A feasible design of active detector and input signal generator

Ivo Punčochář, Miroslav Šimandl

Department of Cybernetics and Research Centre Data – Algorithms – Decision Making Faculty of Applied Sciences University of West Bohemia Pilsen, Czech Republic

• • • • • •

Outline

Introduction Problem Formulation Active Detector and Input Signal Generator Design Numerical Example Concluding Remarks

Outline

- **2** Problem Formulation
- **3** Active Detector and Input Signal Generator Design
- 4 Numerical Example

()

Passive and Active Detection Goals of Presentation

Introduction

Active detection - authors' earlier results

- General formulation of active detection and control problem
- Formal solution to this problem
- Included interesting special cases
 - Design of active detector for given input signal generator
 - 2 Design of active detector and input signal generator
 - Obsign of active detector and controller
- Feasible suboptimal designs (receding/rolling horizon technique)

Passive and Active Detection Goals of Presentation

Introduction

Active detection - authors' earlier results

- General formulation of active detection and control problem
- Formal solution to this problem
- Included interesting special cases
 - Design of active detector for given input signal generator
 - 2 Design of active detector and input signal generator
 - Obsign of active detector and controller
- Feasible suboptimal designs (receding/rolling horizon technique)

Passive and Active Detection Goals of Presentation

Introduction – cont'd

Goals of presentation

- Design optimal active detector and input signal generator for jump Markov linear Gaussian models
- Derive optimal active detector and input signal generator for discrimination between several linear Gaussian models
- Discuss two suboptimal design techniques

4 🗗 🗴 4 🗗 🗴 4 🖻 🖌 4 🖻

Problem Formulation

Stochastic discrete-time system at time $k \in \mathcal{T} = \{0, 1, \dots, F\}$

$$egin{aligned} \mathbf{x}_{k+1} &= \mathbf{A}_{\mu_k}\mathbf{x}_k + \mathbf{B}_{\mu_k}\mathbf{u}_k + \mathbf{G}_{\mu_k}\mathbf{w}_k \ \mathbf{y}_k &= \mathbf{C}_{\mu_k}\mathbf{x}_k + \mathbf{H}_{\mu_k}\mathbf{v}_k \end{aligned}$$

 $\begin{bmatrix} \mathbf{x}_{k}^{\mathsf{T}}, \mu_{k} \end{bmatrix}^{\mathsf{T}} - \text{system state, } \mathbf{x}_{k} \in \mathbb{R}^{n_{x}}, \ \mu_{k} \in \mathcal{M} = \{1, \dots, N\} \\ \mathbf{u}_{k} \in \mathcal{U}_{k} \subseteq \mathbb{R}^{n_{u}} - \text{input, } \mathbf{y}_{k} \in \mathbb{R}^{n_{y}} - \text{output} \\ \mathcal{N}\{\mathbf{w}_{k}: \mathbf{0}, \mathbf{I}\} - \text{state noise, } \mathcal{N}\{\mathbf{v}_{k}: \mathbf{0}, \mathbf{I}\} - \text{output noise} \\ \mathcal{N}\{\mathbf{x}_{0}: \hat{\mathbf{x}}_{0}', \mathbf{P}_{0}'\} - \text{initial condition} \\ P_{i,j} = P(\mu_{k+1} = j | \mu_{k} = i) - \text{transition probabilities} \\ P(\mu_{0}) - \text{initial condition}$

Problem Formulation – cont'd

Active detector and input signal generator at time $k \in \mathcal{T}$

$$\begin{bmatrix} \boldsymbol{d}_k \\ \boldsymbol{\mathsf{u}}_k \end{bmatrix} = \boldsymbol{\rho}_k \left(\boldsymbol{\mathsf{I}}_0^k \right)$$

 $\begin{aligned} &d_k \in \mathcal{M} - \text{decision (point estimate of } \mu_k) \\ &\rho_k(\cdot) - \text{unknown generally nonlinear function} \\ &\mathbf{I}_0^k = \left[\mathbf{y}_0^k, \mathbf{u}_0^{k-1}, d_0^{k-1} \right] - \text{information received up to time } k \end{aligned}$

くロン く行い くほう くほう

Problem Formulation – cont'd

Design goal

The aim is to design an active detector and input signal generator (i.e. sequence of functions ρ_k) that minimizes average losses/costs caused by wrong decisions.

