Multistage Prediction Error Adaptive Dual Controller

Miroslav Flídr, Miroslav Šimandl and Ladislav Král

Department of Cybernetics & Research Centre Data, Algorithms and Decision Making Faculty of Applied Sciences University of West Bohemia

Miroslav Flídr et. al.

Intelligent Systems and Control 2008

Outline

1 Introduction to dual adaptive control

2 Goal of the paper

3 Multistage Prediction Error Dual Controller

- Formulation of the optimisation problem
- Solution of the optimisation problem
- Numerical example

Dual adaptive control

- Control problem with unknown state and parameters
- > Two conflicting goals meet control objective and improve estimation
- ➤ Aspects of dual control
 - Caution due to inherent uncertainties
 - Probing (Active learning) helps decrease the uncertainty about the unknown state and parameters
- Optimal adaptive dual control problem mostly cannot be solved analytically

Suboptimal solutions

- with constraint to one-step control horizon
 - Augmenting the cautious control law (Bicriterial controller,...)
 - \Rightarrow Modification of criterion (e.g. PEDC, IDC, ASOD,...)
- ➤ with two- or multiple step control horizon
 - ⇔ Criterion approximation (e.g. WDC, Utility cost,...)

Goal: to find feasible solution

Requirements of feasible solution

- \checkmark computationally moderate not only for one step ahead horizon
- ✓ clear interpretation
- ✓ guarantees sufficient control quality

Deficiencies of current approaches

teither limited to one step ahead horizon or computationally demanding

Steps to fulfil the goal

- formulation of optimisation problem with arbitrary control horizon
- choice of probability density function approximation the would make possible to find closed form solution.
- **3** assurance of both properties of the dual control

Goal: to find feasible solution

Requirements of feasible solution

- \checkmark computationally moderate not only for one step ahead horizon
- ✓ clear interpretation
- ✓ guarantees sufficient control quality

Deficiencies of current approaches

teither limited to one step ahead horizon or computationally demanding

Steps to fulfil the goal

- formulation of optimisation problem with arbitrary control horizon
- choice of probability density function approximation the would make possible to find closed form solution.
- **6** assurance of both properties of the dual control

Introduction to dual adaptive	control	Goal of the paper	Multistage Prediction Error Dual Controller	Conclusion
Formulation of the optimisatio	n problem			
Considered	syste	m		
s _{k+}	$A_1 = A(\theta)$	$(\theta_k)s_k + B(\theta_k)u_k +$	$\boldsymbol{w}_k,$	(1)
$\boldsymbol{\theta}_{k+1}$	$-1 = \mathbf{\Phi}_k \mathbf{\theta}$	$\boldsymbol{\theta}_k + \boldsymbol{\epsilon}_k,$	$k=0,\ldots,N-1$	(2)
J	$v_k = C s_k$	$\boldsymbol{v}_k + \boldsymbol{v}_k,$		(3)
$s_k \in \mathbb{R}^n$		non-measurable s	state	
$\boldsymbol{\theta}_k \in \mathbb{R}^p$		unknown parame	ters	
$\boldsymbol{u}_k \in \mathbb{R}^r$		control		
$\mathbf{y}_k \in \mathbb{R}^m$		measurement		

- \checkmark The elements of matrices $A(\theta_k)$ and $B(\theta_k)$ are known linear function of the unknown parameters $\boldsymbol{\theta}_k$.
- \checkmark The random quantities $s_0, \theta_0, w_k, \epsilon_k$ and v_k are described by known pdf's and are mutually independent.

Multistage Prediction Error Dual Controller

1/2

Formulation of the optimisation problem

Optimisation problem

General optimisation problem

The aim is to find control law

$$u_k = u_k(I_k) = u_k(u_0^{k-1}, y_0^k), \qquad k = 0, 1, \dots, N-1$$

that minimises the following criterion

$$J = E\left\{\mathcal{L}(\boldsymbol{u}_0^{N-1}, \boldsymbol{s}_0^{N-1}, \boldsymbol{\theta}_0^{N-1})\right\}$$

with respect to the system (1)-(3).

