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We propose a simple method of construction of new families of φ-divergences. This method
called convex standardization is applicable to convex and concave functions ψ(t) twice continu-
ously differentiable in a neighborhood of t = 1 with nonzero second derivative at the point t = 1.
Using this method we introduce several extensions of the LeCam, power, χa and Matusita di-
vergences. The extended families are shown to connect smoothly these divergences with the
Kullback divergence or they connect various pairs of these particular divergences themselves.
We investigate also the metric properties of divergences from these extended families.

I. INTRODUCTION

Statistical inference widely uses the divergences of probability distributions P, Q with
densities p = dP/dµ and q = dQ/dµ on a measurable observation space (X ,A) given by
the formula

Dφ(P,Q) =

∫

X
q φ

(
p

q

)
dµ (1)

for φ(t) convex in the interval (0,∞) being equal zero and strictly convex at t = 1. These
divergences are called φ–divergences and the best known examples are the total variation
(L1-distance)

V (P, Q) =

∫
|p− q|dµ, (2)

the squared Hellinger distance

H2(P, Q) =

∫
(
√

p−√q)2 dµ, (3)

the χ2-divergence

χ2(P, Q) =

∫
(p− q)2

q
dµ (4)

and the I-divergence (information divergence, Kullback divergence)

I(P, Q) =

∫
p ln

p

q
dµ. (5)

Note that the integrands of (1)–(5) are extended from the domain p > 0, q > 0 to p ≥ 0,
q ≥ 0 by preserving the convexity and continuity of the function q φ(p/q) of two variables
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(if the continuity cannot be preserved then the lower semicontinuity is required) and that
this extension is unique. For this detail about definition and for the basic properties of
φ-divergences we refer to Vajda [20] and Liese and Vajda [9], [10].

The divergences (3)–(5) can be found (eventually in a slightly rescaled form) in the
class of the so-called power divergences

Dα(P,Q) = Dϕα(P,Q), α ∈ R (6)

where

ϕα(t) =
tα − α(t− 1)− 1

α(α− 1)
, t > 0 (7)

for α 6= 0, α 6= 1 and the corresponding limits

ϕ1(t) = t ln t− t + 1, ϕ0(t) = − ln t + t− 1 (8)

satisfy the assumptions imposed on φ in (1). The particular case D1/2(P, Q) = 2H2(P,Q)
is a Hellinger divergence, D2(P, Q) = χ2(P,Q)/2 is a Pearson divergence and D1(P, Q) =
I(P, Q) is a Kullback divergence. Further,

D−1(P, Q) = χ2(Q,P )/2 (9)

is a reversed Pearson divergence D2(Q,P ) known also as a Neyman divergence and

D0(P, Q) = I(Q,P ) (10)

is a reversed Kullback divergence D1(Q,P ). Since the Kullback divergence was in fact
introduced in the joint paper [5] of Kullback and Leibler, it seems to be convenient to call
(10) a Leibler divergence.

Statistical applications of the divergences (1)–(10) were studied e.g. in the monographs
of Read and Cressie [18], Vajda [20] and Pardo [17], and in the papers of Morales et al
[12], [13], [14], Vajda and van der Meulen [22], Beirlant et al [1], Györfi and Vajda [3] and
others cited there. Divergences Dφ(P, P̂ ) or Dα(P, P̂ ) between a hypothetic distribution

P and an observations-based empirical distribution P̂ are basic tools for the minimum
divergence estimation of parameters of P and for the minimum divergence testing of
statistical hypotheses about P .

