Outline Mixtools-Jobcontrol Toolbox Controller Tuning Problem Evaluation Conclusion

Toolbox for Multivariate Adaptive Controller Design

Miroslav Novák

Department of Adaptive Systems, Institute of Information Theory and Automation Academy of Sciences of the Czech Republic, Prague

- Mixtools-Jobcontrol Toolbox
- 2 Controller Tuning Problem
 - Closed Loop
 - Searched Controller
 - Controller Quality Optimization
- 3 Evaluation
 - Monte Carlo
 - Stopping rule
 - Experiment
 - Tuned vs. Non-tuned Controller
- 4 Conclusion

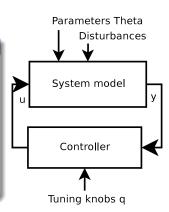
Mixtools-Jobcontrol Toolbox

- Matlab environment for complete controller design
- Mixtools computational base
- Jobcontrol connects particular steps of design
 - Data pre-processing
 - Structure identification
 - Parameter estimation
 - Forgetting factor estimation
 - Validation of identified model
 - Controller design
 - Controller verification

Closed Loop

Components

- System model
 - $f(y_t|u_t,\varphi_t)$
 - input u_t , output y_t
 - ARX obtained from identification
- Controller
 - $f(u_t|\varphi_t,q)$
 - use of adaptive LQG controller
 - tuning parameters q to be set



Searched controller - User's aims

- find such value of tuning parameter q
- for which $u \in [u^I, u^u]$
- and output error is minimized

Controller constructed directly for the aims is unavailable

- Requirements on the controller
 - constraints on quantities
 - complicated probabilistic system model ARX with uncertain parameters
 - adaptive controller
- Possible (approximate) solutions
 - GPC deterministic models only
 - Bellman function approximation
 - Controller tuning

Controller tuning

- Using a simpler controller matches the task only partially
- Dependent on tuning parameters
- Tuning parameters differs from user's aims
 - constraints kept only through penalization weights
- The simpler controller has good properties even non-tuned
 - stabilizes closed loop

Tuning is difficult for human

- Many tuning parameters high dimensional tuning space
- Complex dependency of controller behavior on the tuning parameters
- Stochastic behavior of the closed loop

Controller Quality

Closed loop data

• closed loop data $d(T) = (u_1, y_1, u_2, y_2, \dots, u_T, y_T)$

$$f(d(T)|q) = \prod_{t=1}^{T} f(y_t|u_t, \varphi_t) f(u_t|\varphi_t, q)$$

Controller quality functions

- $Z_c(d(T))$ constraint violation
- $Z_o(d(T))$ output error
- optimal tuning

$$q^{\mathrm{opt}} = \arg\min_{q: EZ_c(q) \le 0} EZ_o(q)$$

Choice of the controller quality functions

$$Z_c(d(T)) = \frac{1}{T} \sum_{t=1}^{T} \chi_{(-\infty, u^t) \bigcup (u^u, +\infty)} u_t - \alpha$$

approximates probability of constraints violation

$$Z_o(d(T)) = \frac{1}{T} \sum_{t=1}^{T} ||y_t||^2$$

- output error
- Mean values $EZ_c(q)$ and $EZ_o(q)$
 - difficult to calculate
 - f(d(T)|q) cannot be found in closed form
 - includes uncertain system model and adaptive LQG controller

Evaluation

Monte Carlo approach

- Stationary case $Z_{\bullet}(d(T)) \to EZ_{\bullet}(q)$ for $T \to \infty$
- The sample d(T) of f(d(T)|q) is obtained by simulation of length T

Length of Simulation

- Determines estimate precision and computation time
- Long enough to find stabilized estimate of EZ.
- On-line stopping rule

Online Stopping Rule

- Based on Kullback-Leibler divergence of pdf of summed terms v_t in $Z_{ullet} = \frac{1}{T} \sum v_t$
- ullet Data d_t and also v_t are correlated
- Modeling the dynamics $f(v_t|v_{t-1},\Theta)$
- Estimating $f(\Theta|v(t))$ $v(t) = (v_1, v_2, \dots, v_t)$
- ullet Stopping when pdf of model parameters Θ stabilizes

$$\mathcal{D}_{\mathrm{KL}}[f(\Theta|d(T))||f(\Theta|d(T-1))]<\varepsilon$$

• Then assuming $Z(d(T)) \sim EZ(q)$

Stopping for output error Z_o

- Modeled variable $v_t = ||y_t||^2$
- ARX model $v_{t+1} = av_t + c + e_t$, $e_t \sim \mathbf{N}(0, \sigma^2)$
- Static property $Ev_t = p \doteq EZ_o$
- Pdf of p stabilizes faster than pdf of parameter a, c, σ $\mathcal{D}_{\mathrm{KL}}[f(\rho|d(T))||f(\rho|d(T-1))] \leq \mathcal{D}_{\mathrm{KL}}[f(a, c, \sigma|d(T))||f(a, c, \sigma|d(T-1))] \leq \varepsilon$
- Thus using p as stabilized estimate of EZ_o

Stopping for constraints violation Z_c

- Markov chain model
- $\bullet \; \mathsf{Modeled} \; \mathsf{variable} \; \mathsf{v}_t = \left\{ \begin{array}{ccc} 1 & u_t & > & u^u \\ 0 & u_t & \in & [u^l, u^u] \\ -1 & u_t & < & u^l \end{array} \right.$
- MC model $p(v_{t+1}|v_t) = P_{v_{t+1}|v_t}$

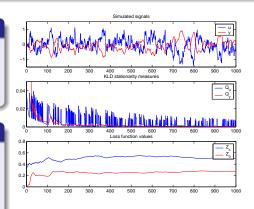
Stopping Rule Experiment

Experiment

- SISO system of 2nd order
- Noise compensation task
- Input constraints [−0.3, 0.3]

Diagrams

- Simulated signals
 - Input BLUE
 - Output RED
- K-L stationarity measure Q
 - Interpolation of Q for MC
- Quality function values



- Suitable threshold 0.0015
- Stopping after around 350 steps

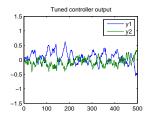
Tuned vs. Non-tuned Controller with Constraints

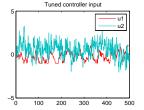
Experiment

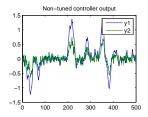
MIMO system 2 inputs 2 outputs aims:

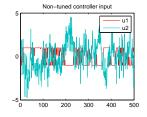
 $\min \sum ||y||^2$ $u_1 \in [-1, 1]$

 $u_2 \in [-5, 5]$









Conclusion

- Jobcontrol toolbox was implemented
- Method of adaptive LQG controller design was given
 - Replaces manual tuning by automated one
 - Multidimensional controller
- Online stopping rules
 - Speeding up the Monte Carlo evaluation

Jobcontrol GUI - Channel Description

Jobcontrol GUI - Results Display

