Ivo Punčochář, Jan Široký, Miroslav Šimandl

Department of Cybernetics and Research Centre Data – Algorithms – Decision Making Faculty of Applied Sciences University of West Bohemia Pilsen, Czech Republic Presentation Overview

Presentation Overview

1 Introduction

- 2 General formulation
- 3 Optimal active decision making for control
- 4 Numerical example
- **5** Conclusion remarks

Introduction

Passive and active change detection or control

Passive Data \mathbf{z}_k is passively used for generating decision \mathbf{d}_k

$$\mathbf{S}_1$$
 \mathbf{z}_k \mathbf{S}_2 \mathbf{d}_k

Active Decision \mathbf{d}_k is based on input-output data $[\mathbf{u}_k, \mathbf{y}_k]$ and input \mathbf{u}_k should improve quality of decisions or control system

$$\underbrace{\mathbf{u}_k}_{1} \underbrace{\mathbf{S}_1}_{1} \underbrace{\mathbf{y}_k}_{2} \underbrace{\mathbf{S}_2}_{1} \underbrace{\mathbf{d}_k}_{1}$$

Introduction - cont'd

General formulation of active change detection and control

- Stems from stochastic optimal control formulation
- Assumes Closed loop information processing strategy
- Includes several design problems as special cases

Special case – Optimal active decision making for control

Introduction - cont'd

Goals

- Outline the general formulation of the active change detection and control problem
- Introduce the special case: Optimal active decision making for control
- 3 Present a suboptimal active generator

General formulation

General formulation

Description of system S₁ for time steps $k \in T = \{0, ..., F\}$

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{f}_k \left(\mathbf{x}_k, \boldsymbol{\mu}_k, \mathbf{u}_k, \mathbf{w}_k \right) \\ \boldsymbol{\mu}_{k+1} &= \mathbf{g}_k \left(\mathbf{x}_k, \boldsymbol{\mu}_k, \mathbf{u}_k, \mathbf{e}_k \right) \\ \mathbf{y}_k &= \mathbf{h}_k \left(\mathbf{x}_k, \boldsymbol{\mu}_k, \mathbf{v}_k \right) \end{aligned}$$

f_k, **g**_k, **h**_k – known vector functions $\bar{\mathbf{x}}_k = [\mathbf{x}_k^T, \boldsymbol{\mu}_k^T]^T$ – system state, $\mathbf{x}_k \in \mathbb{R}^{n_x}$, $\boldsymbol{\mu}_k \in \mathcal{M} \subseteq \mathbb{R}^{n_\mu}$ $\mathbf{u}_k \in \mathcal{U}_k \subseteq \mathbb{R}^{n_u}$ – input, $\mathbf{y}_k \in \mathbb{R}^{n_y}$ – output \mathbf{w}_k , \mathbf{e}_k – state noises with known pdf's $p(\mathbf{w}_k)$ and $p(\mathbf{e}_k)$ \mathbf{v}_k – output noise with known pdf $p(\mathbf{v}_k)$ $\bar{\mathbf{x}}_0$ – initial condition with known pdf $p(\bar{\mathbf{x}}_0) = p(\mathbf{x}_0)p(\boldsymbol{\mu}_0)$ General formulation

General formulation – cont'd

Description of system S₂

$$\begin{bmatrix} \mathbf{d}_k \\ \mathbf{u}_k \end{bmatrix} = \boldsymbol{\rho}_k \left(\mathbf{I}_0^k \right)$$

$$\rho_k$$
 – a function to be designed
 $\mathbf{I}_0^k = [\mathbf{y}_0^{k^T}, \mathbf{u}_0^{k-1^T}, \mathbf{d}_0^{k-1^T}]^T$ – an information vector
 \mathbf{d}_k – a decision (i.e. a point estimate of μ_k)

Criterion

$$J\left(\boldsymbol{\rho}_{0}^{F}\right) = \mathsf{E}\left\{\sum_{k=0}^{F} \overbrace{\alpha_{k} L_{k}^{\mathrm{d}}\left(\boldsymbol{\mu}_{k}, \mathbf{d}_{k}\right) + (1-\alpha_{k}) L_{k}^{\mathrm{c}}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)}^{L_{k}(\mathbf{x}_{k}, \mathbf{u}_{k}, \mathbf{d}_{k})}\right\}$$

General formulation

General solution (Closed loop information processing strategy)