The cited books and papers usually verified practical value of methods and results
established for general φ-divergences by applying them to or testing them on special
simply parametrized families such as the power divergences (6). In the present paper
we propose a number of new simply parametrized families found by a special extension
procedure.These families connect smoothly pairs of well known and extensively applied
divergences of different characteristic properties. The smooth transition of properties
may be used in applications (e.g. in the statistical minimum divergence estimation and
testing) by selecting divergences with most desirable properties. These properties are
usually carefully weighted compromises between the properties of the connected pairs
of φ-divergences, but on the trajectories connecting some pairs one sometimes meets φ-
divergences with qualitatively new properties diametrically different from the properties
of both members of the connected pair (see e.g. the application of the family (iii) below
in robust statistical inference).
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Our extension procedure is a convex standardization of convex or concave functions
ψ : (0,∞) → R twice continuously differentiable in a neighborhood of t = 1 with the
second derivative ψ′′(1) 6= 0. The standard convex form of ψ (briefly, a convex standard
of ψ) is defined by the formula

φ(t) =
ψ(t)− ψ(1)− ψ′(1) (t− 1)

ψ′′(1)
, t > 0. (11)

This function belongs the class Φ of all convex functions φ : (0,∞) → R twice contin-
uously differentiable in a neighborhood of t = 1 with φ(1) = φ′(1) = 0 and φ′′(1) = 1.
Obviously, functions φ ∈ Φ are strictly convex at t = 1 and also in the neighborhood of
t = 1. If ψ : (0,∞) → R is twice continuously differentiable on (0,∞) and

ψ′′(t) = 0 for no t > 0 (12)

then it satisfies the conditions assumed in the convex standardization formula (11). In-
deed, then ψ is either strictly convex or strictly concave on (0,∞) and ψ′′(1) 6= 0. Exam-
ples of some functions ψ together with their convex standards φ ∈ Φ and corresponding
φ-divergences are given in Table 1 below.

Kullback (D1) Leibler (D0) Pearson(D2) Neyman (D−1)

ψ(t) t ln t ln t t2
1
t

φ(t) t ln t− t + 1 − ln t + t− 1 (t− 1)2/2
(t− 1)2

2 t

LeCam (LC2) Hellinger (D1/2) Power (Dα)

ψ(t)
1

1 + t

√
t tα, α 6= 0, 1

φ(t)
(t− 1)2

t + 1
2 (
√

t− 1)2
tα − α(t− 1)− 1

α(α− 1)

Table 1: ψ-functions for standard φ-divergences

Let us note that the method of convex standardization was first used in the research
report [21] but majority of the families introduced in this paper together with their basic
properties are new. They contain as special cases some or all of the well known classical
φ-divergences presented in Table 1.

II. EXTENDED POWER DIVERGENCES

In this section we apply the convex standardization to the family of functions

ψα,β(t) =
1

βtα + 1− β
, t > 0 (13)

3



Figure 1: The set A−1 ∪ A1 ∪ I.

for parameters (α, β) from a suitable subset A ⊂ R2
. Obviously, the functions ψ0,β and

ψα,0 are constant on (0,∞) and therefore do not satisfy the assumption ψ′′(1) 6= 0 of (11).
Further, if α 6= 0 then β > 1 or β < 0 lead for some t = tα,β > 0 to

ξα,β(t) = 0 where ξα,β(t) = βtα + 1− β. (14)

Hence α 6= 0 and β ∈ (0, 1] are necessary conditions for the parameters α, β to guarantee
that ξα,β(t) > 0 for every t > 0. As

ψ′′α,β(t) =
αβtα−2[2αβtα − (α− 1)ξα,β(t)]

ξ3
α,β(t)

, (15)

the condition (12) is fulfilled if (α, β) ∈ A−1 ∪ A1 ∪ I for the subsets

A−1 = [−1, 0)× (0, 1]− {(−1, 1)}, A1 = (0, 1]× (0, 1] and I = {(α, 1) : α 6= −1, 0}
of R2

. Hence we get from (11) for all (α, β) ∈ A−1 ∪ A1 ∪ I the convex standards

φα,β(t) =
1

α(2αβ − α + 1)

[
1− tα

βtα + 1− β
+ α(t− 1)

]
, t > 0 (16)

belonging to the set Φ. In the sequel we need also the sets

B−1 = [−1, 0)× [0, 1]− {(−1, 1)}, B1 = (0, 1]× [0, 1]− {(−1, 0)}
and

C = [−1, 1]× [0, 1]− {(−1, 1), (1, 0)}
satisfying the inclusions

A−1 ∪ A1 ⊂ B−1 ∪B1 ⊂ C.

