Prediction Error Dual Controller

Miroslav Flídr and Miroslav Šimandl

Research Centre Data, Algorithms and Decision Making Department of Cybernetics Faculty of Applied Sciences University of West Bohemia in Pilsen Czech Republic

IASTED ISC 2005

Miroslav Flídr and Miroslav Šimandl

IASTED ISC 2005

Outline

1 Introduction

- Dual control
- Feasible solutions

2 Prediction Error Dual Controller

- Goal of the paper
- Prediction error dual controller for MIMO state space system
- Numerical example

Dual control (Feldbaum 1960)

- > Arises in control problem with insufficient knowledge of parameters
- Two conflicting goals meet control objective and improve estimation
- > Optimal dual control problem mostly cannot be solved analytically

Suboptimal solutions (Tse *et al.* 1973, Wittenmark *et al.* 1975, Millito *et al.* 1982,...)

- ➤ Augmenting the cautious control law (Bicriterial controller,...)
- ➤ Modification of criterion (e.g. IDC, ASOD,...)

➤ Criterion approximation (e.g. WDC, Utility cost,...)

Requirements of feasible solution

- computationally moderate (only one step ahead horizon)
- ➤ clear interpretation
- guarantees sufficient control quality

Properties of feasible solutions

Bicriterial Control

(Filatov et al., 1997; Šimandl and Flídr, 2001; Flídr and Šimandl, 2005)

- ✓ two objectives \Rightarrow two criteria
- \checkmark probing is binary signal with preset amplitude specified by designer
- ★ How to choose probing amplitude?

Innovations Dual Control (ICD) (Millito *et al.* 1982)

- ✓ criteria enhanced with weighted innovation sequence
- ✓ respects uncertainty but it is less cautious
- \checkmark reasonable weight lies within the set < 0, 1 >
- \mathbf{X} The controller has only overall information about quality of estimation

Innovations Dual Controller

- $\checkmark~$ The controlled system considered SISO ARMAX
- \checkmark Parameter estimation by Recursive least square method

The criterion

$$J_k^c(u_k) = E\left\{ (y_{k+1} - \bar{y}_{k+1})^2 - \lambda_{k+1} v_{k+1}^2 | \mathfrak{I}_k \right\}$$

$$\mathfrak{I}_k = (u_0, \dots, u_{k-1}, y_0, \dots, y_k)$$

- ➤ the parameter λ ≥ 0 specifies the degree of compromise between control and estimation objectives
- > the innovations sequence v_{k+1} provides overall information about estimation quality
- the certainty equivalent and cautious controllers are special cases of IDC

Goal of the paper

Goal - Generalization of the basic IDC

Generalization to the class of MIMO state space systems with random variables described by an arbitrary probability density functions (pdf's)

Design of criteria that would rate the state augmented with uncertain parameters instead of only the system output

Analysis of the designed criteria and the control law

Prediction error dual controller for MIMO state space system

Consider the MIMO stochastic system

$$s_{k+1} = \mathbf{A}(\boldsymbol{\theta}_k) s_k + \mathbf{B}(\boldsymbol{\theta}_k) \boldsymbol{u}_k + \boldsymbol{w}_k,$$

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\Phi}_k \boldsymbol{\theta}_k + \boldsymbol{\epsilon}_k, \qquad \qquad k = 0, \dots, N-1$$

$$\mathbf{y}_k = \mathbf{C} s_k + \boldsymbol{v}_k,$$

$$s_k \in \mathbb{R}^n$$
 ... non-measurable state
 $\theta_k \in \mathbb{R}^p$... unknown parameters
 $u_k \in \mathbb{R}^r$... control
 $y_k \in \mathbb{R}^m$... measurement

- ✓ The elements of matrices $A(\theta_k)$ and $B(\theta_k)$ are known linear functions of the unknown parameters θ_k
- ✓ The random variables s_0 , θ_0 , w_k , ϵ_k and v_k are described by known pdf's

Prediction Error Dual Controller

Conclusion

Prediction error dual controller for MIMO state space system

Prediction error dual controller (PEDC)

