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Abstract: The use of the model is the decisive validation step in its building. As a
rule, the use of a bad model is too costly so that a model validation is an obligatory
step in its learning and a naturally relevant extensive theory has been developed
within statistical community. However, the available rules deal almost exclusively
with independent data samples. Consequently, they are substantially disqualified
for validation of dynamic models.
This paper provides the missing solution using Bayesian formulation and solution
of the problem. The rule is elaborated for validation of the model gained via
estimation within practically important exponential family.
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1. INTRODUCTION

Learning is a standard part in model build-
ing Ljung (1987); Bohlin (1991). In order to
avoid costly consequences of employing inade-
quate model, the found model has to be validated
before its final use. This led to development of an
extensive theory dealing with model validation,
see e.g. the review Plutowski (1996). However,
the available procedures deal almost exclusively
with independent data samples. Consequently,
they cannot be used for validation of dynamic
models. Just a few available exceptions deal with
specific cases only Huang (2001).

A real need for systematic validation of dynamic
models in led us to development of a general
validation procedure based on Bayesian decision
making theory Berger (1985).

After preparatory Section 2, the addressed prob-
lem is formulated and solved in Section 3. The
solution is applied to estimation in dynamic ex-
ponential family, Barndorff-Nielsen (1978), in Sec-
tion 4. Performance of the algorithm is illustrated

on a simple example in Section 5. The paper is
closed by concluding remarks, Section 6.

2. PRELIMINARIES

The paper uses the following notations: ≡ is
defining equality; X∗ denotes a set of X-values;
X̊ means cardinality of a finite set X∗; f(·|·)
denotes probability density function (pdf); ∝
means equality up to a normalizing factor; t la-
bels discrete-time moments, t ∈ t∗ ≡ {1, . . . , t̊};
t̊ < ∞ is a given learning horizon; dt = (yt, ut)
is the data record at time t consisting of an
observed system output yt and of an optional
system input ut; xt is an unobserved system state;
X(t) denotes the sequence (X1, . . . , Xt), X(t) ∈
{d(t), y(t), u(t), x(t)}.

The following simplifications are also adopted.

• Names of arguments distinguish pdfs. No
formal distinction is made between a random
variable, its realization and an argument of a
pdf.



• All integrals are definite and multivariate.
The integration domain coincides with sup-
port of the pdf in its argument.

The joint pdf f(d(̊t), x(̊t)|x0, d(0))f(x0|d(0)) =
f(d(̊t), x(̊t)|x0)f(x0) of involved random variables
is the most complete probabilistic description of
the controlled closed loop. In it, x0 is initial un-
certain state. The symbol d(0) stands for the prior
information available before the choice of the first
input. Habitually, d(0) is considered implicitly.

The chain rule for pdfs Peterka (1981) implies the
following decomposition of the above joint pdf:

f(d(̊t), x(̊t)|x0) = f(x0)×
∏
t∈t∗

× (1)

× f(yt|ut, d(t− 1), x(t))︸ ︷︷ ︸
observation model

×

× f(xt|ut, d(t− 1), x(t− 1))︸ ︷︷ ︸
state evolution model

×

× f(ut|d(t− 1), x(t− 1))︸ ︷︷ ︸
randomized controller

.

The following assumptions are adopted:

Observation model of yt depends on a finite
dimensional regression vector ψt, which is a
function of ut, dt−1, . . . , dt−∂ , ∂ < ∞, and on
the system state xt

f(yt|ut, d(t− 1), x(t)) = f(yt|ψt, xt).

State evolution model of xt depends on the
regression ψt and the past system state xt−1

f(xt|ut, d(t− 1), x(t− 1)) = f(xt|ψt, xt−1).

Randomized control providing the system input
ut is admissible thus exploits only the observed
data history d(t−1) and ignores the unobserved
states x(t− 1)

f(ut|d(t− 1), x(t− 1)) = f(ut|d(t− 1)).
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Hence, the closed loop description (1) reduces to

f(d(̊t), x(̊t)|x0) =
∏
t∈t∗

f(yt|ψt, xt)×

× f(xt|ψt, xt−1)f(ut|d(t− 1)) (2)

and the following proposition holds.

