troduction	Particle filter	Sample size adaptation	Numerical illustration	Conclusio
			·	

ADAPTIVE PARTICLE FILTER WITH FIXED EMPIRICAL DENSITY QUALITY

Ondřej Straka and Miroslav Šimandl

Research Centre Data, Algorithms, and Decision Making Department of Cybernetics University of West Bohemia Czech Republic

17th IFAC World Congress, 2008

Introduction O	Particle filter	Sample size adaptation	Numerical illustration	Conclusion
Outline				

- Motivation
- Particle Filter
- Sample size adaptation
- Numerical Illustration
- Conclusion

Introduction ●	Particle filter	Sample size adaptation	Numerical illustration	Conclusion
Motivatior	1			

- the problem of suitable sample size specification usually overlooked in particle filtering
- usually constant sample size is considered while estimate quality varies
- there are few sample size specification techniques adapting with respect to point estimate quality but none respecting pdf estimate quality

• the aim of the proposed sample size specification technique is to adapt the sample size such that the Kullback-Leibler distance between the empirical filtering pdf and the true filtering pdf is preserved

Introduction O	Particle filter ●○○	Sample size adaptation	Numerical illustration	Conclusion
State es	stimation			

Consider a discrete time stochastic system:

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{f}_k(\mathbf{x}_k, \mathbf{e}_k), & k = 0, 1, 2, \dots & [p(\mathbf{x}_{k+1} | \mathbf{x}_k)] \\ \mathbf{z}_k &= \mathbf{h}_k(\mathbf{x}_k, \mathbf{v}_k), & k = 0, 1, 2, \dots & [p(\mathbf{z}_k | \mathbf{x}_k)] \end{aligned}$$

- **x**_k is *nx* dimensional state vector with *p*(**x**₀)
- **z**_k is *nz* dimensional measurement vector
- \mathbf{e}_k is white noise with known $p(\mathbf{e}_k)$
- \mathbf{v}_k is white noise with known $p(\mathbf{v}_k)$
- $\mathbf{f}_k(\cdot, \cdot)$ and $\mathbf{h}_k(\cdot, \cdot)$ are known vector functions

The aim of state estimation

$$p(\mathbf{x}_k | \mathbf{z}^k) = ?$$
, with $\mathbf{z}^k = [\mathbf{z}_0^{\mathrm{T}}, \dots \mathbf{z}_k^{\mathrm{T}}]^{\mathrm{T}}$

Introduction	Particle filter	Sample size adaptation	Numerical illustration	Conclusion
	000			
B 1 1	C111			

Particle filter

General solution of the filtering problem

- given by the Bayesian Recursive Relations (BRR).
- closed form solution available for a few special cases only (e.g. linear Gaussian systems).
- usually approximate solution

Solution of the BRR by the particle filter

 based on approximating the filtering pdf by a set of N_k samples (particles) and corresponding weights as

$$r_{N_k}(\mathbf{x}_k|\mathbf{z}^k) = \sum_{i=1}^{N_k} \omega_k^{(i)} \delta(\mathbf{x}_k - \mathbf{x}_k^{(i)}),$$

$$\mathbf{x}_{k}^{(i)}$$
 - samples, $\omega_{k}^{(i)}$ - normalized weights,

 δ - the Dirac function ($\delta(\mathbf{x}) = 0$ for $\mathbf{x} \neq 0, \int \delta(\mathbf{x}) \mathrm{d}\mathbf{x} = 1$).

Ondřej Straka and Miroslav Šimandl

University of West Bohemia, Czech Republic

Ondřei Straka and Miroslav Šimandl

University of West Bohemia, Czech Republic

Introduction	Particle filter	Sample size adaptation	Numerical illustration	Conclusion
		0000000		

Sample size specification

Only a few papers address sample size

- Non-adaptive sample size specification
 - constant sample size, i.e. $N_k = N$
 - calculating *N* in advance according to a criterion evaluating estimate quality
 - no increase of computational costs of the actual algorithm

Introduction	Particle filter	Sample size adaptation ●●●●●●●●	Numerical illustration	Conclusion
Adaptive s	sample size	e specification		

Adaptive techniques for sample size specification

- always increase computational costs
- empirical or criteria respecting point estimate quality:

Koller, Fratkina – Using learning for approximation in stochastic processes. Proc. of 15th Int. Conf. on Machine Learning, 1998.
Fox – KLD sampling: Adaptive particle filter for mobile robot localization. Advances in Neural Information Processing Systems, 2001.
Soto – Self adaptive particle filter International Joint Conference on Artificial Intelligence Systems,2005
Straka, Šimandl – Adaptive particle filter based on fixed efficient sample size Proceedings of the 14th IFAC symposium on System Identification, 2006
Lanz O. – An information theoretic rule for sample size adaptation in particle filtering 14th International Conference on Image Analysis and Processing,2007

Introduction	Particle filter	Sample size adaptation	Numerical illustration	Conclusion
		a second state of the self of	and Plan	

Idea:

to keep **Kullback-Leibler (KL) distance** between empirical pdf r_N and true pdf *p* fixed and to adapt sample size accordingly

$$D(r_N, p) \stackrel{\triangle}{=} \int r_N \log \frac{r_N}{p} d\mathbf{x} = \underbrace{\int r_N \log \frac{1}{p} d\mathbf{x}}_{\mathrm{K}(r_N, p)} - \underbrace{\int r_N \log \frac{1}{r_N} d\mathbf{x}}_{\mathrm{H}(r_N)}$$

- K(r_N, p) inaccuracy measuring actual discrepancy between r_N and p
- $H(r_N)$ Shannon differential entropy (SDE), further dropped as $H(r_N) = -\infty$

From KL distance to difference between inaccuracy and SDE K(p)

- Instead of KL distance, inaccuracy will be further considered
- the limiting value of inaccuracy $K(r_N, p)$ is not zero
- it can be shown that

$$\lim_{N\to\infty} \mathrm{K}(r_N,p) = \mathrm{K}(p,p) = \mathrm{H}(p)$$

therefore the idea of monitoring the KL distance between r_N and p can be converted to monitoring the distance between inaccuracy K(r_N, p) and SDE H(p) as

$$\lim_{N\to\infty} \mathrm{K}(r_N,p) - \mathrm{H}(p) = 0$$

Ś

Ondřej Straka and Miroslav Šimandl

University of West Bohemia, Czech Republic

The difference between inaccuracy and SDE

$$\mathrm{K}(r_N, p) - \mathrm{H}(p) = \frac{\frac{1}{N} \sum_{i=1}^{N} w(\mathbf{x}^{(i)}) \left(\log \frac{1}{p(\mathbf{x}^{(i)})} - \mathrm{H}(p) \right)}{\frac{1}{N} \sum_{j=1}^{N} w(\mathbf{x}^{(j)})} = \frac{\overline{\mathbf{Y}}}{\overline{\mathbf{W}}} = \mathbf{R}$$

According to Central Limit Theorem

$$p(\overline{Y}) \xrightarrow[N \to \infty]{} \mathcal{N}\{\overline{Y} : \mu_{\overline{Y}}, \sigma_{\overline{Y}}^2\} \quad p(\overline{W}) \xrightarrow[N \to \infty]{} \mathcal{N}\{\overline{W} : \mu_{\overline{W}}, \sigma_{\overline{W}}^2\}$$

- a quantile of R as a function of N can not be found directly
- nevertheless the Geary-Hinkley transformation to normality can be applied

Ondřej Straka and Miroslav Šimandl

University of West Bohemia, Czech Republic

Geary-Hinkley transformation to normality

$$T = \frac{\mu_{\overline{W}} R - \mu_{\overline{Y}}}{\sqrt{\sigma_{\overline{W}}^2 R^2 - 2\text{cov}(\overline{Y}, \overline{W})R + \sigma_{\overline{Y}}^2}}$$

T has approximately standard normal distribution (under a certain condition)

$$\begin{split} \mu_{\overline{Y}} &= 0, \qquad \mu_{\overline{W}} = \mathsf{E}_{\pi}(W) \qquad \sigma_{\overline{W}}^{2} = \frac{1}{N} \left[\mathsf{E}_{\pi}(W^{2}) - \mathsf{E}_{\pi}^{2}(W) \right] \\ \sigma_{\overline{Y}}^{2} &= \frac{1}{N} \left[\mathsf{E}_{\pi}(W^{2}L^{2}) - 2\mathsf{E}_{\pi}(W^{2}L) \frac{\mathsf{E}_{\pi}(WL)}{\mathsf{E}_{\pi}(W)} + \mathsf{E}_{\pi}(W^{2}) \frac{\mathsf{E}_{\pi}^{2}(WL)}{\mathsf{E}_{\pi}^{2}(W)} \right] \\ \mathsf{cov}(\overline{Y}, \overline{W}) &= \frac{1}{N} \left[\mathsf{E}_{\pi}(W^{2}L) - \mathsf{E}_{\pi}(W^{2}) \frac{\mathsf{E}_{\pi}(WL)}{\mathsf{E}_{\pi}(W)} \right], \end{split}$$

with
$$W = w(\mathbf{x})$$
, $L = \log(\frac{1}{p(\mathbf{x})})$ and $Y = W(L - H(p))$