The control objective criterion

$$J_{k} = E\left\{ (\boldsymbol{x}_{k+1} - \bar{\boldsymbol{x}}_{k+1})^{T} \boldsymbol{V}_{k+1} (\boldsymbol{x}_{k+1} - \bar{\boldsymbol{x}}_{k+1}) - \boldsymbol{v}_{k+1}^{T} \boldsymbol{\Lambda}_{k+1} \boldsymbol{v}_{k+1} + \boldsymbol{u}_{k}^{T} \boldsymbol{W}_{k} \boldsymbol{u}_{k} \middle| \boldsymbol{\Im}_{k} \right\}$$

$$oldsymbol{x}_k = \left(egin{array}{c} s_k \ oldsymbol{ heta}_k \end{array}
ight), \quad oldsymbol{ heta}_{k+1} = oldsymbol{x}_{k+1} - \hat{oldsymbol{x}}'_{k+1}(\hat{oldsymbol{s}}_k, \hat{oldsymbol{ heta}}_k).$$

The prediction of the augmented state $\hat{x}_{k+1}^{'}$ is defined as

$$\hat{oldsymbol{x}}_{k+1}^{'} = \left(egin{array}{cc} oldsymbol{A}(\hat{oldsymbol{ heta}}_k) & oldsymbol{\mathcal{O}} \\ oldsymbol{\mathcal{O}} & oldsymbol{\Phi}_k \end{array}
ight) \left(egin{array}{cc} \hat{oldsymbol{s}}_k \\ oldsymbol{\hat{ heta}}_k \end{array}
ight) + \left(egin{array}{cc} oldsymbol{B}(\hat{oldsymbol{ heta}}_k) \\ oldsymbol{\mathcal{O}} \end{array}
ight) oldsymbol{u}_k + \left(egin{array}{cc} \hat{oldsymbol{w}}_k \\ oldsymbol{\mathcal{O}} \end{array}
ight) + \left(egin{array}{cc} oldsymbol{B}(\hat{oldsymbol{ heta}}_k) \\ oldsymbol{\mathcal{O}} \end{array}
ight) oldsymbol{u}_k + \left(egin{array}{cc} \hat{oldsymbol{w}}_k \\ oldsymbol{\mathcal{O}} \end{array}
ight) + \left(egin{array}{cc} oldsymbol{B}(\hat{oldsymbol{ heta}}_k) \\ oldsymbol{\mathcal{O}} \end{array}
ight) oldsymbol{U}_k + \left(egin{array}{cc} \hat{oldsymbol{w}}_k \\ oldsymbol{\mathcal{O}} \end{array}
ight) oldsymbol{U}_k + \left(egin{array}{cc} \hat{oldsymbol{W}}_k \\ oldsymbol{\mathcal{O}} \end{array}
ight) oldsymbol{U}_k + \left(egin{array}{cc} \hat{oldsymbol{W}}_k \\ oldsymbol{\mathcal{O}} \end{array}
ight) oldsymbol{U}_k + \left(egin{array}{cc} \hat{oldsymbol{W}}_k \\ oldsymbol{\mathcal{O}} \end{array}
ight) oldsymbol{U}_k + \left(egin{array}{cc} \hat{oldsymbol{W}}_k \\ oldsymbol{\mathcal{O}} \end{array}
ight) oldsymbol{U}_k + \left(egin{array}{cc} \hat{oldsymbol{W}}_k \\ oldsymbol{\mathcal{O}} \end{array}
ight) oldsymbol{U}_k + \left(egin{array}{cc} \hat{oldsymbol{W}}_k \\ oldsymbol{\mathcal{O}} \end{array}
ight) oldsymbol{U}_k + \left(egin{array}{cc} \hat{oldsymbol{W}}_k \\ oldsymbol{\mathcal{O}} \end{array}
ight) oldsymbol{U}_k + \left(egin{array}{cc} \hat{oldsymbol{W}}_k \\ oldsymbol{\mathcal{O}} \end{array}
ight) oldsymbol{U}_k + \left(end{array} ella \end{array}
ight) oldsymbol{U}_k \end{array} ella ella \end{array} ella ella ella \end{array} ella ella \oldsymbol{W}_k \end{array} ella \end{array} ella ella \end{array} ella ella ella \oldsymbol{W}_k \end{array} ella \bella ella \ella ella \ella \el$$

where

$$\hat{s}_k \stackrel{\Delta}{=} E\left\{s_k | \mathfrak{I}_k\right\}, \qquad \hat{\theta}_k \stackrel{\Delta}{=} E\left\{\theta_k | \mathfrak{I}_k\right\}, \qquad \hat{w}_k \stackrel{\Delta}{=} E\left\{w_k | \mathfrak{I}_k\right\}$$