Criterion

$$J\left(\boldsymbol{\rho}_{0}^{F}\right) = \mathsf{E}\left\{\sum_{k=0}^{F} L_{k}^{\mathrm{d}}(\mu_{k}, d_{k})\right\} \to \min$$

 $L_k^d(\mu_k, d_k) - loss (cost)$ function that satisfies condition $L_k^d(\mu_k, \mu_k) \le L_k^d(\mu_k, d_k), \ \forall d_k, \mu_k \in \mathcal{M}, \ d_k \neq \mu_k, \ \exists k \leq \to <$

Optimal Design

Problem of Discrimination between Models – Assumptions Optimal design for model discrimination Suboptimal designs for model discrimination

()

Optimal Design

Backward recursive equation

$$\begin{split} V_{k}^{*}\left(\mathbf{y}_{0}^{k},\mathbf{u}_{0}^{k-1}\right) &= \min_{d_{k}\in\mathcal{M}} \mathsf{E}\left\{L_{k}^{\mathrm{d}}\left(\mu_{k},d_{k}\right)|\mathbf{y}_{0}^{k},\mathbf{u}_{0}^{k-1},d_{k}\right\} + \\ &\min_{\mathbf{u}_{k}\in\mathcal{U}_{k}} \mathsf{E}\left\{V_{k+1}^{*}\left(\mathbf{y}_{0}^{k+1},\mathbf{u}_{0}^{k}\right)|\mathbf{y}_{0}^{k},\mathbf{u}_{0}^{k}\right\} \end{split}$$

$$\begin{split} & V_k^* \left(\mathbf{y}_0^k, \mathbf{u}_0^{k-1} \right) - \text{Bellman's function (expected costs)} \\ & V_{F+1}^* = 0 - \text{initial condition for recursion} \\ & J \left(\boldsymbol{\rho}_0^{F*} \right) = \mathsf{E} \left\{ V_0^* \left(\mathbf{y}_0 \right) \right\} - \text{optimal value of the criterion} \end{split}$$

Optimal Design

Problem of Discrimination between Models – Assumptions Optimal design for model discrimination Suboptimal designs for model discrimination

4 🗗 🗴 4 🗗 🗴 4 🖻 🖌 4 🖻

Optimal Design – cont'd

Optimal active detector and input signal generator

$$\begin{bmatrix} \boldsymbol{d}_{k}^{*} \\ \mathbf{u}_{k}^{*} \end{bmatrix} = \boldsymbol{\rho}_{k}^{*} \left(\mathbf{I}_{0}^{k} \right) = \begin{bmatrix} \arg\min_{\boldsymbol{d}_{k} \in \mathcal{M}} \mathsf{E} \left\{ L_{k}^{\mathrm{d}} \left(\mu_{k}, \boldsymbol{d}_{k} \right) | \mathbf{y}_{0}^{k}, \mathbf{u}_{0}^{k-1}, \boldsymbol{d}_{k} \right\} \\ \arg\min_{\mathbf{u}_{k} \in \mathcal{U}_{k}} \mathsf{E} \left\{ V_{k+1}^{*} \left(\mathbf{y}_{0}^{k+1}, \mathbf{u}_{0}^{k} \right) | \mathbf{y}_{0}^{k}, \mathbf{u}_{0}^{k} \right\} \end{bmatrix}$$

The optimal decision d_k^* minimizes current average costs, and the optimal input \mathbf{u}_k^* minimizes future average costs.