Proposition 1. (Filtering in closed control loop).
Let the pdf f(x0) be given, d(0) together with u1

determines the initial regression vector ψ1 and the
assumptions hold. Then, the pdf f(xt|d(t)), de-
termining the state estimate, the pdf f(xt|ut, d(t−
1)), determining the state prediction, and the pdf
f(yt|ut, d(t − 1)), determining the output predic-
tion, evolve as follows

Time updating f(xt|ut, d(t− 1)) =

=
∫
f(xt|ψt, xt−1)f(xt−1|d(t− 1)) dxt−1

Data updating f(xt|d(t)) = (3)

=
f(yt|ψt, xt)f(xt|ut, d(t− 1))

f(yt|ut, d(t− 1))
Output prediction f(yt|ut, d(t− 1)) =

=
∫
f(yt|ut, d(−1), xt)f(xt|ut, d(t− 1)) dxt.

Proof: Omitted. 2

3. PROBLEM FORMULATION AND
SOLUTION

Learning aims to find the best model boM ∈M∗

of the inspected controlled system. Specification
of what is meant by the “best” is possible only on
a confined class of models. Without prior choise
of the model class, learning is always an open-
ended story. Ideally, the posterior distribution on
M∗ should be build before selecting the relevant
model.

However, the set of models M∗ is infinite dimen-
sional and a practical construction of the prior
distribution over it, as well as evaluation of its
moments, is intractable. Therefore, we consider
the prior to be uniform on M∗, which implies
that the maximum likelihood estimate is the best
model boM. The likelihood function L(d(̊t),M) of
M coincides with the factor of f(d(̊t)|M) that de-
pends on M. Thus, construction of the likelihood
function is implied by Proposition 1:

L(d(̊t),M) =
∏
t∈t∗

f(yt|ut, d(t− 1),M)︸ ︷︷ ︸
output prediction (3)

. (4)

Adopting this view point, the estimation selects
among various models from M∗ the model with
the highest v-likelihood (4).

Model validation is an additional test on the
quality of boM. Inspired by the classical model
validation theory Plutowski (1996), we split all
the available data d(̊t) on: (i) learning data bld,
and (ii) validation data bvd. The best model
boM is learnt on the learning data bld and its
performance is checked on the validation data bvd.
The validation technique is essentially inspecting
how good is the best dynamic model boM in
extrapolating of the past to the future. Thus, the
learning data bld has to form the “prefix” part of
d(̊t) and the validation data bvd the “suffix” part.

The results of validation strongly depend on the
choise of the splitting moment. None of the ex-
isting methods, Plutowski (1996), is directly pre-
pared for the considered dynamic models. These



models allow just cutting into contiguous se-
quences. Essentially, the available data up to a
cutting moment τ are taken as learning data and
the rest as validation data. This reduces the num-
ber of split ways but at the same time disqualifies
the majority of the available analysis.

This motivates us to design an adequate, purely
Bayesian, formulation and solution of the model
validation problem. Let us consider a fixed cutting
moment τ ∈ t∗ ∪ {0}, which defines the learning
data

bld(τ) ≡ d(τ), (5)

and the validation data

bvd(̊t \ τ) ≡ (dτ−∂ , . . . , d̊t). (6)

Consider the following hypotheses

H0 ≡ All recorded data d(̊t) are described by the
learnt model boM.

The v-likelihood of this hypothesis is ob-
tained by performing stochastic filtering on all
data giving

f(d(̊t)|H0) ∝ L(d(̊t), boM) ≡ L(d(̊t),H0). (7)

H1 ≡ Learning data and validation data should
be described by individual models.

The v-likelihood of this hypothesis is ob-
tained by independent filter runs on both data
collections giving

f(d(̊t)|H1, τ) ∝ L
(
bld(τ), boM

)
×

×L
(
bvd(̊t \ τ), b1M

)
≡ L(d(̊t),H1|τ). (8)

The model b1M used on validation data may
differ from boM. The difficulty to find a real
different competitor makes us to choose b1M =
boM.

Note that proportionality factor is the same
in both cases as it is formed by the factor∏

t∈t∗ f(ut|d(t − 1)) describing the admissible
strategy used while collecting data d(̊t).

This approach is graphically illustrated in Fig. 3.
Estimation on the whole data d(̊t) yields result
in the class of single models. Estimation on the
split data yields result in the class of multiple (or
switching) models. The latter class is, of course,
richer. The first (single) model is found valid
if the best estimate in the richer class has the
same (close) likelihood. This case is illustrated by
System 1 in Fig. 3. System 2 illustrated the case
where the switching model outperforms the single
model.