Prediction error dual controller for MIMO state space system

Analysis of the control law

Structure of the control law for considered MIMO system

Denote $\boldsymbol{\alpha}_k$, $\boldsymbol{\beta}_k$ and $\boldsymbol{\gamma}_k$ as the first, the second and the third moment of the augmented state $\boldsymbol{x}_k \stackrel{\Delta}{=} (\boldsymbol{s}_k, \boldsymbol{\theta}_k)^T$ given by the pdf $p(\boldsymbol{x}_k | \boldsymbol{y}_0^k)$, respectively. After the control law derivation the dependency of the control law can be written as

$$\boldsymbol{u}_k = f_k(\boldsymbol{\alpha}_k, \boldsymbol{\beta}_k, \boldsymbol{\gamma}_k)$$

In order to generate the control u_k , it is necessary to know the filtering pdf $p(x_k|y_0^k)$. Because the system is nonlinear system from the estimation point of view a suitable nonlinear filtering method has to be employed.

Prediction error dual controller for MIMO state space system

Analysis of the control law - special cases

Control law for special choices of Λ_{k+1}

$$\succ \Lambda_{k+1} = V_{k+1} \qquad \Rightarrow \qquad u_k = u_k^{C\mathcal{E}} \\ \triangleright \Lambda_{k+1} = \mathcal{O} \qquad \Rightarrow \qquad u_k = u_k^{C}$$

Relation to CE and Cautious controllers

$$> u_k = M_k^{C\mathcal{E}} u_k^{C\mathcal{E}} + N_k^{C\mathcal{E}}$$

$$\square M_k^{C\mathcal{E}} \le I$$

$$\Rightarrow \quad \text{PEDC is cautious compared to CE controller}$$

$$> u_k = M_k^C u_k^C + N_k^C$$

$$\square \text{ In case that } \Lambda_{k+1}^{s,s} \le V_{k+1}^{s,s} \text{ then } M_k^C \ge I$$

$$\Rightarrow \quad \text{PEDC is less cautious than Cautious controller}$$

Suitable choise: $\boldsymbol{\Theta} \leq \boldsymbol{\Lambda}_{k+1}^{s,s} \leq \boldsymbol{V}_{k+1}^{s,s}$

Miroslav Flídr and Miroslav Šimandl

Prediction error dual controller for MIMO state space system

Relation of PEDC to IDC

PEDC comprises the IDC as a special case

- ✓ The system is supposed as SISO.
- \checkmark The criterion matrices are then chosen as follows

$$V_{k+1}^{s,s} = C^T C,$$

$$\Lambda_{k+1}^{s,s} = C^T C \lambda_{k+1}.$$

✓ The matrices $V_{k+1}^{s,\theta}$, $V_{k+1}^{\theta,s}$, $V_{k+1}^{\theta,\theta}$, $\Lambda_{k+1}^{s,\theta}$, $\Lambda_{k+1}^{\theta,s}$ and $\Lambda_{k+1}^{\theta,\theta}$ are zero matrices.

$$m{V}_{k+1} = \left(egin{array}{ccc} m{V}_{k+1}^{s,s} & m{V}_{k+1}^{s, heta} \ m{V}_{k+1}^{\theta,s} & m{V}_{\theta, heta}^{\theta, heta} \ m{\Lambda}_{k+1}^{s,t} & m{\Lambda}_{k+1}^{\theta, heta} \ m{\Lambda}_{k+1}^{\theta,s} & m{\Lambda}_{k+1}^{\theta, heta} \ m{\Lambda}_{k+1}^{\theta,s} & m{\Lambda}_{k+1}^{\theta, heta} \end{array}
ight),$$

Prediction Error Dual Controller

Conclusion

Prediction error dual controller for MIMO state space system

Analysis of the criterion

Decomposition of the criterion

$$J_k = J_k^{\mathcal{CE}} + J_K^{\mathcal{C}} + J_k^{\mathcal{P}}$$

 \Rightarrow it comprises both aspects of the dual control

✓ Certainty equivalent part

$$J_{k}^{CE} = \left(\hat{x}_{k+1}^{'} - \bar{x}_{k+1}\right)^{T} V_{k+1} \left(\hat{x}_{k+1}^{'} - \bar{x}_{k+1}\right) + u_{k}^{T} W_{k} u_{k}$$