Optimal Design Problem of Discrimination between Models – Assumptions Optimal design for model discrimination Suboptimal designs for model discrimination

Problem of Model Discrimination

Assumptions

- Original formulation applies
- Additional assumptions
 - There is no switching between models

$$\mathsf{P}_{i,j} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

• Only the terminal decision d_F is of interest

$$L_k^{\mathrm{d}}\left(\mu_k, d_k
ight) = egin{cases} 1 & ext{if } d_k
eq \mu_k \wedge k = F, \ 0 & ext{otherwise.} \end{cases}$$

Optimal Design Problem of Discrimination between Models – Assumptions Optimal design for model discrimination Suboptimal designs for model discrimination

* 🗗 * 🗶 👘 * * * * * * * * *

Optimal Design for Model Discrimination

Backward recursive equation at time step k = F

$$V_{F}^{*}\left(\mathbf{y}_{0}^{F},\mathbf{u}_{0}^{F-1}\right) = \min_{d_{F}\in\mathcal{M}} \mathsf{E}\left\{L_{F}^{d}\left(\mu_{F},d_{F}\right)|\mathbf{y}_{0}^{F},\mathbf{u}_{0}^{F-1},d_{F}\right\} + \underbrace{\min_{\mathbf{u}_{F}\in\mathcal{U}_{F}}\mathsf{E}\left\{V_{F+1}^{*}\left(\mathbf{y}_{0}^{F+1},\mathbf{u}_{0}^{F}\right)|\mathbf{y}_{0}^{F},\mathbf{u}_{0}^{F}\right\}}_{0}$$

Optimal Design Problem of Discrimination between Models – Assumptions Optimal design for model discrimination Suboptimal designs for model discrimination

Optimal Design for Model Discrimination

Backward recursive equation at time step k = F

$$V_{F}^{*}\left(\mathbf{y}_{0}^{F},\mathbf{u}_{0}^{F-1}\right) = \min_{d_{F}\in\mathcal{M}} \mathsf{E}\left\{L_{F}^{d}\left(\mu_{F},d_{F}\right)|\mathbf{y}_{0}^{F},\mathbf{u}_{0}^{F-1},d_{F}\right\}$$
$$d_{F}^{*} = \arg\min_{d_{F}\in\mathcal{M}} \mathsf{E}\left\{L_{F}^{d}\left(\mu_{F},d_{F}\right)|\mathbf{y}_{0}^{F},\mathbf{u}_{0}^{F-1},d_{F}\right\}$$
$$\mathbf{u}_{F}^{*} = ?$$

According to the chosen cost function $L_F^d(\mu_F, d_F)$, the optimal decision d_F^* corresponds to a model with maximum a posteriori probability. The optimal input \mathbf{u}_F^* can be pick out arbitrarily.

Optimal Design Problem of Discrimination between Models – Assumptions Optimal design for model discrimination Suboptimal designs for model discrimination

* 🗗 * 🗶 👘 * * * * * * * * *

Optimal Design for Model Discrimination

Backward recursive equation at time steps $k = F - 1, \ldots, 0$

$$V_{k}^{*}\left(\mathbf{y}_{0}^{k},\mathbf{u}_{0}^{k-1}\right) = \underbrace{\min_{d_{k}\in\mathcal{M}}\mathsf{E}\left\{L_{k}^{d}\left(\mu_{k},d_{k}\right)|\mathbf{y}_{0}^{k},\mathbf{u}_{0}^{k-1},d_{k}\right\}}_{\min_{\mathbf{u}_{k}\in\mathcal{U}_{k}}\mathsf{E}\left\{V_{k+1}^{*}\left(\mathbf{y}_{0}^{k+1},\mathbf{u}_{0}^{k}\right)|\mathbf{y}_{0}^{k},\mathbf{u}_{0}^{k}\right\}}$$

Optimal Design Problem of Discrimination between Models – Assumptions Optimal design for model discrimination Suboptimal designs for model discrimination