With no prior prejudice, f(H0|τ) = f(H1|τ), the
Bayes rule provides the posterior pdf f(H0|d(̊t), τ).
The learnt model can be accepted as good one

System 2System 1

Switching models
single model

Fig. 1. Illustration of the proposed validation
scheme. Elipses denotes classes of models,
small circles denotes the real systems, crosses
denotes models of the systems estimated
within each class. Dashed lines illustrates
likelihood of the models.

if the posterior pf f(H0|d(̊t), τ) is high enough.
Otherwise, we have to search for the reason why
the chosen model is not reliable enough. It gives
the algorithmic solution.

Algorithm 1. (Model validation for a fixed τ).

(1) Run filtering, Proposition 1, on the learning
bld(τ), validation bvd(̊t\τ) and full d(̊t) data.

(2) Evaluate the v-likelihoods L
( bld(τ),H1|τ

)
,

L
( bvd(̊t \ τ),H1|τ

)
and L

(
d(̊t),H0

)
.

(3) Using the Bayes rule, probability that the
learning was suggesfull is:

f
(
success|d(̊t), τ

)
≡ f

(
H0|d(̊t), τ

)
=

=
L(d(̊t),H0|τ)

L(d(̊t),H0|τ) + L(d(̊t),H1|τ)
(9)

where likelihoods of both hypotheses are
given by (7) and (8) respectively.

(4) The validation test is successfully passed
for a given τ if f(H0|d(̊t), τ) is close to 1.
Otherwise, measures for a better learning
have to be taken.
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Results of the test depend, often strongly, on the
selected cutting moment τ . Thus, it makes sense
to validate learning for various cutting moments
τ ∈ τ∗ ⊂ t∗. we are making a pair of decisions
(Ĥ, τ) based on the available data d(̊t) We select
τ ∈ τ∗ and accept (Ĥ = H0) or reject (Ĥ = H1)
the hypothesis H0 that the learnt model is valid.

We solve this static decision task and select the
optimal decision boĤ on inspected hypotheses and
optimal cutting time moment boτ as a minimizer
of the expected loss. We assume, for simplicity,
that the losses caused by a wrong acceptance
and rejection are identical, say (without loss of
generality) 1. The loss function is therefore chosen
as



Z(H, Ĥ, τ) =
[
1− δ

(
Ĥ(τ)−H

)]
. where δ(·) is Kronecker delta for discrete argu-
ments and Dirac delta in continuous case. The
optimal decisions is then:

boĤ, boτ = Arg min
Ĥ,τ∗

Ef(H|d(̊t))

{
Z(H, Ĥ, τ)

}
(10)

Proposition 2. (Optimal cutting). Let 0 ∈ τ∗.
Then, the optimal decision boĤ about the in-
spected hypotheses H0,H1 and the optimal cut-
ting boτ , that minimize the expected loss in (10),
are given by the following rule.

Compute b0τ ∈ Arg max
τ∈τ∗

f(H0|d(̊t), τ)
b1τ ∈ Arg min

τ∈τ∗
f(H1|d(̊t), τ) (11)

Select boĤ = H0,
boτ = b0τ if

f(H0|d(̊t), b0τ) ≥ f(H1|d(̊t), b1τ)
boĤ = H1,

boτ = b1τ if

f(H0|d(̊t), b0τ) < f(H1|d(̊t), b1τ).

Proof: Let us consider the set of cutting moments
τ∗0 ≡

{
τ ∈ τ∗ : f(H0|d(̊t), τ)) ≥ 0.5

}
. This finite

set is non-empty, as for τ = 0 f(H0|d(̊t), τ) = 0.5.
For a fixed τ ∈ τ∗0 , the decision Ĥ = H0 minimizes
the expected loss and the achieved minimum is
expectation over d(̊t) of 1 − f(H0|d(̊t), τ). This
values is minimized by b0τ . On the non-empty
set, τ∗1 {τ ∈ τ∗ : f(H0|d(̊t), τ) ≤ 0.5}, the
achieved minimum is expectation over d(̊t) of 1−
f(H1|d(̊t), τ), which is minimized by b1τ . The
smaller of these values determines, which of these
pairs defines the optimum. 2

Practical applications of the above test strongly
depend on the set τ∗ of the considered cutting
moments. The finest possible choice is τ∗ = t∗.
Exhaustive search is too demanding for extensive
data sets. Search for the minimizer by a version
of golden-cut rule, by a random choice or by a
systematic inspection on a small predefined grid
can be applied. The predefined grid seems to be
the simplest and still relevant variant as minor
changes in τ make little physical sense.

