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System description

The system is specified by the state and measurement equations

xk+1 = fk(xk) + wk, k = 0, 1, 2, . . . (1)
zk = hk(xk) + vk, k = 0, 1, 2, . . . (2)

where
I xk ∈ Rnx and zk ∈ Rnz represent the state of the system and the measurement, respectively,
I fk(·) and hk(·) are the known vector functions,
I the system initial condition is given by the known mean x̂0 and covariance matrix P0, and
I wk and vk are the state and measurement noises with the zero means and

with unknown noise covariance matrices Q and R, respectively.

Short overview of noise covariance matrices estimation techniques

The noise covariance matrices estimation techniques can roughly be divided into two groups,
namely
I off-line methods, e.g.

prediction error method, subspace identification method,
I on-line methods, e.g.

adaptive filtering methods, minimax filtering methods.

However, both off-line and on-line methods are suitable mainly for linear systems or for special types
of nonlinear systems.

Goal of the paper

The goal of the paper is to propose an off-line technique for estimation of the noise covariance
matrices for both linear and nonlinear systems.
I The proposed technique is based on the multi-step prediction error and on knowledge of the

system initial condition. The technique takes an advantage of the well-known standard relations
from the area of state estimation methods and least square method.

I At first, the technique will be introduced for linear systems and then it will be extended into the
area of nonlinear systems.

Noise covariance matrix estimation for linear systems

Multi-step prediction

Let the linear t-invariant system (1), (2) with fk(xk) = Fxk and hk(xk) = Hxk be considered.

Then, the multi-step prediction of the state is specified by

x̂k|−1 = Fx̂k−1|−1

and the multi-step prediction of the measurement by

ẑk|−1 = Hx̂k|−1 = HFkx̂0|−1, (3)

where x̂0|−1 = x̂0.

Statistical properties of multi-step measurement prediction error

With respect to (1), (2), and (3), the prediction error of the measurement is of the form

ek = zk − ẑk|−1 = H(xk − x̂k|−1) + vk = HFk(x0 − x̂0|−1) + H
k−1∑
i=0

Fiwk−i + vk.

The measurement prediction error ek at time instant k is the zero mean variable with the covariance
matrix

cov[ek] = cov[zk − ẑk|−1] = HFkP0(Fk)THT +

k−1∑
i=0

HFiQ(Fi)THT + R. (4)

The cross-covariance matrix of the innovations el and ek is given by

cov[el; ek] = cov[zl − ẑl|−1; zk − ẑk|−1] = HFlP0(Fk)THT +

l∑
i=1

HFl−iQ(Fk−i)THT, (5)

∀k, l, l < k.

Relations (4) and (5) depend on the known matrices F and H and on the unknown noise covariance
matrices Q and R.

Computation of sample prediction error covariance matrices

The prediction error (cross-)covariance matrices can be computed by the following two ways.
I Computation by means of repeatedly measured data sets

Let N repeatedly measured data sets be supposed, i.e. [z(i)
0 , z(i)

1 , . . . , z(i)
n ], i = 1, 2, . . . , N. Then, N

sets of the prediction errors [e(i)
0 , e(i)

1 , . . . , e(i)
n ], i = 1, 2, . . . , N, can be found. On the basis of these

sets, the sample prediction error (cross-)covariance matrices can be computed according to

P̂ek =
1
N

N∑
i=1

e(i)
k (e(i)

k )T ≈ cov[ek], (6)

P̂el,ek =
1
N

N∑
i=1

e(i)
l (e(i)

k )T ≈ cov[el; ek]. (7)

I Computation by means of single measured data set

Let a measured data set be supposed [z0, . . . , zn] and the set of the prediction errors [e0, . . . , en]
be computed. Due to the fact, that for stable linear systems the equality cov[ek] = cov[ek+1],
k = L, L + 1, . . . , n, holds, the sample prediction error covariance matrix can be computed as

P̂eL =
1

n− L + 1

n∑
k=L

ek(ek)
T ≈ cov[eL]. (8)

Similarly, the sample cross-covariance matrix can be computed.