Common choice of the cost function $\mathcal{L}(\boldsymbol{u}_0^{N-1}, \boldsymbol{s}_0^{N-1}, \boldsymbol{\theta}_0^{N-1})$

$$\mathcal{L}(\boldsymbol{u}_{0}^{N-1},\boldsymbol{s}_{0}^{N-1},\boldsymbol{\theta}_{0}^{N-1}) = \sum_{k=0}^{N-1} (\boldsymbol{s}_{k+1} - \bar{\boldsymbol{s}}_{k+1})^{T} \boldsymbol{Q}_{k+1} (\boldsymbol{s}_{k+1} - \bar{\boldsymbol{s}}_{k+1}) + \boldsymbol{u}_{k}^{T} \boldsymbol{R}_{k} \boldsymbol{u}_{k}$$

Formulation of the optimisation problem

Optimisation problem

Solvability of the optimisation problem

- > general solution given by Bellman optimisation recursion
- > analytically unsolvable (due to inherent nonlinearities)
- ➤ it is necessary to use some approximation

Possible approximation choices

> Enforced Certainty equivalence \rightarrow leads to LQG controller

$$\rho_k^{CE} = \left\{ p(\boldsymbol{s}_{k+i}, \boldsymbol{\theta}_{k+i} | \boldsymbol{I}_{k+i}) \simeq \delta(\boldsymbol{s}_{k+i} - \hat{\boldsymbol{s}}_{k+i}) \delta(\boldsymbol{\theta}_{k+i} - \hat{\boldsymbol{\theta}}_{k+i|k}); \right.$$

$$i=0,\ldots,N-k-1$$

Partial Certainty equivalence (PCE)

$$\rho_k = \left\{ p(s_{k+i}, \boldsymbol{\theta}_{k+i} | \boldsymbol{I}_{k+i}) \simeq \delta(s_{k+i} - \hat{s}_{k+i}) p(\boldsymbol{\theta}_{k+i} | \boldsymbol{I}_k); \right\}$$

$$i = 0, \ldots, N - k - 1$$

Formulation of the optimisation problem

Optimisation problem

Solvability of the optimisation problem

- > general solution given by Bellman optimisation recursion
- > analytically unsolvable (due to inherent nonlinearities)
- ➤ it is necessary to use some approximation

Possible approximation choices

> Enforced Certainty equivalence \rightarrow leads to LQG controller

$$\rho_k^{CE} = \left\{ p(\boldsymbol{s}_{k+i}, \boldsymbol{\theta}_{k+i} | \boldsymbol{I}_{k+i}) \simeq \delta(\boldsymbol{s}_{k+i} - \hat{\boldsymbol{s}}_{k+i}) \delta(\boldsymbol{\theta}_{k+i} - \hat{\boldsymbol{\theta}}_{k+i|k}); \right.$$

$$i=0,\ldots,N-k-1$$

➤ Partial Certainty equivalence (PCE)

$$\rho_{k} = \left\{ p(\boldsymbol{s}_{k+i}, \boldsymbol{\theta}_{k+i} | \boldsymbol{I}_{k+i}) \simeq \delta(\boldsymbol{s}_{k+i} - \hat{\boldsymbol{s}}_{k+i}) p(\boldsymbol{\theta}_{k+i} | \boldsymbol{I}_{k}); \quad (4) \\ i = 0, \dots, N-k-1 \right\}$$

Goal of the paper

Multistage Prediction Error Dual Controller

Conclusion

1/2

Formulation of the optimisation problem

Reformulation of the optimisation problem

Reformulated optimisation problem employing PCE approximation

Control law sought as to minimise the criterion

$$J = E_{\rho_0} \left\{ \mathcal{L}(\boldsymbol{u}_0^{N-1}, \boldsymbol{s}_0^{N-1}, \boldsymbol{\theta}_0^{N-1}) \right\}$$

- > the expectations determined using ρ approximation (4)
- \succ the control law is suboptimal with respect to original formulation
- not strictly closed-loop anymore

