
A software framework and tool for nonlinear state estimation
Ondřej Straka, Miroslav Flı́dr, Jindřich Dunı́k and Miroslav Šimandl

Department of Cybernetics & Research Centre Data - Algorithms - Decision making
Faculty of Applied Sciences, University of West Bohemia, Czech Republic

Main goal of the Nonlinear Estimation Framework (NEF)

Provide a software framework designed for nonlinear state
estimation of discrete time stochastic dynamic systems.

Tasks supported by NEF
í description and simulation of a plant/model,
í estimation of the state of the model,
í providing estimates in terms of probability density
functions.

Nonlinear Estimation Framework features

í highly modular and extensible
Figure: NEF components and their relation

í designed with support for natural description of the problem in mind
ã enables both the structural and probabilistic description of a system
ã supports specification of time-varying systems

í fast and easy estimation experiment setup
í facilitates implementation of filtering, prediction and smoothing tasks
í implements many of the popular nonlinear state estimators

Local methods

Estimator
Num. stable

version
(Extended) Kalman filter X (UD)
Unscented Kalman filter X
Divided difference filter 1st order X
Divided difference filter 2nd order -
Iteration filter (with any other local filter) -

Global methods
Estimator Note

Particle filter

sampling densities:
prior, optimal, EKF,
auxiliary (point and
functional)

Gaussian sum filter
can utilize most of
the local filters

í NEF is available upon request for free for noncommercial use

Description of the NEF components

A function of state, input, noise and time is a fundamental element

Functions in structural description
xk+1 = f (xk, uk,wk, k)

zk = h(xk, uk, vk, k)

Functions in probabilistic description
p(xk+1|xk) = N {xk+1 : µx(xk, uk, k), Q(xk, uk, k)}

p(zk|xk) = N {zk : µz(xk, uk, k), R(xk, uk, k)}

Provided classes for description of multivariate functions
nefHandleFunction general function described by MATLAB handle function
nefLinFunction linear function
nefConstFunction constant function

nefHandleFunction : the most useful and common way of describing the functions
Ê create regular or handle function in MATLAB
mFun = @(x,u,v,t) atan(x(3)/x(1));

Ë create nefHandleFunction instance with appropriate parameters
fun = nefHandleFunction(mFun,[4 0 0 0]);

Both descriptions require ways to describe random variables
What does NEF offer for random variables description?

í classes describing many multivariate and univariate probability density functions
í natural way of the creation of random variable

Description of uniform random variable
p(a) = U(−2, 4)

a=nefUniformRV(-2,4);

Description of Gaussian transition pdf
p(xk+1|xk) = N {xk+1 : Fxk+Guk, Q}

xMean=nefLinFunction(F,G,[]);
px=nefGaussianRV(xMean,Q);

Plant/model can be described in two ways
Structural description

nefEqSystem(f,h,pw,pv,px0)

f . . . state transition function
h . . . measurement function
pw . . . state noise pdf
pv . . . measurement noise pdf
px0 . . . prior state pdf

Probabilistic description
nefPDFSystem(px,pz,px0)

px . . . transition pdf
pz . . . measurement pdf
px0 . . . prior state pdf

The estimation experiment can be completed in two simple steps
Estimation experiment execution
Ê create an instance of estimator class with

appropriate constructor parameters
Ë execute the estimation task

a) automatically using estimate method
b) calling methods timeUpdate,
measurementUpdate and
smoothUpdate in the right order

Simple estimation experiment example

Ê create instance of UKF filter
filter = nefUKF(model);

Ë process data and provide p(xk|zk)
pdfs = estimate(filter,z,[]);

Estimation experiment design for a structurally described system

Let the state of the following system be estimated

xk+1 =

(
x1,k+1
x2,k+1

)
=

(
x2,k·x1,k

x2,k

)
+ wk,

zk = (1, 0) xk + vk,

where xk denotes the state to be estimated and zk denotes the measurement. The
stochastic quantities wk and vk are described by the following pdf’s

p(wk) = N

{
wk;

(
0
0

)
,

(
0.5 0
0 0.5

)}
,

p(vk) = N {vk; 0, 0.01} ,

and the pdf of the initial state x0 is

p(x0) = N

{
x0;

(
10
−0.85

)
,

(
0.1 0
0 0.1

)}
.

%% transition function definition
fFun=@(x,u,w,k)[x(1)*x(2)+w(1);x(2)+w(2)];
f=nefHandleFunction(fFun,[2 0 2 0]);

%% measurement function definition
H=[1 0];
h=nefLinFunction(H,[],1);

%% description of random variables
pw=nefGaussianRV([0 0]',eye(2)*0.5);
pv=nefGaussianRV(0,0.01);
px0=nefGaussianRV([10;-0.85],1e-1*eye(2));

%% model definition and simulation
model=nefEqSystem(f,h,pw,pv,px0);
nSteps=20;
[z,x]=simulate(model,nSteps,[]);

%% estimator creation and use
UKF = nefUKF(model,'scalingParameter',0);
[estimates] = estimate(UKF,z,[]);

Figure: All components necessary for specification of
the estimation experiment

Estimation experiment design for a probabilistically described system

Let the system dynamics be described by the following transitional pdf

p(xk+1|xk) = N

xk+1;


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 xk, 0.0001I4

 ,

where I4 is the 4-by-4 identity matrix. The measurement of the model is the
bearing given by tan−1(

x3,k
x1,k

) and the corresponding measurement pdf is given as

p(zk|xk) = N

{
zk; tan−1(

x3,k

x1,k
), 0.0001

}
.

%% transition pdf definition
F = [1 1 0 0;0 1 0 0 ;0 0 1 1 ;0 0 0 1];
xMean = nefLinFunction(F,[],[]);
xVariance = 0.0001*eye(4);
px = nefGaussianRV(xMean,xVariance);

%% measurement pdf definition
mFun = @(x,u,v,t) atan(x(3)/x(1));
zMean = nefHandleFunction(mFun,[4 0 0 0]);
zVariance = 0.0001;
pz = nefGaussianRV(zMean,zVariance);

%% prior state pdf definition
px0 = nefGaussianRV(...

[-0.05 0.001 2 -0.055]',0.01*eye(4));

%% model definition and simulation
model = nefPDFSystem(px,pz,px0);
nSteps=20;
[z,x] = simulate(model,nSteps,[]);

%% estimator creation and use
PF = nefPF(model,...

'samplingDensity','pointAuxiliary');
[estimates] = estimate(PF,z,[]);

Figure: All components necessary for specification of the
estimation experiment

Implementation of user defined filters

For implementation of a new estimator it is sufficient to specify the essen-
tial algorithm for evaluation of filtering, prediction and smoothing pdf’s only.

The NEF handles the data storage and propagation.

Three steps to new estimator implementation

Ê create a child class the nefEstimator class
Ë implement the methods representing your algo-

rithm (i.e. measurementUpdate,
timeUpdate and smoothUpdate)

Ì implement new class constructor coping with
optional parameters if necessary

Figure: Internal execution logic of estimate
method of the nefEstimator class

Future plans

í implement additional estimation methods
í add support for fixed interval and fixed lag smoothing
í add support for multi-model problems
í provide support for advanced results visualisations (with camera ready output)
í provide GUI for user friendly preparation of complex estimation experiment setups

http://nft.kky.zcu.cz/ nft-developers@control.zcu.cz

http://nft.kky.zcu.cz/