The sets figuring in these inclusions are illustrated in Figures 1-3. The following prop-
erties hold for every t > 0.

(i) φα,β(t) is continuous in the variables (α, β) ∈ A−1 ∪ A1 ∪ I.

(ii) φα,β of (16) can be applied to all (α, β) ∈ B−1 ∪B1 and the extensions defined for all
α ∈ [−1, 0) ∪ (0, 1) by

φα,0(t) =
tα − α(t− 1)− 1

α(α− 1)
, t > 0, (17)
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Figure 2: The set B−1 ∪B1 and the point (0, 1/2).

Figure 3: The set C.

belong to Φ.

(iii) The values φα,β(t) remain to be symmetric about (0, 1/2) ∈ R2
in the extended

variables (α, β) ∈ B−1 ∪B1 ⊂ R2
in the sense

φα,β(t) = φ−α,1−β(t). (18)

It follows from (i)-(iii) that the extended φα,β(t) defined by (16) for all parameters (α, β) ∈
B−1 ∪B1 remains to be continuous in these parameters.

(iv) For every β ∈ [0, 1] there exists a limit φ0,β(t) of φα,β̃(t) for (α, β̃) ∈ B−1∪B1 tending

to the point (0, β) ∈ R2
. This limit is not depending on β and obviously satisfies the

relation
φ0,β(t) = lim

α→0
φα,β(t) = ϕ0(t), t > 0 (19)

where ϕ0(t) was given in (8).

The formulas (16), (17) and (19) define the functions φα,β(t) of variable t > 0 for all

parameters (α, β) ∈ C where C ⊂ R2
is given in Figure 3. It follows from (iv) and from

what has been said before (iv) that φα,β(t) is continuous on C in the parameters (α, β).
Further, since φ0,β(t) is symmetric about 1/2 in the variable β ∈ [0, 1] in the sense

φ0,β(t) = φ0,1−β(t),

the symmetry (18) extends to all (α, β) ∈ C.
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Note that φα,β(t) cannot be continuously extended to the corners (−1, 1) and (1, 0) of
the set C. Namely, it follows from (16) and (18) that

lim
α→−1

φα,1(t) = lim
α→1

φα,0(t) = ϕ1(t) (20)

and
lim
β↑1

φ−1,β(t) = lim
β↓0

φ1,β(t) = ϕ2(t) (21)

where ϕ1(t), ϕ2(t) are different functions given by (7), (8).
We can conclude from (16), (17) and (19) that the following assertion holds.

Proposition 1. The class of convex functions

{φα,β : (α, β) ∈ C} ⊂ Φ (22)

contains the mutually equal subclasses

{φα,0 = ϕα : α ∈ [−1, 1)} = {φα,1 = ϕ−α : α ∈ (−1, 1]} (23)

of power divergence functions given by (7) and (8). Therefore (22) is an extension of
the class {ϕα : α ∈ [−1, 1)} of power divergence functions, and the corresponding φα,β-
divergences

Dα,β(P,Q) = Dφα,β
(P, Q) =

∫
qφα,β

(
p

q

)
µ, (α, β) ∈ C (24)

are extensions of the power divergences Dα(P, Q), α ∈ [−1, 1).

Let us now consider the extension

C∗ = C ∪ ((−∞,−1) ∪ [1,∞)× {0}) ∪ ((−∞,−1] ∪ (1,∞)× {1})

of the set C and the functions φα,0 = ϕα for (α, 0) ∈ C∗ r C and φα,1 = ϕ−α for (α, 1) ∈
C∗rC. Then the following assertion obviously holds which, together with Proposition 1,
justifies the title of the present section.

Proposition 2. The class of convex functions

{φα,β : (α, β) ∈ C∗} ⊂ Φ (25)

contains all power divergence functions ϕα, α ∈ R and the class of divergences

{Dα,β(P, Q) : (α, β) ∈ C∗} (26)

defined by (21) contains all power divergences Dα(P,Q), α ∈ R.