Adaptive control based on PCE approximation

$$u_{k} = \underset{u_{k}}{\operatorname{argmin}} J_{k}(I_{k}), \qquad k = 0, 1, \dots, N-1$$

$$J_{k}(I_{k}) = E_{\rho_{k}} \left\{ \mathcal{L}(u_{k}^{N-1}, s_{k}^{N-1}, \theta_{k}^{N-1}) \middle| I_{k} \right\} = E_{\rho_{k}} \left\{ \sum_{i=k}^{N-1} \mathcal{L}_{i}(s_{i}, \theta_{i}, u_{i}) \middle| I_{k} \right\}$$

$$\mathcal{L}_{i}(s_{i}, \theta_{i}, u_{i}) = (s_{i+1} - \bar{s}_{i+1})^{T} Q_{i+1}(s_{i+1} - \bar{s}_{i+1}) + u_{i}^{T} R_{i} u_{i}$$

This controller is of cautious type, i.e. it isn't dual controller!

Goal of the paper

Multistage Prediction Error Dual Controller

Conclusion

Formulation of the optimisation problem

Reformulation of the optimisation problem

2/2

The PCE approximation ensures only cautious behaviour

* It is necessary to modify the criterion

Useful criterion modification

Cost function used in **Prediction Error Dual Controller (PEDC)**: $\mathcal{L}_i(\cdot) = (\mathbf{s}_{k+1} - \bar{\mathbf{s}}_{k+1})^T \mathbf{Q}_{k+1} (\mathbf{s}_{k+1} - \bar{\mathbf{s}}_{k+1}) + \mathbf{u}_k^T \mathbf{R}_k \mathbf{u}_k - \mathbf{v}_{k+1}^T \mathbf{A}_{k+1} \mathbf{v}_{k+1}$

- \checkmark simple cost function modification with clear interpretation
- \checkmark the quality of estimates rated using prediction error
- \checkmark the degree of compromise tuned independently for each parameter
- ✓ still analytically solvable using PCE

Solution of the optimisation problem

Multi-Stage Prediction Error Dual Controller (MSPEDC)

The modified control objective criterion

$$J_{k} = E_{\rho_{k}} \left\{ \sum_{i=k}^{N-1} (s_{i+1} - \bar{s}_{i+1})^{T} Q_{i+1} (s_{i+1} - \bar{s}_{i+1}) + u_{i}^{T} R_{i} u_{i} - v_{i+1}^{T} \Lambda_{i+1} v_{i+1} \Big| I_{k} \right\}$$

where

$$\mathbf{v}_{i+1} = \mathbf{x}_{i+1} - \hat{\mathbf{x}}_{i+1|i}(\hat{\mathbf{s}}_i, \hat{\boldsymbol{\theta}}_{i|k}), \mathbf{x}_i \stackrel{\Delta}{=} \begin{pmatrix} \mathbf{s}_i \\ \boldsymbol{\theta}_i \end{pmatrix}, \hat{\mathbf{x}}_{i+1|i} \stackrel{\Delta}{=} E_{\rho_k} \left\{ \mathbf{x}_{i+1} \middle| \mathbf{I}_i \right\} = \begin{pmatrix} \hat{\mathbf{s}}_{i+1|i} \\ \hat{\boldsymbol{\theta}}_{i+1|k} \end{pmatrix}$$

and the prediction of the augmented state $\hat{x}_{i+1|i}$ is defined as

$$\hat{x}_{i+1|i} = \begin{pmatrix} A(\hat{\theta}_{i|k}) & \mathcal{O} \\ \mathcal{O} & \Phi_i \end{pmatrix} \begin{pmatrix} \hat{s}_i \\ \hat{\theta}_{i|k} \end{pmatrix} + \begin{pmatrix} B(\hat{\theta}_{i|k}) \\ \mathcal{O} \end{pmatrix} u_i + \begin{pmatrix} \hat{w}_i \\ \hat{\epsilon}_i \end{pmatrix}$$