Estimation of state and measurement noise covariance matrices for linear systems

Substitution of the sample (cross-)covariance matrices (6)–(8) into (4), (5) leads to the relations

P̂ek = HFkP0(Fk)THT +

k−1∑
i=0

HFiQ̂(Fi)THT + R̂,

P̂el,ek = HFlP0(Fk)THT +

l∑
i=1

HFl−iQ̂(Fk−i)THT,

representing the system of linear equations, where the unknown variables are the elements of the
noise covariance matrices. Solution of the system of linear equations leads to the estimates of the
state noise covariance matrix Q̂ and the measurement noise covariance matrix R̂.

Noise covariance matrix estimation for nonlinear systems

Multi-step prediction by extended Kalman filter

I Let the nonlinear system (1), (2) with known initial state x0 be considered. Then, the extended
Kalman filter (EKF) is defined as follows

x̂k|k = x̂k|k−1 + Kkek,

Pk|k = Pk|k−1 −KkHk(x̂k|k−1)Pk|k−1,

x̂k+1|k = fk(x̂k|k),

Pk+1|k = Fk(x̂k|k)Pk|kFT
k (x̂k|k) + QF,

where
I x̂k|k, Pk|k and x̂k+1|k, Pk+1|k are the filtering and predictive state means and covariance matrices,
I ẑk|k−1 is the predictive mean of the measurement,

I Fk(x̂k|k) =
∂fk(xk)

∂xk
|xk=x̂k|k

and Hk(x̂k|k−1) =
∂hk(xk)

∂xk
|xk=x̂k|k−1

,

I Kk = Pk|k−1HT
k (x̂k|k−1)

(
Hk(x̂k|k−1)Pk|k−1HT

k (x̂k|k−1) + RF)−1 is the filter gain,
I ek = zk − ẑk|k−1 is the innovation, and
I the filter initial condition is given by x̂0|−1 = x0, P0|−1→ 0.

I The innovation sequence of the EKF remains bounded if the system is observable, the system and
filter initial states are the same, and the filter noise covariance matrices are greater than true ones,
i.e. QF > Q, RF > R.

I Additionally, if the filter noise covariance matrices will be chosen so that the inequality QF � RF

holds, then the gain will be close to the zero, i.e. Kk → 0, for a few first time instants and the EKF
works as a multi-step predictor.

Statistical properties of extended Kalman filter innovation sequence

Then, the innovation of the EKF is the zero mean variable with the covariance matrix

cov[e0] ≈ R, (9)
cov[e1] ≈ H1(x̂1|0)QHT

1 (x̂1|0) + R, (10)

cov[ek] ≈
k−1∑
i=1

Hk(x̂k|k−1)

k−1∏
j=i

Fm(x̂m|m)Q
(

Hk(·)
k−1∏
j=i

Fm(·)
)T

+ Hk(x̂k|k−1)QHT
k (x̂k|k−1) + R, (11)

where k = 2, 3 . . ., m = k − j + i− 1. The cross-covariance matrices can be computed as well.

Estimation of state and measurement noise covariance matrices for nonlinear systems

The noise covariance matrices can be estimated analogously to the linear case. In short, the
following steps are necessary.
I To compute the sample covariance matrices of the innovation ek on the basis of the repeatedly

measured data sets.
I To substitute the sample covariance matrices P̂ek into relations (9)–(11) and to solve the system of

linear equations with respect to the elements of the noise covariance matrices Q and R.

Numerical example

I Let the following nonlinear system be supposed

x1,k+1 = x1,kx2,k + w1,k,

x2,k+1 = x2,k + w2,k,

zk = x2
1,k + vk,

where
I the system and filter initial state is x0 = x̂0|−1 = [40, 0.95]T ,
I the state noise is described by p(wk) = N{[w1,k, w2,k]

T : [0, 0]T , diag([0.25, 0.004])}, ∀k, and
I the measurement noise is described by p(vk) = N{vk : 0, 0.01}, ∀k.

I The system output was repeatedly measured for first three time instant, i.e. data sets [z(i)
0 , z(i)

1 , z(i)
2 ]

for i = 1, 2, . . . , 1000 were available.
I The EKF with QF = diag([40, 40]) and RF = 108 was applied to all sets of measured data.
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