Framework for implementing and testing nonlinear filters

Miroslav Flídr, Jindřich Duník, Ondřej Straka, Jaroslav Švácha and Miroslav Šimandl

Research Centre Data, Algorithms and Decision Making & Department of Cybernetics Faculty of Applied Sciences University of West Bohemia in Pilsen Czech Republic

Miroslav Flídr et.al.

Advances in Control Education 2006

-1/15-

University of West Bohemia in Pilsen

Outline

1 Introduction

- Nonlinear state estimation
- Solution

2 The objective

3 Nonlinear filtering toolbox

- Description of probability density functions
- Description of the state space systems
- Estimators

Introduction	The objective	Nommear intering toolbox	Example	Conclusion
000		0000		
Nonlinear state estimation				
Problem f	ormulation			

Consider multivariate nonlinear stochastic system

- $x_k \in \mathbb{R}^{n_x}$... non-measurable state $w_k \in \mathbb{R}^{n_x}$... state white noise $z_k \in \mathbb{R}^{n_z}$... measurement $w_k \in \mathbb{R}^{n_z}$... measurement white noise $u_k \in \mathbb{R}^{n_u}$... control
 - ✓ Both noises are mutually independent and they are also independent of the known initial state x_0 pdf $p(x_0)$.
 - \checkmark The vector mappings $f : \mathbb{R}^{n_x} \to \mathbb{R}^{n_x}$, $h : \mathbb{R}^{n_x} \to \mathbb{R}^{n_z}$ are known

The aim: to the estimate the non-measurable state x_k

The posterior pdf $p(\mathbf{x}_k | \mathbf{z}^{\ell}, \mathbf{u}_{k-1})$ is sought!

 $z^{\ell} \triangleq [z_0, z_1, \dots, z_{\ell}] \dots$ set of measurements

Introduction	The objective	Nonlinear filtering toolbox	Example	Conclusion
000				
Solution				

General Solution

General solution obtainable by Bayesian approach

≻ solution of the **filtering problem** ($\ell = k$)

$$p(\mathbf{x}_{k}|\mathbf{z}^{k}, \mathbf{u}_{k-1}) = \frac{p(\mathbf{x}_{k}|\mathbf{z}^{k-1}, \mathbf{u}_{k-1})p(\mathbf{z}_{k}|\mathbf{x}_{k})}{\int p(\mathbf{x}_{k}|\mathbf{z}^{k-1}, \mathbf{u}_{k-1})p(\mathbf{z}_{k}|\mathbf{x}_{k})d\mathbf{x}_{k}},$$

$$p(\mathbf{x}_{k}|\mathbf{z}^{k-1}, \mathbf{u}_{k-1}) = \int p(\mathbf{x}_{k-1}|\mathbf{z}^{k-1}, \mathbf{u}_{k-2})p(\mathbf{x}_{k}|\mathbf{x}_{k-1}, \mathbf{u}_{k-1})d\mathbf{x}_{k-1},$$

> solution of the multistep prediction problem ($\ell < k$)

$$p(\mathbf{x}_{k}|\mathbf{z}^{\ell}, \mathbf{u}_{k-1}) = \int p(\mathbf{x}_{k-1}|\mathbf{z}^{\ell}, \mathbf{u}_{k-2}) p(\mathbf{x}_{k}|\mathbf{x}_{k-1}, \mathbf{u}_{k-1}) d\mathbf{x}_{k-1}$$

> solution of the **multistep smoothing problem** $(\ell > k)$

$$p(\mathbf{x}_{k}|\mathbf{z}^{\ell}, \mathbf{u}_{k-1}) = p(\mathbf{x}_{k}|\mathbf{z}^{k}, \mathbf{u}_{k-1}) \int \frac{p(\mathbf{x}_{k+1}|\mathbf{z}^{\ell}, \mathbf{u}_{k})}{p(\mathbf{x}_{k+1}|\mathbf{z}^{k}, \mathbf{u}_{k})} p(\mathbf{x}_{k+1}|\mathbf{x}_{k}, \mathbf{u}_{k}) d\mathbf{x}_{k+1}$$

Introduction ○○●	The objective	Nonlinear filtering toolbox	Example	Conclusion
Solution			0 01 1	
Soluti	ons of Bayesian rec	cursive relation	is for filtering,	
predic	ction and smoothing	problems		
Exa	act solutions - valid only for	special class of syste	ems	
>	Kalman filter			
>	Gaussian sum filter			
>	Daum filter			
Ap	proximate local methods			
>	Extended Kalman filter			
>	Divided difference filter			
>	Unscented Kalman filter			
Ap	proximate global methods			
×	Gaussian sum filter			
×	Point-mass method			

➤ Particle filters

Miroslav Flídr et.al.

The objective: To design toolbox facilitating easy estimator design and testing

What criteria should the toolbox meet?

- ✓ to be highly modular, easily extensible and user friendly
- ✔ to provide multi-step prediction, filtering and multi-step smoothing
- ✓ to be build in MATLAB environment

Which tasks should be provided by the toolbox?

- \checkmark complete description of the system
- \checkmark simulation of the system
- \checkmark choice and application of the suitable estimator
- \checkmark easy extensibility with new estimators

Introduction	The objective	Nonlinear filtering toolbox	Example	Conclusion
Aren't th	ere already N	latlab toolboxes fo	or nonlinear	
estimatic	on?			

≻ KALMTOOL

(HTTP://SERVER.OERSTED.DTU.DK/PERSONAL/OR/KALMTOOL3/)

ReBEL (HTTP://CHOOSH.ECE.OGI.EDU/REBEL/)

Advantages & disadvantages of those toolboxes

- \checkmark the computational demands of estimation process are moderate
- ✓ KALMTOOL has Simulink support
- \mathbf{X} suitable only for filtering problem
- \mathbf{X} not easily reusable code (monolithic design)
- \mathbf{X} provides only point estimate

However, both mentioned toolboxes doesn't fully meet specified demands!!

