
ON LEARNING BAYESIAN NETWORK MODELS

BY MAXIMIZATION OF A QUALITY CRITERION

MILAN STUDENÝ
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Introduction - Bayesian network models I

Bayesian network is a graphical model of probabilistic relationships among vari-
ables. It is described by an acyclic directed graph G which has the set of variables
N as the set of nodes.

From a mathematical point of view, a statistical model is a class of probability
distributions. In the considered case, it is the class of (discrete) distributions which
recursively factorize according to G:

P (x) =
∏

i∈N Pi|paG(i)(xi|xpaG(i)) for x ∈ XN ≡
∏

i∈N Xi ,

where paG(i) = {j ∈ N ; j → i in G }, Xi are fixed (finite) sample spaces, and
xA, A ⊆ N denotes the restriction of a configuration of values x ∈ XN .



Introduction - Bayesian network models II

A graphical model can be viewed as a special case of a statistical model of condi-
tional independence structure.

That means, it can equivalently be introduced as the class of distributions on XN

which satisfy some conditional independence restrictions:

A ⊥⊥ B |C [P ] whenever triplet 〈A, B|C〉, A, B, C ⊆ N pairwise disjoint
is represented in G according to the d-separation criterion.

These distributions are called Markovian distributions with respect to G.

The definition of the graphical d-separation criterion is omitted here.

graph conditional independence restrictions statistical model- -



Structural learning

Learning of a statistical model is the procedure of determining the most suitable
model from a considered universum of available statistical models, typically on basis
of data.

The methods for learning (graphical) models of conditional independence structure
can be divided into two groups:

• the methods based on significance tests,

• the methods based on the maximization of a suitable quality criterion.

Note that some methods can be classified in both groups – (Whittaker 1990).
Moreover, there is a simulation method, namely MCMC, applicable to learning
graphical models which does not belong to either of these two groups.

Most of the methods were developed for learning Bayesian network models.



Quality criteria

This talk deals with methods for learning Bayesian network models based
on the maximization of a quality criterion .

N non-empty finite set of variables
DAGS (N) the class of acyclic directed graphs over the set of nodes N
DATA (N, d) the set of all databases over N of the length d, d ≥ 1

(some finite sample spaces are fixed)

Quality criterion (for learning Bayesian networks) is a real function Q on
DAGS (N)× DATA (N, d).

A quality criterion should be consistent, but there are other reasonable mathemat-
ical requirements, which will be discussed later in the talk.



Equivalence of Bayesian networks

One statistical model can be described by different graphs. Two graphs G, H ∈
DAGS (N) are Markov equivalent if they define the same class of Markovian dis-
tributions.

Two graphs G, H ∈ DAGS (N) are independence equivalent if they define the same
collection of conditional independence restrictions. Let us write G ≈ H then.

There exists a graphical characterization of independence equivalence (Verma and
Pearl 1990): G ≈ H iff they have the same underlying graph and immoralities.

An immorality in a graph is its induced subgraph of this form:
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Chickering (1995) gave an alternative transformational characterization of equivalent acyclic directed

graphs.



Score-equivalent criteria

A quality criterionQ is score-equivalent iff ∀G, H ∈ DAGS (N), ∀D ∈ DATA (N, d)

if G ≈ H then Q(G, D) = Q(H, D) .

Most of the criteria used in practice are score-equivalent:

• MLL (maximized log-likelihood criterion),

• AIC (Akaike’s information criterion),

• BIC (Jeffrey-Schwarz criterion),

• some Bayesian criteria (this depends on the choice of ‘priors’).



Decomposable criteria

A quality criterion Q is decomposable if there exists a collection of functions
qi|B : DATA (B ∪ {i}, d) → R, i ∈ N , B ⊆ N \ {i} such that ∀G ∈ DAGS (N),
∀D ∈ DATA (N, d)

Q(G, D) =
∑
i∈N

qi|paG(i)(D{i}∪paG(i))

where DA denotes the restriction of a database D for A ⊆ N .

This technical requirement was brought by researchers in computer science in con-
nection with the method of local search. (Heckerman 1995) (Chickering 2002)

Actually, one can distinguish two concepts of decomposability, depending on what is meant by a

database. Strong decomposability corresponds to data in the form of a contingency table.

All criteria used in practice are (strongly) decomposable.



Problem of representative choice

How to represent a Bayesian network model in the memory of a computer?

There are two basic methods:

• represent it by arbitrary G ∈ DAGS (N) in the respective independence equiv-
alence class,

• represent it by a special unique representative.

The most popular graphical representative is the essential graph. It is a chain graph
G∗ obtained from the equivalence class G as follows:

• a→ b in G∗ if a→ b in G for every G ∈ G,

• a −− b in G∗ if there are G1, G2 ∈ G such that a→ b in G1 and a← b in G2.

Later, another (algebraic) representative, called the standard imset, will be introduced.



Local search methods

Direct maximization of a quality criterion is typically infeasible. To avoid this
problem various heuristic local search methods were developed.

The basic idea is that one introduces a neighbourhood structure in the set DAGS (N),
respectively in the set DAGS (N)/≈. Instead of the global maximum of Q one is
trying to find a local maximum with respect to that neighbourhood structure.

