} - 1.5 \Big) + e_k^{(2)}, \end{split}$$

Two controllers were compared

- Bicriterial dual controller with static structure (BDC stat)
- Bicriterial dual controller with dynamic structure (BDC dynam)

Introduction	Problem statement	Controller design	Example	Conclusion
00	0	000000	0000	0
The results	s - numerical in	terpretation		

The quality of control is measured by the mean of sums of square errors between reference value $r_{kj}^{(i)}$ and system output $y_{kj}^{(i)}$ over 100 trials: $\hat{V} = \frac{1}{100} \sum_{i=1}^{2} \sum_{j=1}^{100} \sum_{k=1}^{200} (y_{kj}^{(i)} - r_{kj}^{(i)})^2$

	\hat{V}	$\operatorname{cov}(\hat{V})$	$n\theta$	time [s]
BDC stat	27.8	15.8	590	57.2
BDC dynam	26.5	18.2	112	45.5

Introduction	Problem statement	Controller design	Example	Conclusion
00		0000000	0000	
The results	s – graphical in	terpretation		

Typical output of the system (output - blue and reference - red)

Number of the neural network parameters

Introduction 00	Problem statement \circ	Controller design 0000000	Example 0000	Conclusion
Conclusion				

B

- ★ The bicriterial dual controller for non-linear stochastic MIMO systems was designed.
- ★ The model of the system is given by the multilayer perceptron network.
- ★ The extended Kalman filter was applied for the on-line parameter estimation of the derived estimation model.
- ★ In order to avoid the problem with choice of the neural network structure, an on-line dynamic structure optimization algorithm of the network was utilized.
- ★ The proposed dual adaptive controller with dynamic structure has lower computational demands and comparable control quality in comparison with controller that utilizes static structure of the neural network.