In addition to the family (23) of power divergence functions and the correspond-
ing power divergences Dα(P,Q), α ∈ [−1, 1), one can find some other interesting one-
parameter families of functions in the class (22) and the corresponding families of diver-
gences in the class (24).
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(i) Neyman-Pearson family. One such family of functions is

φ1,β(t) =
2β2(t− 1)2

βt + 1− β
, β ∈ (0, 1] (27)

with the corresponding family of divergences

D1,β(P, Q) = 2β2

∫
(p− q)2

βp + (1− β)q
dµ, β ∈ (0, 1]. (28)

Since

D1,1/2(P, Q) = LC2(P, Q) =

∫
(p− q)2

p + q
dµ (cf. Table 1) (29)

this family contains the LeCam divergence (the squared LeCam distance, see Chapter
4.2 in Le Cam [8]). By (23), the upper extremes are

φ1,1 = ϕ−1 and D1,1(P, Q) = D−1(P, Q) = χ2(Q,P )/2.

The lower extremes φ1,0 and D1,0(P,Q) are undefined in (22), (24) since the point (1, 0)
is not in C. This point is in the extended set C∗ considered in (25) but

φ1,0 = ϕ1 and D1,0(P, Q) = D1(P, Q) = I(P,Q)

considered in (25) and (26) are not continuous extensions of this family. By (21), such
extensions are

φ1,0 = ϕ2 and D1,0(P, Q) = D2(P, Q) = χ2(P, Q)/2. (30)

These extensions together with (27), (28) define a complete Neyman-Pearson family
{φ1,β : β ∈ [0, 1]} and {D1,β(P, Q) : β ∈ [0, 1]} respectively. This name of the family comes
out of the fact that it smoothly connects the Pearson divergence D1,0(P, Q) = D2(P,Q)
with the Neyman divergence D1,1(P,Q) = D−1(P, Q). By (29), this connection is passing
through the Le Cam divergence D1,1/2(P, Q) = LC2(P,Q).

Note that here and in the sequel the smoothness means the continuity of the functions
φ1,β in the parameter β ∈ [0, 1]. By the Lebesgue bounded convergence for integrals, this
implies a similar continuity of the divergences

D1,β(P, Q) =

∫
qφ1,β

(
p

q

)
dµ

provided P,Q satisfy some assumptions. Simple and relatively mild assumptions are that
P = (p1, . . . , pK), Q = (q1, . . . , qK) are positive discrete probability distributions. Then
for any φβ ∈ Φ with φβ continuous in a real parameter β, the φβ-divergence Dφβ

(P,Q) is
the sum

Dφβ
(P, Q) =

K∑

k=1

qkφβ

(
pk

qk

)
(31)

which is continuous in β too.
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(ii) Kullback-Pearson family. Another interesting one-parameter family of func-
tions in the class (22) with the corresponding family divergences in the class (24) is the
Kullback-Pearson family parametrized by γ ∈ [0,∞]. For γ ∈ [0,∞) it is obtained from
the extended power divergence family (22) by the rule

φγ(t) = lim
α↑1

φα,(1−α)γ(t), t > 0

where φα,(1−α)γ is given by (16) for α ∈ (0, 1) and β = (1 − α)γ ∈ [0, 1). Extension to
γ = ∞ is obtained from the continuity rule,

φ∞(t) = lim
γ→∞

φγ(t), t > 0.

If γ ∈ [0,∞) then substituting for β in (16) and taking the limit for α ↑ 1 we obtain for
every t > 0

φγ(t) =
t ln t + t− 1 + γ(t− 1)2

2γ + 1
=

ϕ1(t) + 2γϕ2(t)

2γ + 1
(32)

so that the extremes
φ0 = ϕ1 and φ∞ = ϕ2 (33)

are the Kullback and Pearson divergence functions specified in (6), (7). Since ϕ1, ϕ2

belong to the class Φ, it is clear that all φγ, γ ∈ [0,∞] belong to Φ too. The corresponding
divergences are

Dφγ (P,Q) =
D1(P, Q) + 2γD2(P,Q)