Backward recursive equation for time steps $k = F, F - 1, \dots, 0$

$$V_{k}^{*}\left(\mathbf{I}_{0}^{k}\right) = \min_{\substack{\mathbf{d}_{k}\in\mathcal{M}\\\mathbf{u}_{k}\in\mathcal{U}_{k}}} \mathsf{E}\left\{L_{k}\left(\mathbf{x}_{k},\boldsymbol{\mu}_{k},\mathbf{u}_{k},\mathbf{d}_{k}\right) + V_{k+1}^{*}\left(\mathbf{I}_{0}^{k+1}\right) \mid \mathbf{I}_{0}^{k},\mathbf{u}_{k},\mathbf{d}_{k}\right\}$$

 $V^*_{F+1}=0$ – initial condition, $J(
ho_0^{F*})={\sf E}\left\{V^*_0\left({f y}_0
ight)
ight\}$ – optimal value

Optimal system S₂

$$\begin{bmatrix} \mathbf{d}_{k}^{*} \\ \mathbf{u}_{k}^{*} \end{bmatrix} = \arg\min_{\substack{\mathbf{d}_{k} \in \mathcal{M} \\ \mathbf{u}_{k} \in \mathcal{U}_{k}}} \mathsf{E}\left\{ L_{k}\left(\mathbf{x}_{k}, \boldsymbol{\mu}_{k}, \mathbf{u}_{k}, \mathbf{d}_{k}\right) + V_{k+1}^{*}\left(\mathbf{I}_{0}^{k+1}\right) \mid \mathbf{I}_{0}^{k}, \mathbf{u}_{k}, \mathbf{d}_{k} \right\}$$

Note: Pdf's $p(\bar{\mathbf{x}}_k | \mathbf{I}_0^k, \mathbf{u}_k, \mathbf{d}_k)$ and $p(\mathbf{y}_{k+1} | \mathbf{I}_0^k, \mathbf{u}_k, \mathbf{d}_k)$ are needed.

SysTol'10

- Optimal active decision making for control
 - Optimal active generator for general system

Optimal active decision making for control

From general formulation to optimal active decision making for control

System S₂ consists of a given controller $\gamma_k(\mathbf{I}_0^k, \mathbf{d}_k)$

$$\begin{bmatrix} \mathbf{d}_{k} \\ \mathbf{u}_{k} \end{bmatrix} = \boldsymbol{\rho}_{k} \left(\mathbf{I}_{0}^{k} \right) = \begin{bmatrix} \boldsymbol{\sigma}_{k} \left(\mathbf{I}_{0}^{k} \right) \\ \boldsymbol{\gamma}_{k} \left(\mathbf{I}_{0}^{k}, \boldsymbol{\sigma}_{k} \left(\mathbf{I}_{0}^{k} \right) \right) \end{bmatrix}$$

• Only the control aim is considered $\Rightarrow \alpha_k = 0$ (i.e. $L_k(\mathbf{x}_k, \boldsymbol{\mu}_k, \mathbf{u}_k, \mathbf{d}_k) = L_k^c(\mathbf{x}_k, \mathbf{u}_k)$) and the criterion is

$$J\left(\boldsymbol{\sigma}_{0}^{F}\right) = \mathsf{E}\left\{\sum_{k=0}^{F} L_{k}^{c}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right)\right\}$$

- Optimal active decision making for control
 - Optimal active generator for general system

Optimal active decision making for control - cont'd

Backward recursive equation

$$V_{k}^{*}\left(\mathbf{I}_{0}^{k}\right) = \min_{\mathbf{d}_{k}\in\mathcal{M}} \mathsf{E}\left\{L_{k}^{c}\left(\mathbf{x}_{k},\boldsymbol{\gamma}_{k}(\mathbf{I}_{0}^{k},\mathbf{d}_{k})\right) + V_{k+1}^{*}\left(\mathbf{I}_{0}^{k+1}\right) \mid \mathbf{I}_{0}^{k},\mathbf{u}_{k},\mathbf{d}_{k}\right\}$$

Optimal active generator for given controller

$$\begin{split} \mathbf{d}_{k}^{*} &= \\ & \arg\min_{\mathbf{d}_{k} \in \mathcal{M}} \mathsf{E}\left\{ L_{k}^{c}\left(\mathbf{x}_{k}, \boldsymbol{\gamma}_{k}(\mathbf{I}_{0}^{k}, \mathbf{d}_{k})\right) + V_{k+1}^{*}\left(\mathbf{I}_{0}^{k+1}\right) \ \Big| \ \mathbf{I}_{0}^{k}, \mathbf{u}_{k}, \mathbf{d}_{k} \right\} \end{split}$$

Note: The minimization over \mathbf{d}_k is performed subject to the system and the given controller.