with

$$\hat{\boldsymbol{s}}_{i} \stackrel{\Delta}{=} E_{\rho_{k}} \left\{ \boldsymbol{s}_{i} \left| \boldsymbol{I}_{i} \right\}, \quad \hat{\boldsymbol{\theta}}_{i|k} \stackrel{\Delta}{=} E_{\rho_{k}} \left\{ \boldsymbol{\theta}_{i} \left| \boldsymbol{I}_{k} \right\}, \quad \hat{\boldsymbol{w}}_{i} \stackrel{\Delta}{=} E \left\{ \boldsymbol{w}_{i} \right\}, \quad \hat{\boldsymbol{\epsilon}}_{i} \stackrel{\Delta}{=} E \left\{ \boldsymbol{\epsilon}_{i} \right\}.$$

Goal of the paper

Multistage Prediction Error Dual Controller

Conclusion

Solution of the optimisation problem

Analysis of the criterion

Decomposition of the criterion

$$J_k = J_k^{\mathcal{C}} + J_k^{\mathcal{P}}$$

 \Rightarrow it comprises both aspect of the dual control

• Cautious part (it's equivalent to the original quadratic criterion)

$$J_{k}^{\mathcal{C}} = \sum_{i=k}^{N-1} \left(\hat{s}_{i+1|i} - \bar{s}_{i+1} \right)^{T} \mathcal{Q}_{i+1} \left(\hat{s}_{i+1|i} - \bar{s}_{i+1} \right) + u_{i}^{T} \mathcal{R}_{i} u_{i} + E_{\rho_{k}} \left\{ \sum_{i=k}^{N-1} \left(\mathbf{x}_{i+1} - \hat{\mathbf{x}}_{i+1|i} \right)^{T} \mathbf{V}_{i+1} \left(\mathbf{x}_{i+1} - \hat{\mathbf{x}}_{i+1|i} \right) \left| \mathbf{I}_{k} \right\}$$

Probing part

$$J_{k}^{\mathcal{P}} = -E_{\rho_{k}} \left\{ \sum_{i=k}^{N-1} \left(x_{i+1} - \hat{x}_{i+1|i} \right)^{T} \Lambda_{i+1} \left(x_{i+1} - \hat{x}_{i+1|i} \right) \Big| I_{k} \right\}$$

Miroslav Flídr et. al.

Intelligent Systems and Control 2008

Goal of the paper

Multistage Prediction Error Dual Controller

Conclusion

Solution of the optimisation problem

The solution of the modified optimisation problem

Bellman optimisation recursion

$$\begin{aligned} \mathcal{V}_i^o &= \min_{\boldsymbol{u}_i} \left\{ \mathcal{V}_i \right\} = \min_{\boldsymbol{u}_i} \left\{ E_{\rho_k} \left\{ \mathcal{L}_i + \mathcal{V}_{i+1}^o \middle| \boldsymbol{I}_i \right\} \right\}, i = N - 1, ..., k, \\ \mathcal{V}_N^o &= \boldsymbol{\mathcal{O}}, \end{aligned}$$

where the cost function at time *i* denoted \mathcal{L}_i is defined as follows

$$\mathcal{L}_{i} = (\mathbf{x}_{i+1} - \hat{\mathbf{x}}_{i+1|i})^{T} (\mathbf{V}_{i+1} - \mathbf{\Lambda}_{i+1}) (\mathbf{x}_{i+1} - \hat{\mathbf{x}}_{i+1|i}) + (\hat{\mathbf{x}}_{i+1|i} - \bar{\mathbf{x}}_{i+1})^{T} \mathbf{Q}_{i+1} (\hat{\mathbf{x}}_{i+1|i} - \bar{\mathbf{x}}_{i+1}) + \mathbf{u}_{i}^{T} \mathbf{R}_{i} \mathbf{u}_{i}.$$

Bellman function

$$\mathcal{V}_{i}^{o} = \hat{s}_{i}^{T} \mathbf{\Pi}_{N-i} \hat{s}_{i} + \hat{s}_{i}^{T} \boldsymbol{F}_{N-i} + \boldsymbol{F}_{N-i}^{T} \hat{s}_{i} + h_{N-i}, i = N - 1, ..., k, \quad (5)$$

from the boundary condition follows that Π_0 , F_0 and h_0 are zero valued

Miroslav Flídr et. al.