Introduction	The objective	Nonlinear filtering toolbox	Example	Conclusion
Features	of the Nonlin	ear Filtering Tool	nov (NFT)	

Advantages of presented framework

- > takes advantage of Matlab **object oriented** programming features
- > can handle filtering and multistep prediction and smoothing
- > estimators provide conditional probability density functions
- > provides means for easy control of the whole estimation process
- ➤ easy addition of new estimators

Structure of NFT

- probability density function (pdf's) classes
- ➤ system classes
- ➤ estimator classes
- ➤ auxiliary classes

Introduction	The objective	Nonlinear filtering toolbox	Example	Conclusion
		0000		
Description of probability density	functions			

Probability density function classes

Pdf's classes features

- > all random quantities represented as objects of corresponding pdf class
- generic class defining mandatory interface of all pdf classes and making them distinguishable as pdf's within toolbox
- ➤ pdf classes provide methods such as:
 - ♀ resetting and reading of pdf parameters,
 - \Rightarrow evaluation of pdf in arbitrary point of state space,
 - \Rightarrow generating of random samples, ...

Illustration of creation of Gaussian pdf object

$$p(\mathbf{x}) = \mathcal{N}\left\{\mathbf{x} : \begin{pmatrix} -1\\ 5 \end{pmatrix}, \begin{pmatrix} 0.1 & 0\\ 0 & 0.2 \end{pmatrix}\right\},\tag{1}$$

Introduction	The objective	Nonlinear filtering toolbox	Example	Conclusion
		0000		
Description of the state	space systems			
System c	classes			

Classes provided for system creation and handling

- > two classes for definition of multivariate functions $f(\cdot)$ and $h(\cdot)$
 - nfFunction general class defining interface for user defined functions
 - nfSymFunction utilizes Symbolic toolbox ⇒ slow computations
- several classes for various type of system (Non)Linear (Non)Gaussian with (Non)Additive noises

Illustration of creation and use of nonlinear system with additive noises

Introduction	The objective	Nonlinear filtering toolbox	Example	Conclusion
		0000		
Estimators				

Estimator classes

Main task of the estimator classes

The estimator classes essentially implement algorithms necessary to obtain $p(\mathbf{x}_k | \mathbf{z}^k, \mathbf{u}_{k-1}), p(\mathbf{x}_k | \mathbf{z}^\ell, \mathbf{u}_{k-1})$ and even possibly $p(\mathbf{x}_k | \mathbf{z}^\ell, \mathbf{u}_{k-1})$, i.e. filtering, predictive and smoothing conditional pdf's, respectively.

Features of the general class estimator

- > its virtual methods sets the interface of actual estimator classes
- > provides method estimate that controls the whole estimation process ⇒ the designer of the estimator doesn't need to care
- > estimator stores the data of multistep operations in dynamical list
- the lists can hold arbitrary content, however, they are primarily used to store conditional pdf's
- ➤ implements commonly used methods (e.g. Ricatti equation) ⇒ decreases redundancy and makes possible easy future improvements

Introduction	The objective	Nonlinear filtering toolbox	Example	Conclusion
		0000		
Estimators				

Estimator classes

Estimators currently implemented in NFT	
Method	NFT class
Kalman filter	kalman
Extended Kalman filter	extkalman
Iterating Kalman filter	itekalman
Second order Kalman filter	seckalman
Gaussian sums filter	gsm
Particle filter	pf
Point mass filter	pmf
Divide difference filter 1st order	dd1
Unscented Kalman filter	ukf

Illustration of creation and use of DD1 estimator object

```
>> filter = ddl(system,0);
>> [est,filter] = estimate(filter,z,NaN);
```

Introduction	The objective	Nonlinear filtering toolbox	Example	Conclusion
000		0000		

Example of NFT usage

Considered nonlinear non-Gaussian system

$$\begin{pmatrix} x_{1,k+1} \\ x_{2,k+1} \end{pmatrix} = \begin{pmatrix} x_{1,k} \cdot x_{2,k} \\ x_{2,k} \end{pmatrix} + \boldsymbol{w}_k$$
$$z_k = x_{1,k} \cdot x_{2,k} + v_k$$

The description of stochastic quantities

$$p(\boldsymbol{w}_k) = \mathcal{N}\left(\boldsymbol{w}_k : \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 0.49 & 0\\0 & 0.01 \end{bmatrix}\right)$$
$$p(v_k) = \mathcal{N}\left(v_k : 0, \ 0.5\right)$$
$$p(x_0) = 0.7 \cdot \mathcal{N}\left(x_0 : \begin{bmatrix} 10\\-5 \end{bmatrix}, \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}\right) + 0.3 \cdot \mathcal{N}\left(x_0 : \begin{bmatrix} -10\\5 \end{bmatrix}, \begin{bmatrix} 18 & 0\\0 & 18 \end{bmatrix}\right)$$

Miroslav Flídr et.al.

Introduction	The objective	Nonlinear filtering toolbox	Example	Conclusion
Concludi	ng remarks			

Current contribution of the NFT

- provides all necessary tools for estimator design, testing and employment
- > the toolbox is easily extensible thanks to object oriented approach
- includes all the basic estimator implementing filtering, prediction and smoothing methods

Future directions

- ➤ implementation of additional estimators
- ➤ fully probabilistic description of the system
- support for time varying systems
- > possibility to automatically approximate pdf's
- > refactoring and conversion to the new Matlab class system