SysTol'10

- Optimal active decision making for control
 - Suboptimal active generator for given multimodel controller

Given multimodel controller

A block diagram of active decision making for control

Optimal active decision making for control

Suboptimal active generator for given multimodel controller

Given multimodel controller - cont'd

Description of system S₁

$$egin{aligned} \mathbf{x}_{k+1} = & \mathbf{A}_{\mu_k} \mathbf{x}_k + \mathbf{B}_{\mu_k} \mathbf{u}_k + \mathbf{G}_{\mu_k} \mathbf{w}_k \ & \mathbf{y}_k = & \mathbf{C}_{\mu_k} \mathbf{x}_k + \mathbf{H}_{\mu_k} \mathbf{v}_k \end{aligned}$$

 $\begin{array}{l} \mu_k \in \mathcal{M} = \{1, 2, \ldots, N\} - \text{a model index} \\ P(\mu_{k+1} = j | \mu_k = i) = \pi_{i,j} - \text{transition probabilities} \\ \mathbf{w}_k, \, \mathbf{v}_k - \text{noises with Gaussian distribution } \mathcal{N}\{\mathbf{0}, \mathbf{I}\} \\ \mathbf{x}_0 - \text{initial state with Gaussian distribution } \mathcal{N}\{\hat{\mathbf{x}}_0', \mathbf{P}_0'\} \\ \mu_0 - \text{initial model with probabilities } P(\mu_0) \end{array}$

- Optimal active decision making for control
 - Suboptimal active generator for given multimodel controller

Given multimodel controller – cont'd

Additional assumptions

Given controller

$$\mathbf{u}_{k}=oldsymbol{\gamma}_{k}\left(\mathbf{I}_{0}^{k},d_{k}
ight)=\mathbf{K}_{d_{k}}\hat{\mathbf{x}}_{k}$$

$$\mathbf{K}_{d_k}$$
 – controller gain, $\hat{\mathbf{x}}_k = \mathsf{E}\{\mathbf{x}_k | \mathbf{y}_0^k, \mathbf{u}_0^{k-1}\}$

Quadratic cost function

$$L_{k}^{c}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right)=\left[\mathbf{x}_{k}-\mathbf{r}_{k}\right]^{T}\mathbf{Q}_{k}\left[\mathbf{x}_{k}-\mathbf{r}_{k}\right]+\mathbf{u}_{k}^{T}\mathbf{R}_{k}\mathbf{u}_{k}$$

 \mathbf{r}_k – known function of time

Optimization horizon F_o = 2 means that V^{*}_{k+2}(I^{k+2}₀) is replaced by the zero function – rolling horizon technique

- Optimal active decision making for control
 - Suboptimal active generator for given multimodel controller

Approximation based on rolling horizon

Time step k + 1

Approximate cost-to-go function

$$\begin{split} \tilde{V}_{k+1} \left(\mathbf{I}_{0}^{k+1} \right) &= [\hat{\mathbf{x}}_{k+1} - \mathbf{r}_{k+1}]^{T} \mathbf{Q}_{k+1} [\hat{\mathbf{x}}_{k+1} - \mathbf{r}_{k+1}] \\ &+ \operatorname{tr} \left(\mathbf{Q}_{k+1} \mathbf{P}_{k+1} \right) + \min_{d_{k+1}} \left\{ \hat{\mathbf{x}}_{k+1}^{T} \mathbf{K}_{d_{k+1}}^{T} \mathbf{R}_{k+1} \mathbf{K}_{d_{k+1}} \hat{\mathbf{x}}_{k+1} \right\} \end{split}$$

Decision

$$\tilde{\mathbf{d}}_{k+1} = \arg\min_{d_{k+1}} \left\{ \hat{\mathbf{x}}_{k+1}^{\mathcal{T}} \mathbf{K}_{d_{k+1}}^{\mathcal{T}} \mathbf{R}_{k+1} \mathbf{K}_{d_{k+1}} \hat{\mathbf{x}}_{k+1} \right\}$$

Note: Mean value $\hat{\mathbf{x}}_k = \mathsf{E}\{\mathbf{x}_k | \mathbf{y}_0^k, \mathbf{u}_0^{k-1}\}$ and covariance matrix $\mathbf{P}_k = \mathsf{cov}\{\mathbf{x}_k | \mathbf{y}_0^k, \mathbf{u}_0^{k-1}\}$ can be obtained from estimation algorithm.