Intelligent Systems and Control 2008

Solution of the optimisation problem

The dual control law

The dual control law

$$u_{k} = -\left[R_{k} + B^{T}(\hat{\theta}_{k|k}) \left(Q_{k+1} + \Pi_{N-k-1} \right) B(\hat{\theta}_{k|k}) + P_{k|k}^{BB} \right]^{-1} \times \\ \times \left[B^{T}(\hat{\theta}_{k|k}) \left(Q_{k+1} + \Pi_{N-k-1} \right) A(\hat{\theta}_{k|k}) \hat{s}_{k} + P_{k|k}^{BA} \hat{s}_{k} + \\ + B^{T}(\hat{\theta}_{k|k}) \left(Q_{k+1} + \Pi_{N-k-1} \right) \hat{w}_{k} - B^{T}(\hat{\theta}_{k|k}) Q_{k+1} \bar{s}_{k+1} + \\ + B^{T}(\hat{\theta}_{k|k}) F_{N-k-1} + P_{k|k}^{B\Theta} \right].$$

Properties of the dual control law

- \succ The control law is derived using the Bellman optimisation recursion.
- > The dual properties manifested through $P_{i|k}^{AA}$, $P_{i|k}^{BA}$, $P_{i|k}^{BB}$, $P_{i|k}^{A\Theta}$ and $P_{i|k}^{B\Theta}$ which depend on $P_{i|k} = \operatorname{cov}_{\rho_k} (\mathbf{x}_i | \mathbf{I}_k)$ for i = N 1, ..., k.
- > Only first two moments of pdf's $p(\mathbf{x}_i | \mathbf{y}_0^k)$ are necessary.

Numerical example

Considered system

$$s_{k+1} = \begin{pmatrix} 0 & 1 \\ \theta_1 & \theta_2 \end{pmatrix} s_k + \begin{pmatrix} 0 \\ \theta_{3k} \end{pmatrix} u_k + \boldsymbol{w}_k$$
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k$$
$$y_k = (0, 1) s_k + v_k$$

- Initial state and the parameters
 - $\Rightarrow s_0 = (1, -0.5)^T$
 - $\mathbf{\hat{\varphi}} \ \boldsymbol{\theta}_0 = (-2.0427, \ 0.3427, \ 1)^T$
- Noise pdf's
 - $\begin{array}{l} \stackrel{\diamond}{\Rightarrow} p(\boldsymbol{w}_k) = \mathcal{N}\left((0, \ 0)^T, 0.00012\mathbf{I}_2\right) \\ \stackrel{\diamond}{\Rightarrow} p(v_k) = \mathcal{N}\left(0, \ 0.001\right) \end{array}$
- Prior pdf for EKF

$$\Rightarrow p(\mathbf{x}_0) = \mathcal{N}((1, -0.5, -2.0427, 0.3427, 1)^T, 0.2\mathbf{I}_5)$$

Criteria parameters

Criterion of the original optimisation problem

$$J = E \left\{ \sum_{k=0}^{N-1} (s_{k+1,2} - 5)^2 + 0.001 \cdot u_k^2 \right\},\$$

Modified criterion for dual control derivation

$$J_{k} = E_{\rho_{k}} \left\{ \sum_{i=k}^{N-1} (s_{i+1,2} - 5)^{2} + 0.001 \cdot u_{i}^{2} - \mathbf{v}_{i+1}^{T} \mathbf{\Lambda}_{i+1} \mathbf{v}_{i+1} \middle| \mathbf{I}_{i} \right\}$$

$$\mathbf{\Lambda}_{i+1} = \begin{pmatrix} 0.5 & \mathbf{\Lambda}_{i+1}^{s,\theta} \\ \mathbf{\Lambda}_{i+1}^{s,\theta} & \mathbf{\mathcal{O}} \end{pmatrix} \qquad \mathbf{\Lambda}_{i+1}^{s,\theta} = \begin{pmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{pmatrix}$$

Miroslav Flídr et. al.