2γ + 1
=

I(P, Q) + γχ2(P, Q)

2γ + 1
(34)

if γ ∈ [0,∞) and
Dφ∞(P, Q) = χ2(P,Q)/2. (35)

The Kullback-Pearson mixed family {Dφγ (P,Q) : γ ∈ [0,∞]} smoothly connects the Kull-
back divergence D1(P,Q) = I(P, Q) with the Pearson divergence D2(P,Q) = χ2(P, Q)/2
in a linear manner. This differs from the nonlinear connection in the power divergence
subfamily {Dα(P, Q) : α ∈ [1, 2]}. The advantage of the linearity in some computations
is obvious.

(iii) Leibler-Neyman family. Another interesting subfamily of (22) is the Leibler-
Neyman family {φα,(1−2α)2 : α ∈ [0, 1]} where the extremes are

φ0,1 = ϕ0, φ1,1 = ϕ−1

and for α = 1/2 we obtain φ1/2,0 = ϕ1/2. Therefore the corresponding Leibler-Neyman
family of divergences {Dα,(1−2α)2(P,Q) : α ∈ [0, 1]} smoothly connects the above intro-
duced Leibler divergence D0,1(P,Q) = D0(P,Q) with the Neyman divergence D1,1(P, Q) =
D−1(P, Q) and passes through the Hellinger divergence

D1/2,0(P, Q) = D1/2(P, Q).

Such connection is impossible in the class of power divergences {Dα(P, Q) : α ∈ [−1, 0]}
because α = 1/2 is out of the interval [−1, 0].
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To illustrate statistical applicability of the Leibler-Neyman family of divergences, con-
sider empirical relative frequencies P̂ = (p̂1, . . . , p̂K) of n i.i.d. observations in K disjoint
A-measurable cells covering the assumed observation space X . Let P = (p1, . . . , pK) be a
hypothetic probability distribution on these cells. Then

T0,n = 2nD0,1(P, P̂ ) = 2n
K∑

k=1

p̂k ln
p̂k

pk

is the log-likelihood ratio statistics,

T1,n = 2nD1,1(P, P̂ ) = n

K∑

k=1

(p̂k − pk)
2

pk

is the Pearson statistic and

T1/2,n = 2nD1/2,0(P, P̂ ) = 8n

(
1−

K∑

k=1

√
p̂kpk

)
(36)

is the Freeman-Tukey statistic (see e.g. Read and Cressie [18]) which differs from the
previous two non-robust statistics by being robust (in the sense of Lindsay [11], cf. also
Kůs [7]). We see that the family of Leibler-Neyman statistics

Tα,n = 2nDα,(1−2α)2(P, P̂ ) = 2n
K∑

k=1

p̂kφα,(1−2α)2

(
pk

p̂k

)
, α ∈ [0, 1]

smoothly connects the famous efficient but nonrobust statistics T0,n and T1,n by passing
through the robust but less efficient statistic T1/2,n. Similar connection of T0,n and T1,n is
impossible in the class

{2nDα(P, P̂ ) : α ∈ [−1, 0]}
of power divergence statistics. It smoothly connects the statistics

2nD−1(P, P̂ ) = T1,n and 2nD0(P, P̂ ) = T0,n

too but without containing T1/2,n or any other statistic robust in the above mentioned
sense.

The interesting subfamilies of (22) are not exhausted by those listed above. For exam-
ple the simple family {φ1/2,β : β ∈ [0, 1]} leads to the divergences D1/2,β(P, Q) for which
the family of statistics {

Uβ,n = 2nD1/2,β(P, P̂ ) : β ∈ [0, 1]
}

(37)

smoothly connects the Freeman-Tukey statistic U0,n = T1/2,n given in (36) with the power
divergence statistic

U1,n = 2nD−1/2(P, P̂ ) =
8n

3




K∑

k=1

√
p̂ 3

k

pk

− 1




shown in Read and Cressie [18] to be locally most powerful among all power divergence

statistics 2nDα(P, P̂ ), α ∈ R. Thus in the relatively simple and relatively narrow class
(37) one can easily find reasonable compromises between the power and robustness of the
power divergence statistics.
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III. EXTENDED ABSOLUTE POWER DIVERGENCES