Optimal active decision making for control

Suboptimal active generator for given multimodel controller

Approximation based on rolling horizon – cont'd

Time step k

Approximate cost-to-go function

$$\tilde{V}_{k}\left(\mathbf{I}_{0}^{k}\right) = [\hat{\mathbf{x}}_{k} - \mathbf{r}_{k}]^{T}\mathbf{Q}_{k}[\hat{\mathbf{x}}_{k} - \mathbf{r}_{k}] + \operatorname{tr}\left(\mathbf{Q}_{k}\mathbf{P}_{k}\right) \\ + \min_{d_{k}}\left\{\hat{\mathbf{x}}_{k}^{T}\mathbf{K}_{d_{k}}^{T}\mathbf{R}_{k}\mathbf{K}_{d_{k}}\hat{\mathbf{x}}_{k} + \underbrace{\mathsf{E}\left\{\tilde{V}_{k+1}\left(\mathbf{I}_{0}^{k+1}\right)|\mathbf{I}_{0}^{k},\mathbf{u}_{k},d_{k}\right\}}_{\Omega_{d_{k}}(\mathbf{I}_{0}^{k},\mathbf{u}_{k},d_{k})}\right\}.$$

Decision

$$\tilde{\mathbf{d}}_{k} = \arg\min_{d_{k}} \left\{ \hat{\mathbf{x}}_{k}^{\mathsf{T}} \mathbf{K}_{d_{k}}^{\mathsf{T}} \mathbf{R}_{k} \mathbf{K}_{d_{k}} \hat{\mathbf{x}}_{k} + \Omega_{d_{k}} (\mathbf{I}_{0}^{k}, \mathbf{u}_{k}, d_{k}) \right\}$$

- Optimal active decision making for control
 - Suboptimal active generator for given multimodel controller

Approximation based on rolling horizon – cont'd

Time step k

Expected cost-to-go
$$\Omega_{d_k}(\mathbf{I}_0^k, \mathbf{u}_k, d_k)$$

$$\begin{split} \Omega_{d_{k}}(\mathbf{I}_{0}^{k},\mathbf{u}_{k},d_{k}) &= \\ [\hat{\mathbf{x}}_{k+1}^{\prime}-\mathbf{r}_{k+1}]^{T}\mathbf{Q}_{k+1}[\hat{\mathbf{x}}_{k+1}^{\prime}-\mathbf{r}_{k+1}] + \operatorname{tr}\left(\mathbf{Q}_{k+1}\mathbf{P}_{k+1}^{\prime}\right) \\ &+ \operatorname{E}\left\{\min_{d_{k+1}}\left\{\hat{\mathbf{x}}_{k+1}^{T}\mathbf{K}_{d_{k+1}}^{T}\mathbf{R}_{k+1}\mathbf{K}_{d_{k+1}}\hat{\mathbf{x}}_{k+1}\right\} \mid \mathbf{I}_{0}^{k},\mathbf{u}_{k},d_{k}\right\} \end{split}$$

■ The expectation E{min_{d_{k+1}}{·}|I₀^k, u_k, d_k} is computed numerically for each decision d_k ∈ M

Numerical example

Description of the system S₁ for the finite horizon F = 19

Parameters of two models

$$\begin{split} \mathbf{A}_1 &= \mathbf{A}_2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{G}_1 = \mathbf{G}_2 = 0.01\mathbf{E}_2, \\ \mathbf{C}_1 &= \mathbf{C}_2 = \begin{bmatrix} 1 & 0 \end{bmatrix}, \qquad \mathbf{H}_1 = \mathbf{H}_2 = 0.01, \\ \mathbf{B}_1 &= \begin{bmatrix} 0.05 \\ 0.1 \end{bmatrix}, \qquad \mathbf{B}_2 = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix}, \end{split}$$