4. APPLICATION TO ESTIMATION

This section applies the obtained result to param-
eter estimation. This is the special case of filtering
with time invariant state xt = xt−1 ≡ Θ ∈ Θ∗

⇔ f(xt|ψt, xt−1) = δ(xt − Θ), which is a formal
time-evolution model for time-invariant state. In
this case, the time-updating step, Proposition 1,
becomes identity and the pdf f(Θ|d(t)), describ-
ing parameter estimates, is only evolved via the
data updating.

Moreover, models in dynamic exponential family
(EF) are considered, for which the observation
model is traditionally called parameterized model.
Introducing the data vector Ψt ≡ [yt, ψt], we can
write members M of the exponential family in the
form

f(yt|ut, d(t− 1),Θ) = A(Θ) exp 〈B(Ψt), C(Θ)〉 ,

where A(Θ) ≥ 0 and 〈·, ·〉 is a scalar product
on the involved array functions B(Ψt), C(Θ) of
compatible dimensions.

Estimation of this family, i.e. computation of
the posterior pdfs f(Θ|d(t)), t ∈ t∗, reduces to
algebraic updating of sufficient statistics

Vt = Vt−1 +B(Ψt), νt = νt−1 + 1 (12)

that determine the reproducing form of the poste-
rior pdf

f(Θ|d(t),M) =
Aνt(Θ) exp 〈Vt, C(Θ)〉

L(Vt, νt,M)
(13)

L(Vt, νt,M) ≡
∫
Aνt(Θ) exp 〈Vt, C(Θ)〉 dΘ.

The reproduction is achieved when using the
conjugate prior pdf that has the above form for
t = 0 and whose statistics V0, ν0 determine the
initial conditions in (12).

With the introduced notations, the posterior
probability (9) of the hypothesis H0 that mod-
elling is successful gets the form f(H0|d(̊t), τ) =

=

(
1 +

L
( blVt̊l

, blν̊tl
,M

)
L
( bvVt̊v

, bvν̊tv
,M

)
L (Vt̊, ν̊t,M)L (V0, ν0,M)

)−1

.(14)

In (14), (Vt̊, ν̊t),
( blVt̊l

, blν̊tl

)
and

( bvVt̊v
, bvν̊tv

)
are pairs of sufficient statistics collected on all,
learning and validation data, respectively. Let
us stress that the collection always starts with
the initial values (V0, ν0) determining the prior
conjugate pdf.

For presentation simplicity, let us consider the
fixed grid as the set of possible cutting moments

τ∗ = {τ1 = 0 < τ2, . . . , ττ̊−1 < ττ̊ = t̊}.

Then, the combination of the formula (14) and
Proposition 2 provides the following algorithm.

Algorithm 2. (Estimation with validation in EF).
Initial phase

• Select a model from exponential family and
structure of its regression vector.

• Select the prior statistics V0, ν0.

Collection of statistics



For i = 1, . . . , τ̊

Set ∆i = 0dim(V ), ρi = 0

For t = 1, . . . , t̊

If t ∈ (τi, τi+1]

∆i = ∆i+B(Ψt), ρi = ρi + 1

end If

end of the cycle over t
blVi;τi

= blVi−1;τi−1 + ∆i

blνi;τi
= blνi−1;τi−1 + ρi

end of the cycle over i

Validation

Set b1τ = b0τ = 0, b1p = b0p = 0.5

C = L( blVτ̊ + V0,
blντ̊ + ν0,M)L(V0, ν0,M)

For i = τ̊ , . . . , 1
bvVi−1;̊τi−1 = bvVi;̊τi

+ ∆i

bvνi−1;̊τi−1 = bvνi;̊τi
+ ρi

Evaluate blLi ≡ L( blVi̊τi
+ V0,

blνi̊τi
+ ν0,M)

bvLi ≡ L( bvVi̊τi
+ V0,

bvνi̊τi
+ ν0,M)

Evaluate f(H0|d(̊t), τi) =
(

1 +
blLi

bvLi

C

)−1

If f(H0|d(̊t), τi) > b0p

Set b0p = f(H0|d(̊t), τi), b0τ = τi

else If f(H0|d(̊t), τi) < b1p
b1p = f(H0|d(̊t), τi), b1τ = τi

end If

end else

end of the cycle over i

If 1− b0p < b1p

accept the model M learnt on d(̊t) (!)

else

reject the model M.