Vajda [19] used the absolute power functions φ(t) = |t− 1|α defined on (0,∞) for α ≥ 1
and belonging to Φ to introduce the family of absolute power divergences

χα(P,Q) =

∫ |p− q|α
pα−1

dµ, α ≥ 1. (38)

This family contains the total variation χ1(P,Q) = V (P, Q) and the Pearson divergence
χ2(P, Q) as particular cases. The divergences (38) help to generalize the Cramer-Rao
inequality and to introduce the Fisher information of orders α > 1 where the order α = 2
means the classical Fisher information. As demonstrated e.g. in Hobza et al. [4], the
Fisher informations of some orders α 6= 2 are useful when the classical Fisher information
is trivial or does not exist.

In this section the class {χα(P,Q) : α > 0} is extended by applying the convex
standardization (11) to the functions

ψα,β(t) = |t + β − 1|α, t > 0 (39)

for suitable parameters α, β. Since the function φ given in (11) is standardized in the sense
that φ′′(1) = 1, the divergences (38) will be rescaled in the extended class. Obviously,
ψα,β of this section differs from that of (13). Therefore we must pay attention to what
section we have in mind when speaking about ψα,β (and about φα,β resulting from ψα,β in
the convex standardization (11)). The present function ψα,β is trivial for α = 0 and not
defined in the whole interval (0,∞) for α < 0, β < 1. A detailed analysis shows that this
function satisfies the assumptions of (11) only for (α, β) ∈ A where A is the union of four

subsets of the plane R2
(see Figure 4), namely

A1 = (−∞, 0)× [1,∞), A2 = (0, 1)× [1,∞),

A3 = (1,∞)× [0,∞), A4 = (1,∞)× (−∞, 0).

Thus we get from (11) the family of functions

φα,β(t) =
|t + β − 1|α − |β|α − α sign(β) |β|α−1(t− 1)

α(α− 1)
, (α, β) ∈ A (40)

belonging to the class Φ. The limits

φα,0(t) =
|t− 1|α
α(α− 1)

for α ∈ (1,∞), (41)

φ0,β(t) =
t− 1

β
− ln

t + β − 1

β
for β ∈ [1,∞) (42)

and

φ1,β(t) = |t + β − 1| ln |t + β − 1|
βsgn(β)

− sgn(β)(t− 1) (43)

for β 6= 0, with the convention 0 ln 0 = 0, define continuous extension of the family (40)
on the set

B = A− {(1, 0)} = R2 − ((−∞, 1)× (−∞, 1) ∪ {(1, 0)}),
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Figure 4: The set A1 ∪ A2 ∪ A3 ∪ A4.

Figure 5: The set B.

where A is the closure of A (see Figure 5). The family

{φα,β : (α, β) ∈ B} (44)

with φα,β defined by (40) - (43) belongs to the class Φ and defines the family of φα,β-
divergences

χα
β(P, Q) =

∫
qφα,β

(
p

q

)
dµ, (α, β) ∈ B, (45)

called extended absolute power divergence family. This terminology is justified by the
following easily verifiable assertion.

Proposition 3. The subfamily {χα
0 (P, Q) : α > 1} ⊂ {χα

β(P, Q) : (α, β) ∈ B}
contains all rescaled absolute power divergences χα(P,Q)/[α(α−1)], α > 1, see (38). The
subfamily {χα

1 (P, Q) = Dα(P,Q) : α ∈ R} contains all power divergences Dα(P, Q) : α ∈
R, see (6).