< ロ > < 向 > < ご > < ご

Optimal Design for Model Discrimination

Backward recursive equation at time steps $k = F - 1, \ldots, 0$

$$V_{k}^{*}\left(\mathbf{y}_{0}^{k},\mathbf{u}_{0}^{k-1}\right) = \min_{\mathbf{u}_{k}\in\mathcal{U}_{k}} \mathsf{E}\left\{V_{k+1}^{*}\left(\mathbf{y}_{0}^{k+1},\mathbf{u}_{0}^{k}\right)|\mathbf{y}_{0}^{k},\mathbf{u}_{0}^{k}\right\}$$
$$d_{k}^{*} = ?$$
$$\mathbf{u}_{k}^{*} = \arg\min_{\mathbf{u}_{k}\in\mathcal{U}_{k}} \mathsf{E}\left\{V_{k+1}^{*}\left(\mathbf{y}_{0}^{k+1},\mathbf{u}_{0}^{k}\right)|\mathbf{y}_{0}^{k},\mathbf{u}_{0}^{k}\right\}$$

The optimal decision d_k^* can be chosen arbitrarily, but the optimal input \mathbf{u}_k^* minimizes expected future average costs.

Optimal Design Problem of Discrimination between Models – Assumptions Optimal design for model discrimination Suboptimal designs for model discrimination

* 🗗 * * 🗗 * * 3 * * 3

Suboptimal Designs for Model Discrimination

Suboptimal design techniques

Design based on upper bound for Bayesian risk

- Interchange of minimization and expectation operators
- Replacement of Bayesian risk by its upper bound
- 2 Design based on ℓ -step rollout policy
 - Numerical computation of Bellman's functions over ℓ steps
 - Replacement of true Bellman's function $V_{k+l}^*(\mathbf{y}_0^{k+l}, \mathbf{u}_0^{k+l-1})$ by a function $\bar{V}_{k+l}(\mathbf{y}_0^{k+l}, \mathbf{u}_0^{k+l-1})$ computed using a suboptimal policy (the so called base policy)

Optimal Design Problem of Discrimination between Models – Assumptions Optimal design for model discrimination Suboptimal designs for model discrimination

Design Based on Upper Bound for Bayesian Risk

Interchange of minimization and expectation operators

• Subsequent substitution of Bellman's functions $V_F^* \rightarrow \ldots \rightarrow V_k^* \rightarrow \ldots \rightarrow V_1^* \rightarrow V_0^*$

$$V_{0}^{*}\left(\boldsymbol{y}_{0}\right) = \min_{\boldsymbol{u}_{0} \in \mathcal{U}_{0}} \mathsf{E}\left\{\min_{\boldsymbol{u}_{1} \in \mathcal{U}_{1}} \mathsf{E}\left\{\ldots\min_{\boldsymbol{u}_{F-1} \in \mathcal{U}_{F-1}} \mathsf{E}\left\{\right\} \ldots |\boldsymbol{y}_{0}^{1}, \boldsymbol{u}_{0}^{1}\right\} | \boldsymbol{y}_{0}, \boldsymbol{u}_{0}\right\}$$

• Interchange of minimization and expectation operators

$$V_{0}^{*}\left(\mathbf{y}_{0}\right) \leq \min_{\mathbf{u}_{0}^{F-1}} \int_{\mathbb{R}^{Fn_{y}}} \min_{\substack{\mu_{F}=1\\ \mu_{F} \neq d_{F}}} \sum_{\substack{\mu_{F}=1\\ \mu_{F} \neq d_{F}}}^{N} \rho\left(\mathbf{y}_{1}^{F} | \mathbf{y}_{0}, \mathbf{u}_{0}^{F-1}, \mu_{F}\right) P\left(\mu_{F} | \mathbf{y}_{0}\right) d \mathbf{y}_{1}^{F}$$

Optimal Design Problem of Discrimination between Models – Assumptions Optimal design for model discrimination Suboptimal designs for model discrimination

Design Based on Upper Bound for Bayesian Risk

Implications of interchanging $\min\{\cdot\}$ and $\mathsf{E}\{\cdot\}$ operators

- "Simple" static optimization problem need to be solved
- Inputs are designed using Open Loop Strategy
- The problem considered in [Blackmore, L. and Williams, B.C. (2006). Finite horizon control design for optimal discrimination between several models.] is obtained