Criteria parameters

Criterion of the original optimisation problem

$$J = E \left\{ \sum_{k=0}^{N-1} (s_{k+1,2} - 5)^2 + 0.001 \cdot u_k^2 \right\},\$$

Modified criterion for dual control derivation

$$J_k = E_{\rho_k} \left\{ \sum_{i=k}^{N-1} (s_{i+1,2} - 5)^2 + 0.001 \cdot u_i^2 - \mathbf{v}_{i+1}^T \mathbf{A}_{i+1} \mathbf{v}_{i+1} \middle| \mathbf{I}_i \right\}$$

$$\mathbf{\Lambda}_{i+1} = \begin{pmatrix} 0.5 & \mathbf{\Lambda}_{i+1}^{s,\theta} \\ \mathbf{\Lambda}_{i+1}^{s,\theta} & \mathbf{\mathcal{O}} \end{pmatrix} \qquad \mathbf{\Lambda}_{i+1}^{s,\theta} = \begin{pmatrix} 0 & 0 & 0 \\ ? & ? & ? \end{pmatrix}$$

Miroslav Flídr et. al.

Criteria parameters

Criterion of the original optimisation problem

$$J = E \left\{ \sum_{k=0}^{N-1} (s_{k+1,2} - 5)^2 + 0.001 \cdot u_k^2 \right\},\$$

Modified criterion for dual control derivation

$$J_k = E_{\rho_k} \left\{ \sum_{i=k}^{N-1} (s_{i+1,2} - 5)^2 + 0.001 \cdot u_i^2 - \mathbf{v}_{i+1}^T \mathbf{A}_{i+1} \mathbf{v}_{i+1} \right| \mathbf{I}_i$$

$$\mathbf{\Lambda}_{i+1} = \begin{pmatrix} 0.5 & \mathbf{\Lambda}_{i+1}^{s,\theta} \\ \mathbf{\Lambda}_{i+1}^{s,\theta} & \mathbf{\mathcal{O}} \end{pmatrix} \quad \mathbf{\Lambda}_{i+1}^{s,\theta} = \begin{pmatrix} 0 & 0 & 0 \\ -0.3 & -0.3 & -0.4 \end{pmatrix}$$

Miroslav Flídr et. al.

Multistage Prediction Error Dual Controller

Numerical example

Comparison to other controllers

									^
α (1)	1.			41.	1.		11	1.	\sim
I ONTROL	ananty	comparison	11\$100	The	ananty	measures	- MA	and	l.
Control	quanty	comparison	using	une	quanty	measures	ore	and	\smile
			0						

	$\hat{\mathcal{M}}$	Ĉ
CE	1.477650	8.245854
PCE	0.902443	1.193457
MSPEDC	0.882633	1.138688

• measure of meeting the control objective

$$\hat{\mathcal{M}} = \frac{1}{m} \left\{ \sum_{j=1}^{m} \left(\frac{1}{N} \sum_{i=0}^{N-1} \left(s_{i+1,2} - 5 \right)^2 \right) \right\}$$

average cost of realising the system trajectory

$$\hat{\mathbb{C}} = \frac{1}{m} \left\{ \sum_{j=1}^{m} \left(\sum_{i=0}^{N-1} \left(s_{i+1,2} - 5 \right)^2 + 0.001 \cdot u_i^2 \right) \right\}$$

Miroslav Flídr et. al.

Intelligent Systems and Control 2008

Concluding remarks

Resume

- the new dual adaptive controller with multistage control horizon was introduced
- > some aspects of the criterion and control law were discussed

Features of the new dual controller

- ✓ clear criterion interpretation
 - \Rightarrow modified criterion incorporates both aspects of dual control
 - makes it possible to individually tune influence of parameter uncertainty on control
- ✓ closed form solution available
- ✓ higher control quality compared to CE and PCE controllers
- ✓ computationally moderate
- ✔ EKF if sufficient for the estimation of unknown state and parameters
- \checkmark quite robust with respect to choice of weighting matrix Λ_{i+1}