Some symmetric or symmetrized divergences from the class (45) define metrics in the
space P of all probability distributions on (X ,A). For example, from (42) we get the
symmetrized divergence

χ0
2(P,Q) + χ0

2(Q,P ) = I(P, (P + Q)/2) + I(Q, (P + Q)/2).
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The sum of the Kullback divergences on the right-hand side is the φ-divergence Dφ(P,Q)
for

φ(t) = t ln
2t

t + 1
+ ln

2

t + 1
, t > 0, (46)

from Φ. As proved in Ősterreicher and Vajda [16], this φ-divergence is a squared metric
distance on P . Further, one can deduce from Csiszár and Fischer [2] that

ρα(P, Q) = (χα
1 (P, Q) + χα

1 (Q,P ))α , α ∈ (0, 1/2]

is a family of metrics on P . The particular metric

ρ1/2(P,Q) = 2H(P, Q)

is twice the Hellinger distance on P . Finally, (40) implies

φ−1,2(t) =
(t− 1)2

8(t + 1)
, t > 0.

Therefore the extended absolute power divergence

χ−1
2 (P,Q) =

1

8
D1,1/2(P, Q)

is nothing but a rescaled LeCam divergence. Consequently this divergence is a squared
metric on P . An open problem is whether this list of metrics obtained in the family
(45) is exhaustive. The metric properties of φ-divergences are very desirable because they
extend the toolbox of mathematical methods applicable in their analysis and statistical
implementations.

IV. EXTENDED MATUSITA DIVERGENCES

In this last section we extend the family of Matusita divergences

Mα(P, Q) =

∫
(pα − qα)1/α µ, α ∈ (0, 1], (47)

defined by the functions
fα(t) = (tα − 1)1/α, t > 0, (48)

from the class Φ. Since all φ-divergences are reflexive and Mα(P, Q) are symmetric in
P,Q, we see that ρα(P,Q) = (Mα(P,Q))α are metrics on the space P of probability
distributions P,Q under consideration. Our extension will contain further divergences
with metric properties.

As before, we apply the convex standardization (11), in this case to the functions

ψα,β(t) = |tα + β − 1|1/α (49)

for suitable real parameters α and β. The same argument as in the previous section leads
to the domain A = A1 ∪ A2 ∪ A3 ∪ A4 ⊂ R2

for (α, β) where

A1 = (−∞, 0)× (1,∞), A2 = (0, 1)× (1,∞)

A3 = (1,∞)× (1,∞), A4 = (0, 1)× (−∞, 1)
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Figure 6: The set A1 ∪ A2 ∪ A3 ∪ A4.

(see Figure 6). From (11) we obtain the family

φα,β(t) =
|tα + β − 1|1/α − sgn(β)|β|1/α−1(t + β − 1)

(α− 1)(β − 1)|β|1/α−2

for (α, β) ∈ A. Consider for any fixed t > 0 the continuous extensions

φα,1(t) =
t

α(α− 1)

[
1

t
+ α(1− 1

t
)− 1

]
= tϕα(1/t), α 6= 0, 1, (50)

φ0,β(t) =
β

β − 1

[
t− βt1/β + β − 1

]
, β 6= 0, 1 (51)

and

φ1,β(t) =
|β|

β − 1

[
t ln(t) sgn(t + β − 1)− |t + β − 1| ln

∣∣∣∣
t + β − 1

β

∣∣∣∣
]

, β 6= 0, 1 . (52)

These extensions lead to the family

{φα,β(t) : (α, β) ∈ B} (53)

for
B = A− {(0, 0), (1, 0)} = (0, 1)× (−∞, 1) ∪R× [1,∞]

where A is the closure of A (see Figure 7). Note that the set B differs from B ⊂ R2
of

Section 3. The functions φα,1 of (50) are adjoint to the power divergence functions ϕα

of (7) in the sense that φα,1(t) = tϕα(1/t), t > 0. Moreover, the continuous extensions to
the corner points (α, β) = (0, 1) and (α, β) = (1, 1) of B are

φ0,1(t) = tϕ0(1/t) = ϕ1(t) and φ1,1(t) = tϕ1(1/t) = ϕ0(t).

The family of functions φα,β defines the family of φα,β-divergences

Mα,β(P, Q) =

∫
qφα,β

(
p

q

)
dµ, (α, β) ∈ B (54)
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Figure 7: The set B.

called extended Matusita family because the following easily verifiable assertion holds.