Transition probabilities $\pi_{1,1} = \pi_{2,2} = 0.96$, $\pi_{1,2} = \pi_{2,1} = 0.04$

Initial conditions $P(\mu_0 = i) = 0.5$, i = 1, 2, $\hat{\mathbf{x}}'_0 = [1, 0]^T$ and $\mathbf{P}'_0 = 10^{-4}\mathbf{E}_2$

• Reference signal $r_k = 0$, matrices $\mathbf{Q}_k = \mathbf{E}_2$, $\mathbf{R}_k = 0.1$ for all k

Numerical example – cont'd

Active and passive generator comparison

Passive generator (PG1)

$$d_k^{\text{PG1}} = \arg\min_{\mu_k} P(\mu_k | y_0^k, u_0^{k-1} u_k^{\text{PG1}} = \mathbf{K}_{d_k^{\text{PG1}}} \hat{\mathbf{x}}_k$$

Active generator (AG)

$$d_{k}^{\text{AG}} = \arg\min_{d_{k}} \left\{ \hat{\mathbf{x}}_{k}^{\mathsf{T}} \mathbf{K}_{d_{k}}^{\mathsf{T}} \mathbf{R}_{k} \mathbf{K}_{d_{k}} \hat{\mathbf{x}}_{k} + \Omega_{d_{k}} (\mathbf{I}_{0}^{k}, \mathbf{u}_{k}, d_{k}) \right\}$$
$$u_{k}^{\text{AG}} = \mathbf{K}_{d_{k}^{\text{AG}}} \hat{\mathbf{x}}_{k}$$

Active and passive generator comparison – cont'd

Results of $M = 10000$ MC simulations							
Geberator	Ĵ	$\operatorname{var}\{\hat{J}\}$	$var{L}$	N _{wd}			
PG1	7.42	0.031	317	2.43			
AG	4.23	0.002	10	10.31			

$$J = \mathsf{E}\left\{\sum_{k=0}^{F} L_{k}^{c}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)\right\} \qquad \hat{J} = \frac{1}{M} \sum_{i=1}^{M} L^{i}$$

$$\operatorname{var}\left\{\hat{J}\right\} = \operatorname{bootstrap}\left\{L^{i}\right\} \qquad \operatorname{var}\left\{L\right\} = \frac{1}{M-1} \sum_{i=1}^{M} \left(L^{i} - \hat{J}\right)^{2}$$

 $N_{\rm wd}$ – number of wrong decisions (i.e. $d_k \neq \mu_k$)

Numerical example – cont'd

Alternative passive generator

■ Passive generator (PG2)

$$d_k^{\text{PG2}} = \arg\min_{\mu_k} P(\mu_k | y_0^k, u_0^{k-1})$$

$$u_k^{\text{PG2}} = \sum_{\mu_k} \mathbf{K}_{\mu_k} \hat{\mathbf{x}}_{\mu_k} P(\mu_k | y_0^k, u_0^{k-1})$$

where $\hat{\mathbf{x}}_{\mu_k} = \mathsf{E}\{\mathbf{x}_k|\mathbf{y}_0^k,\mathbf{u}_0^{k-1},\mu_k\}$

Numerical example - cont'd

Results of $M = 10000$ MC simulations							
Geberator	Ĵ	$\operatorname{var}\{\hat{J}\}$	$var{L}$	N _{wd}			
PG1	7.42	0.031	317	2.43			
PG2	4.50	0.013	59	2.32			
AG	4.23	0.002	10	10.31			

$$J = \mathsf{E}\left\{\sum_{k=0}^{F} L_{k}^{c}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)\right\} \qquad \hat{J} = \frac{1}{M}\sum_{i=1}^{M} L^{i}$$
$$\mathsf{var}\left\{\hat{J}\right\} = \mathsf{bootstrap}\left\{L^{i}\right\} \qquad \mathsf{var}\{L\} = \frac{1}{M-1}\sum_{i=1}^{M} \left(L^{i} - \hat{J}\right)^{2}$$

 $N_{\rm wd}$ – number of wrong decisions (i.e. $d_k \neq \mu_k$)

Conclusion remarks

Conclusion remarks

Conclusion

- The general formulation of active change detection and control
- Special case: Optimal active decision making for control
- The suboptimal active generator (rolling horizon technique)
- The numerical example showing the advantage of active generator

Further work

- Focus on the case with a given detector
- Approximative techniques