Notes on Bayesian risk

- It expresses a priori probability of a wrong decision
- Distributions $p\left(\mathbf{y}_{1}^{F}|\mathbf{y}_{0},\mathbf{u}_{0}^{F-1},\mu_{F}\right)$ are Gaussian
- It cannot be evaluated analytically

Optimal Design Problem of Discrimination between Models – Assumptions Optimal design for model discrimination Suboptimal designs for model discrimination

ヘロッ ヘ節 マ ヘ 切 マ

Design Based on Upper Bound for Bayesian Risk

Upper bound for Bayesian risk $\epsilon(\mathbf{y}_0, \mathbf{u}_0^{k-1})$

$$\epsilon\left(\mathbf{y}_{0},\mathbf{u}_{0}^{F-1}\right) \leq \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \sqrt{P\left(\mu_{F}=i|\mathbf{y}_{0}\right)P\left(\mu_{F}=j|\mathbf{y}_{0}\right)} e^{-D_{i,j}}$$

 $D_{i,j}$ – Bhattacharrya distance between $p\left(\mathbf{y}_{1}^{F}|\mathbf{y}_{0},\mathbf{u}_{0}^{F-1},\mu_{F}=i\right)$ and $p\left(\mathbf{y}_{1}^{F}|\mathbf{y}_{0},\mathbf{u}_{0}^{F-1},\mu_{F}=j\right)$

- The function $D_{i,j}$ is a convex quadratic function of \mathbf{u}_0^{F-1}
- Numerical constrained optimization can be used

Optimal Design Problem of Discrimination between Models – Assumptions Optimal design for model discrimination Suboptimal designs for model discrimination

Design Based on Upper Bound for Bayesian Risk

Illustration of upper bound and Bayesian risk for two models

Optimal Design Problem of Discrimination between Models – Assumptions Optimal design for model discrimination Suboptimal designs for model discrimination

Design based on *l***-step rollout policy**

Numerical computation of Bellman's functions over ℓ -steps

- The space of inputs is discretized for continuous sets \mathcal{U}_k
- The criterion value is computed for each point of the grid
- The optimal input is found by criterion values comparison

Replacement of the true Bellman's function $V_{k+l}^*(\mathbf{y}_0^{k+l}, \mathbf{u}_0^{k+l-1})$

$$V_{k+l}^{*}(\cdot) \approx \bar{V}_{k+l}(\cdot) = \min_{\mathbf{u}_{k+l}^{F-1}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} e^{-D_{i,j}} \sqrt{P(\mu_{F}=i|\cdot)P(\mu_{F}=j|\cdot)}$$

Discrimination between two models

Numerical Example

Discrimination between two models								
$\overline{\mu_k}$	a_{μ_k}	b_{μ_k}	g_{μ_k}	c_{μ_k}	h_{μ_k}			
1	-0.9	1.0	$\sqrt{0.5}$	1.5	$\sqrt{0.5}$			
2	0.5	1.5	$\sqrt{0.5}$	1.5	$\sqrt{0.5}$			

- Detection horizon F = 2
- Initial conditions $P(\mu_0 = 1) = P(\mu_0 = 2) = 0.5$, $\hat{\mathbf{x}}_0' = 0$ and $\mathbf{P}_{0,x}' = 0.1$
- Set of admissible input $\mathcal{U}_k = \{-0.1, 0.1\}, \ \forall k \in \mathcal{T}$
- Length of optimization horizon $\ell = 1$

Numerical Example – cont'd

Result of 1000 Monte Carlo simulations

Design method	Ĵ	var Ĵ	Time [s]
Optimal design	0.3300	2.4380E-4	53.4573
Rollout policy	0.3350	2.4116E-4	1.1104
Bayesian risk (BR)	0.3380	2.3843E-4	6.0872
Upper bound for BR	0.3430	2.2756E-4	0.0085

Concluding Remarks

- Both suboptimal designs were derived from the optimal design by taking some approximations
- It was shown that the approach proposed by *L. Blackmore and B.C. Williams* can derived from the optimal design using two subsequent approximations
- The quality of detection can be improved using the $\ell\text{-step}$ rollout policy