Introduction	Particle filter	Sample size adaptation	Numerical illustration	Conclusi
		00000000		

The transformation holds for quantiles \Longrightarrow

$$N = t_{1-\delta/2}^2 \frac{\sigma_W^2 r_{1-\delta/2}^2 - 2\text{cov}(Y, W) r_{1-\delta/2} + \sigma_Y^2}{(\mu_W r_{1-\delta/2} - \mu_Y)^2}$$

with user specified parameters

- confidence coefficient 1 δ
- value of $1 \delta/2$ quantile $r_{1-\delta/2}$
- and t_{1-δ/2} being 1 δ/2 quantile of the standard normal distribution

The relation means that N given by it is necessary for the difference $K(r_N, p) - H(p)$ to be within the interval $(-r_{1-\delta/2}, +r_{1-\delta/2})$ with probability $1 - \delta$.

Ondřej Straka and Miroslav Šimandl

University of West Bohemia, Czech Republic

Computational aspects

- The second moments $E_{\pi}(W)$, $E_{\pi}(W^2)$, $E_{\pi}(WL)$, $E_{\pi}(W^2L)$, $E_{\pi}(W^2L^2)$ are computed using Monte Carlo method
 - N_{MC} samples are firstly generated from π
 - 2 the second moments are enumerated
 - 3 the sample size N_k is calculated
 - $N_k N_{MC}$ remaining samples are drawn from π
- information measure adaptive PF (IM-APF)
- if the condition for Geary-Hinkley transformation (coefficient of variation of the denominator \overline{W} is less than 0.39) is not fulfilled, Chebychev inequality must be used (providing loose bound for sample size)

$$N = \frac{1}{\varepsilon^2 \delta} \operatorname{var}(\mathrm{K}(r_N, p) - \mathrm{H}(p))$$

Introduction O	Particle filter	Sample size adaptation	Numerical illustration ●○○	Conclusion
	Adaptive p	particle filter v	with fixed empir	rical
density au	ality			

System

$$\begin{aligned} x_{k+1} &= \varphi_1 x_k + 1 + \sin(\omega \pi k) + e_k \quad p(e_k) = \mathcal{G}\{e_k, 3, 2\} \\ z_k &= \varphi_2 x_k^2 + v_k \quad p(v_k) = \mathcal{N}\{v_k : 0, 1\} \\ p(x_0) &= \mathcal{N}\{x_0 : 0, 12\} \\ \varphi_1 &= 0.5, \, \varphi_2 = 0.2, \, \omega = 0.04. \end{aligned}$$

Particle filter

- prior importance function
- *k* = 0, 1, ... 29, 1000 MC simulations
- adaptive PF: $1 \delta/2 = 0.99$ and $r_{1-\delta/2} = 1$
- unadapted PF: $N = N_{AV}$, $N = 2N_{AV}$

black - $r_{1-\delta/2}$

Ondřej Straka and Miroslav Šimandl

University of West Bohemia, Czech Republic

Comparison of point estimates quality

	IM-APF	PF, $N = N_{AV}$	PF, $N = 2 \cdot N_{AV}$
MSE	0.555	0.748	0.588
var(SE)	31.868	131.795	86.854
M	ISE - ave	rage mean squared	error estimate

Ondřej Straka and Miroslav Šimandl

University of West Bohemia, Czech Republic

Introduction	Particle filter	Sample size adaptation	Numerical illustration	Conclusion
Conclusion				

- A sample size adaptation technique was proposed.
- The adaptation is done with respect to empirical pdf quality.
- The difference between inaccuracy K(r_N, p) and Shannon differential entropy H(p) = K(p, p) is kept within a user-specified interval r with user-specified probability 1 δ/2.
- Enumeration of the adapted sample size introduces little extra computational overheads as the samples generated for computing *N* are reused for computing the empirical pdf.