Proposition 4. The family (54) extends the Matusita divergences in the sense
that the subfamily {Mα,0(P, Q) : α ∈ (0, 1)} ⊂ {Mα,β(P, Q) : (α, β) ∈ B} coincides with
the family {Mα(P, Q) : α ∈ (0, 1)} of Matusita divergences. Moreover, {(Mα,0(P, Q))1/α:
α ∈ (0, 1)} is the class of metrics on the space P of distributions P, Q.

More interesting continuous subfamily of (53) than {φα,0 : α ∈ (0, 1)} seems to be
{φα,2 : α ∈ R} given by the explicit formulas

φα,2(t) =
4

α− 1

[(
tα + 1

2

)1/α

− t + 1

2

]
(55)

or

φ1,2(t) = 2t ln
2t

t + 1
+ 2 ln

2

t + 1
and φ0,2(t) = 4(1−

√
t) + 2(t− 1) (56)

if α(1 − α) = 0 or α(1 − α) 6= 0 respectively. For α > 0 the functions of this subfamily
are related by

φα,2(t) =
22−1/α

α
fα(t)

to the functions fα ∈ Φ, α > 0 introduced by Ősterreicher and Vajda [16]. These authors
proved that the latter functions lead to fα-divergences with the roots

ρα(P,Q) = (Dfα(P,Q))min{α,1/2} (57)

being metrics in the space P of probability measures P,Q. Therefore the roots
{

(Mα,2(P,Q))min{α,1/2} : α > 0
}

(58)

of the extended Matusita divergences Mα,2(P, Q), α > 0 are metrics on P too. This means
in particular that the Kullback–type divergence

M1,2(P, Q) = 2[I(P, (P + Q)/2) + I(Q, (P + Q)/2)]
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(cf. (56) and (46)) is a squared metric distance on P , which was already mentioned in the
previous section. However, we see from the second formula in (56) that Mα,2(P, Q) for
α = 0 is twice the Hellinger divergence 2H2(P, Q) so that the extremal case (M0,2(P,Q))1/2

is metric on P too. Further, according to (55)

φ−1,2(t) =
2(t− 1)2

t + 1
.

Therefore M−1,2(P, Q) is twice the LeCam divergence LC2(P,Q) of (29). Therefore

(M−1,2(P, Q))1/2 = LC(P,Q)

is metric on P too. This suggests the conjecture that the square roots (Mα,2(P,Q))1/2

of all extended Matusita divergences Mα,2(P,Q), α ∈ R are metrics on P . If true, this
conjecture means a new result for α < 0, α 6= −1, and a stronger result than the metricity
of the roots in (58) for 0 < α < 1/2.

In any case, the new result is the possibility of a smooth divergence connection of the
family of metric divergences found by Ősterreicher [15] and later extended by Ősterreicher
and Vajda [16] with the famous Hellinger and Le Cam divergences which are not in the
family of Ősterreicher and Vajda. Such a possibility was not demonstrated in the previous
literature.

V. CONCLUSIONS

Distances or pseudo-distances between hypothetical and empirical probability distribu-
tions play a fundamental role in statistical inference. They are widely applied in the min-
imum distance estimation and testing. The parametric families of divergences introduced
in this paper enable, among others, smooth connections of various pairs of φ1-divergences
and φ2-divergences leading separately to minimum distance statistical methods with dif-
ferent (sometimes diametrally different) properties. For example, we may face a low bias
and a high mean squared error of a minimum φ1-divergence estimator but a high bias and
a low mean squared error of a minimum φ2-divergence estimator. Smooth φ-divergence
connection of the φ1- and φ2-divergences usually leads to a smooth transition of proper-
ties of the corresponding estimators. Thus among the φ-divergences smoothly connecting
these extremal divergences one can find one candidate leading to an estimator with de-
sirably tuned compromise between the bias and mean squared error. Similar compromise
choices among various statistical procedures are typical for the statistics - well known
examples are the compromises between efficiency and robustness.

We believe that the families of divergences proposed above will be helpful in the
research of optimal practically applicable statistical procedures. But concrete applications
are left for future studies as they exceed the scope of the present paper.
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