Every graph G (respectively every equivalence class G) is assigned a relatively small
set of neighbouring graphs (respectively equivalence classes) nei (G). They typically
differ in the presence of one edge.

The point is that for a decomposable criterionQ the differenceQ(G, D)−Q(H, D)
for neighbouring graphs G, H ∈ DAGS (N) is easy to compute.



Inclusion neighbourhood

Is there a natural neighbourhood for DAGS (N)/≈?

Let I(G) be the set of conditonal independence restrictions given by G ∈ DAGS (N).
Given K, L ∈ DAGS (N), I(K) ⊂ I(L) means I(K) ⊆ I(L) but I(K) 6= I(L).

If I(K) ⊂ I(L) and there is no G ∈ DAGS (N) such that I(K) ⊂ I(G) ⊂ I(L)
then we will say that I(L) is an upper inclusion neighbour of I(K), respectively
I(K) is a lower inclusion neighbour of I(L). We will then write I(K) @ I(L).

The inclusion neighbourhood was characterized in graphical terms.
This is a consequence of the validity of Meek’s (1995) conjecture, confirmed by Chickering (2002).

One has I(K) @ I(L) iff there exists K ′, L′ ∈ DAGS (N), K ′ ≈ K, L′ ≈ L such that L′ is

obtained from K ′ by the removal of one arrow.

There are some arguments why general neighbourhood structure in a local search method should

involve the inclusion neighbourhood. (Castelo 2002)



Algebraic approach

The basic idea is to describe a Bayesian network model by a certain integral vector.
This is motivated by a more general method for describing probabilistic conditional
independence structures (Studený 2005).

By an imset over N , an integer-valued function on the power set of N is under-
stood.

Given A ⊆ N , δA is the identifier of the set A.
Given conditional independence statement a ⊥⊥ b |C, where a, b ∈ N , a 6= b,
C ⊆ N \ {a, b} the respective elementary imset has the form

u〈a,b|C〉 = δ{a,b}∪C + δC − δ{a}∪C − δ{b}∪C .

By a structural imset , an imset which is a combination of elementary imsets with
non-negative rational coefficients is meant.



Standard Imsets I

Let G ∈ DAGS (N). Then the respective standard imset has the form

uG = δN − δ∅ +
∑
i∈N

{δpaG(i) − δ{i}∪paG(i)} .

As it has many ‘zeros’ it can be easily kept in the memory of a computer.

Proposition Given G, H ∈ DAGS (N) one has G ≈ H iff uG = uH .

Thus, the standard imset can serve as a unique representative of the respective
Bayesian network model.

Proposition Given K, L ∈ DAGS (N) one has I(K) @ I(L) iff uL − uK is an
elementary imset.



Standard Imsets II

Proposition Let Q be a score-equivalent decomposable criterion. Then it has the
following form:
∀G ∈ DAGS (N), ∀D ∈ DATA (N, d)

Q(G, D) = kQ(D) +
∑
S⊆N

uG(S) · tQD(S)

= kQ(D) + 〈uG, tQD〉 .

where tQD is a real vector representing the database D (relative to Q) and kQ(D) is
a constant (depending on data).

In particular, Q(L, D)−Q(K,D) = 〈uL − uK, tQD〉.

Thus, from purely mathematical point of view, it leads to the problem of maximization of a (shifted)

linear function.



Transition between graphical and algebraic representatives

To utilize fully the algebraic approach to the local search methods one has to be
able to describe the inclusion neighbourhood in terms of the standard imset.

There exists characterization of inclusion neighbourhood of a given G ∈ DAGS (N)/≈
in terms of the respective essential graph (Studený 2004).

For this reason, it is desirable to translate graphical representatives into algebraic
ones and conversely. There exists a formula which gives the standard imset on
the basis of the essential graph and a two-stage inverse algorithm for getting the
essential graph on basis of the standard imset (Studený Vomlel 2004).
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Derivation of quality criteria I

Let M = {Pθ ; θ ∈ Θ} be a statistical model; each Pθ is a distribution on XN .

Likelihood function (likelihood = the probability of the occurence of a database)

(θ, D) −→ L(θ, D) ≡
d∏

`=1

Pθ(x
`), θ ∈ Θ , D = (x1, . . . , xd) ∈ (XN)d

Maximized log-likelihood is then

MLL(M, D) = max { ln L(θ, D); θ ∈ Θ} .

The complexity of a model is measured by its effective dimension DIM(M), which
is the affine dimension of Θ (= the number of free parameters).



Derivation of quality criteria II

Let M be the class of Markovian distributions with respect to a graph G over N :

MG = {Pθ ; θ ∈ ΘG} .

MLL(G, D) = MLL(MG, D)
AIC(G, D) = MLL(MG, D)− DIM(MG)
BIC(G, D) = MLL(MG, D)− 1

2 ln(d) · DIM(MG)

Bayesian criteria: One has a prior probability measure πG on ΘG. The respective
criterion is the logarithm of the marginal likelihood

LML(G, D) = ln

∫
ΘG

L(θ, D) dπG(θ) .

Of course, the priors have to satisfy additional technical assumptions; sometimes a
prior on the space of graphs is also considered.