5. EXAMPLE

Te method was tested on two simple AR mod-
els: (i) 4th order AR model with stationary pa-
rameters, and (ii) 2nd order AR model with
slowly varying parameters. Data generated by
each model (200 samples for each) are displayed
in Fig. 5.

Validation procedure (Algorithm 2) was per-
formed on a uniform splitting grid with cutting
points afret each 40 samples. Note, from (12), that
the hypothesis are tested by comparison of their
likelihood. However, on many samples, difference
of the hypothesis likelihood may be large, which

results in the posterior distribution on one of the
hypothesis is almost one or zero, making it unsuit-
able for presentation. Therefore, we will present
the results in logarithmic form:

∆τ = logL
(
d(̊t),H0|τ

)
− logL

(
d(̊t),H1|τ

)
.

This formula expresses the difference of the like-
lihoods in terms of orders. Intuitively, from (9),
for

for ∆τ = 0, f(H0|d(̊t, τ) = 0.5,
for ∆τ →∞, f(H0|d(̊t, τ) → 1,
for ∆τ → −∞, f(H0|d(̊t, τ) → 0.

Results of the validation procedure are listed in
Table 5. In the first line, the model for estimation
was chosen from the same class as the one used
for simulation. As expected, hypotheses H0 is
confirmed with probability almost equal to one.
In the second line, the model for estimation was
chosen from a class different from the simulated
one. In this case, validation results significantly
differ in different cutting points τ . Hypotheses
H0 is still confirmed with high probability. In the
last line, non-stationary AR model was etimated
using a stationary AR model of the same order.
As expected, hypotheses H1 is confirmed with
probability almost equal to one.

Results of the first and the last experiment con-
firm a common sense expectation. However, re-
sults of the second experiment are harder to in-
terpret. Intuitively, one might expect a validation
method to reject (incorrect) models. However,
keep in mind that the method does not perform
an exhaustive search over all models. In fact,
the method tests—at different time moments—
whether the validation data can bring some infor-
mation that is not yet accumulated in the model.

This suggests that the presented loss function (3)
is not the only alternative and other loss function
may be investigated for more reliable validation.

More examples and Monte-Carlo simulations will
be provided in the final version of this paper.

6. CONCLUDING REMARKS

We have proposed a method for cross-validation of
an estimated dynamic model on a finite data set.
The method splits data between the learning and
the validation part and uses Bayesian approach to
test hypotheses: (i) the learning data sufficiently
represent the whole data set within the given class
of models, with (ii) the validation data brings new
information that is not absorbed by the model.

The results of validation may signifficantly dif-
fer for different splitting alternatives. Therefore,
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Fig. 2. Data generated by stationary AR(4) model (left), and data generated by non-stationary AR(2)
model.

simulated estimated difference of log-likelihoods, ∆τ (5) accepted
system model τ1 = 40 τ2 = 80 τ3 = 120 τ4 = 160 hypotheses

st. AR(4) AR(4) 43.7 46.6 46.5 51.4 boτ = τ4, Ĥ = H0

st. AR(4) AR(2) 12.7 13.3 7.4 −3.5 boτ = τ2, Ĥ = H0

non-st. AR(2) AR(2) −27.7 −48.5 −40.7 13.6 boτ = τ2, Ĥ = H1

Table 1. Results of the validation algorithm on simulated examples.

the problem was formulated for multiple split-
ting times and a loss function was introduced for
Bayesian selection of the optimal decision.

Application of the method to estimation in the ex-
ponential family models yiedls a computationally
tractable algorithm that allows—in one sweep—to
investigate multiple cutting points.

The presented criteria (i.e. the loss function) was
chosen as symmetric for simplicity. Typically, in
many practical examples, the loss associated with
choise of the wrong model is higher than the
loss associated with rejection of the simpler, yet
sufficient model. Further research in this direction
is needed.
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