✓ Cautious part

$$J_{k}^{\mathcal{C}} = E\left\{\left(\boldsymbol{x}_{k+1} - \hat{\boldsymbol{x}}_{k+1}^{'}\right)^{T} \boldsymbol{V}_{k+1}\left(\boldsymbol{x}_{k+1} - \hat{\boldsymbol{x}}_{k+1}^{'}\right) \left|\boldsymbol{\mathfrak{I}}_{k}\right.\right\}$$

✓ Probing part

$$J_{k}^{\mathcal{P}} = - E \left\{ \left(\boldsymbol{x}_{k+1} - \hat{\boldsymbol{x}}_{k+1}^{'} \right)^{T} \boldsymbol{\Lambda}_{k+1} \left(\boldsymbol{x}_{k+1} - \hat{\boldsymbol{x}}_{k+1}^{'} \right) \left| \boldsymbol{\Im}_{k} \right. \right\}$$

Miroslav Flídr and Miroslav Šimandl

Numerical example

Numerical example

Considered system

$$s_{k+1} = \begin{pmatrix} 0 & 1 \\ \theta_1 & \theta_2 \end{pmatrix} s_k + \begin{pmatrix} \theta_{3k} \\ \theta_{4k} \end{pmatrix} u_k + \boldsymbol{w}_k$$
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k$$
$$y_k = (1, 1)s_k + v_k$$

✓ Prior pdf of the state and the parameters
>
$$p(s_0) = \mathcal{N} ((0, 0)^T, 5 \cdot I)$$

> $p(\theta_0) = \mathcal{N} (\hat{\theta}_0, \text{diag}(0.3, 0.3, 1.2, 1.2))$
 $\hat{\theta}_0 = (-2.0427, 0.3427, 0, 1)^T$

✓ Noise pdf's

$$\succ p(\boldsymbol{w}_k) = \mathcal{N}\left((0, 0)^T, 10^{-4}\boldsymbol{I}\right)$$
$$\succ p(v_k) = \mathcal{N}\left(0, 10^{-3}\right)$$

Numerical example

Criteria parameters

Matrix V_{k+1} such as to enable comparison with IDC and Bicriterial controller

$$\boldsymbol{V}_{k+1} = \left(\begin{array}{ccc} \boldsymbol{V}_{k+1}^{s,s} & \boldsymbol{V}_{k+1}^{s,\theta} \\ \boldsymbol{V}_{k+1}^{\theta,s} & \boldsymbol{V}_{k+1}^{\theta,\theta} \\ \boldsymbol{V}_{k+1}^{\theta,s} & \boldsymbol{V}_{k+1}^{\theta,\theta} \end{array}\right) = \left(\begin{array}{ccc} \boldsymbol{C}^{T}\boldsymbol{C} & \boldsymbol{\mathcal{O}} \\ \boldsymbol{\mathcal{O}} & \boldsymbol{\mathcal{O}} \end{array}\right)$$

> Matrix Λ_{k+1} designed to support reduction of uncertainty of parameters θ_{3k} and θ_{4k}

$$\mathbf{\Lambda}_{k+1} = \left(egin{array}{ccc} \mathbf{\Lambda}_{k+1}^{s,s} & \mathbf{\Lambda}_{k+1}^{s, heta} \ \mathbf{\Lambda}_{k+1}^{\theta,s} & \mathbf{\Lambda}_{k+1}^{\theta, heta} \end{array}
ight) = \left(egin{array}{ccc} 0.64 \cdot oldsymbol{C}^T oldsymbol{C} & \mathbf{\Lambda}_{k+1}^{\theta,s} \ \mathbf{\Lambda}_{k+1}^{s, heta} & \mathbf{\Lambda}_{k+1}^{s, heta} \end{array}
ight)$$

$$\mathbf{\Lambda}_{k+1}^{s,\theta} = \mathbf{\Lambda}_{k+1}^{s,\theta} = \begin{pmatrix} 0 & 0 & 0.1 & 0.1 \\ 0 & 0 & 1 & 0.1 \end{pmatrix}$$

$$> W_k = 0.001$$

Numerical example

Comparison to other controllers

The following index is chosen as a measure of the control performance

$$\mathcal{M} = \sqrt{\frac{1}{N} \sum_{k=1}^{N} (s_k - \bar{s}_k)^2},$$

- \checkmark *y_k* represents the measurement
- $\checkmark \bar{y}_k$ represents the reference value
- \checkmark N determines length of one simulation run

The expected value $\hat{\mathcal{M}} = E \{\mathcal{M}\}$ is estimated using 1000 MC simulations.

Control quality comparison using the index $\hat{\mathcal{M}}$

	$\hat{\mathcal{M}}$
Certainty equivalent controller	5.475879
Cautious controller	3.472613
Bicriterial controller	2.988189
Innovations dual controller	2.636660
Prediction error dual controller	2.580099

Numerical example

Comparison to other controllers

Miroslav Flídr and Miroslav Šimandl

IASTED ISC 2005

Numerical example

Comparison to other controllers

Concluding remarks

- Generalization of the IDC was presented
- > Some aspects of the control law and criterion were discussed
- The PEDC controller can directly influence reduction of uncertainty of the parameter estimates
- The PEDC provides better performance compared to IDC

References

- Filatov, N. M., H. Unbehauen and U. Keuchel (1997). Dual pole-placement controller with direct adaptation. *Automatica* 33(1), 113–117.
- Flídr, M. and M. Šimandl (2005). Bicriterial dual controller with multiple linearization. In: *Proceeding of the 16th IFAC World Congress.* IFAC. Prag.
- Milito, R., C.S. Padilla, R.A. Padilla and D. Cadorin (1982). An innovations approach to dual control. *IEEE Trans. Automat. Contr.* AC-27(1), 132–137.
- Šimandl, M. and M. Flídr (2001). Bicriterial dual control for stochastic systems with unknown variable parameters. In: *Proceeding of the Fifth IFAC Symposium on Nonlinear Control Systems*. IFAC. Saint-Petersburg, Russia. pp. 1069–1074.

Prediction error dual controller

Control law

$$\begin{aligned} \boldsymbol{u}_{k} &= -\left[\boldsymbol{W}_{k} + \boldsymbol{B}^{T}(\hat{\boldsymbol{\theta}}_{k})\boldsymbol{V}_{k+1}^{s,s}\boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k}) \\ &+ E\left\{[\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k})]^{T}\boldsymbol{L}_{k+1}^{s,s}[\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}\hat{\boldsymbol{\theta}}_{k})]|\boldsymbol{\Im}_{k}\right\}\right]^{-1} \\ &\times \left[E\left\{[\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k})]^{T}\boldsymbol{L}_{k+1}^{s,\theta}[\boldsymbol{\Phi}_{k}\boldsymbol{\theta}_{k} - \boldsymbol{\Phi}_{k}\hat{\boldsymbol{\theta}}_{k}]|\boldsymbol{\Im}_{k}\right\} \\ &+ \boldsymbol{B}^{T}(\hat{\boldsymbol{\theta}}_{k})\boldsymbol{V}_{k+1}^{s,\theta}\boldsymbol{\Phi}_{k} \\ &+ E\left\{[\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k})]^{T}\boldsymbol{L}_{k+1}^{s,s}[\boldsymbol{A}(\boldsymbol{\theta}_{k})\boldsymbol{s}_{k} - \boldsymbol{A}(\hat{\boldsymbol{\theta}}_{k})\hat{\boldsymbol{s}}_{k}]|\boldsymbol{\Im}_{k}\right\} \\ &+ \boldsymbol{B}^{T}(\hat{\boldsymbol{\theta}}_{k})\boldsymbol{V}_{k+1}^{s,s}\left(\boldsymbol{A}(\hat{\boldsymbol{\theta}}_{k})\hat{\boldsymbol{s}}_{k} + \hat{\boldsymbol{w}}_{k} - \bar{\boldsymbol{x}}_{k+1}\right)\right], \end{aligned}$$

Relation to certainty equivalent control

$$u_k = M_k^{C\mathcal{E}} u_k^{C\mathcal{E}} + N_k^{C\mathcal{E}},$$

$$\begin{aligned} \boldsymbol{M}_{k}^{\mathcal{C}\mathcal{E}} &= \left[\boldsymbol{W}_{k} + \boldsymbol{B}^{T}(\hat{\boldsymbol{\theta}}_{k}) \boldsymbol{V}_{k+1}^{s,s} \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k}) + \left\{ \left[\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k}) \right]^{T} \boldsymbol{L}_{k+1}^{s,s} \left[\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}\hat{\boldsymbol{\theta}}_{k}) \right] \left| \Im_{k} \right\} \right]^{-1} \times \\ &\times \left[\boldsymbol{W}_{k} + \boldsymbol{B}^{T}(\hat{\boldsymbol{\theta}}_{k}) \boldsymbol{V}_{k+1}^{s,s} \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k}) \right] \end{aligned}$$

$$\begin{split} N_{k}^{\mathcal{C}\mathcal{E}} &= -\left[W_{k} + \boldsymbol{B}^{T}(\hat{\theta}_{k}) \boldsymbol{V}_{k+1}^{s,s} \boldsymbol{B}(\hat{\theta}_{k}) + \left\{ [\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k})]^{T} \boldsymbol{L}_{k+1}^{s,s} [\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}\hat{\boldsymbol{\theta}}_{k})] |\boldsymbol{\Im}_{k} \right\} \right]^{-1} \\ &\times \left[E \left\{ [\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k})]^{T} \boldsymbol{L}_{k+1}^{s,\theta} [\boldsymbol{\Phi}_{k} \boldsymbol{\theta}_{k} - \boldsymbol{\Phi}_{k} \hat{\boldsymbol{\theta}}_{k}] |\boldsymbol{\Im}_{k} \right\} + \\ &+ E \left\{ [\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k})]^{T} \boldsymbol{L}_{k+1}^{s,s} [\boldsymbol{A}(\boldsymbol{\theta}_{k}) \boldsymbol{s}_{k} - \boldsymbol{A}(\hat{\boldsymbol{\theta}}_{k}) \hat{\boldsymbol{s}}_{k}] |\boldsymbol{\Im}_{k} \right\} \right] \end{split}$$

Miroslav Flídr and Miroslav Šimandl

Relation to *cautious* control

$$\boldsymbol{u}_k = \boldsymbol{M}_k^{\mathrm{C}} \boldsymbol{u}_k^{\mathrm{C}} + \boldsymbol{N}_k^{\mathrm{C}},$$

$$\begin{split} \boldsymbol{M}_{k}^{\mathcal{C}} &= \left[\boldsymbol{W}_{k} + \boldsymbol{B}^{T}(\hat{\boldsymbol{\theta}}_{k}) \boldsymbol{V}_{k+1}^{s,s} \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k}) + \left\{ [\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k})]^{T} \boldsymbol{L}_{k+1}^{s,s} [\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}\hat{\boldsymbol{\theta}}_{k})] |\boldsymbol{\mathfrak{I}}_{k} \right\} \right]^{-1} \times \\ &\times \left[\boldsymbol{W}_{k} + \boldsymbol{B}^{T}(\hat{\boldsymbol{\theta}}_{k}) \boldsymbol{V}_{k+1}^{s,s} \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k}) + \left\{ [\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k})]^{T} \boldsymbol{V}_{k+1}^{s,s} [\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k})] |\boldsymbol{\mathfrak{I}}_{k} \right\} \right] \end{split}$$

$$\begin{split} \boldsymbol{N}_{k}^{\mathcal{C}} &= \left[\boldsymbol{W}_{k} + \boldsymbol{B}^{T}(\hat{\boldsymbol{\theta}}_{k})\boldsymbol{V}_{k+1}^{s,s}\boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k}) + \left\{ [\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k})]^{T}\boldsymbol{L}_{k+1}^{s,s}[\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}\hat{\boldsymbol{\theta}}_{k})] |\boldsymbol{\Im}_{k} \right\} \right]^{-1} \times \\ &\times \left[E \left\{ [\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k})]^{T}\boldsymbol{\Lambda}_{k+1}^{s,\theta}[\boldsymbol{\Phi}_{k}\boldsymbol{\theta}_{k} - \boldsymbol{\Phi}_{k}\hat{\boldsymbol{\theta}}_{k}]] \boldsymbol{\Im}_{k} \right\} \\ &+ E \left\{ [\boldsymbol{B}(\boldsymbol{\theta}_{k}) - \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k})]^{T}\boldsymbol{\Lambda}_{k+1}^{s,s}[\boldsymbol{A}(\boldsymbol{\theta}_{k})\boldsymbol{s}_{k} - \boldsymbol{A}(\hat{\boldsymbol{\theta}}_{k})\hat{\boldsymbol{s}}_{k}] |\boldsymbol{\Im}_{k} \right\} \right] \end{split}$$

Miroslav Flídr and Miroslav Šimandl