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Abstract

The paper introduces a median estimator of the logistic regression parameters. It is
defined as the classical L1-estimator applied to continuous data Z1, ..., Zn obtained by
a statistical smoothing of the original binary logistic regression observations Y1, ..., Yn.
Consistency and asymptotic normality of this estimator are proved. A method called
enhancement is introduced which in some cases increases the efficiency of this estimator.
Sensitivity to contaminations and leverage points is studied by simulations and compared
with the sensitivity of some robust estimators previously introduced to the logistic regres-
sion. The new estimator appears to be more robust for larger sample sizes and higher
levels of contamination.
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1 Introduction and basic concepts

In this paper we study estimation of Euclidean parameters β0 ∈ Rd in the logistic regres-
sion based on independent observations Y1 ∼ Be(π1), ..., Yn ∼ Be(πn) where the Bernoulli
parameters πi = Pr(Yi = 1) = EYi depend on β0 and regressors x1, ..., xn from Rd by the
formula

πi = πi(β0) = π(xT
i β0). (1.1)

Here and elsewhere in the paper, xT β =
∑d

j=1 xjβj denotes the scalar product of x

= (x1, ..., xd)
T and β = (β1, ..., βd)

T and

π (t) =
et

1 + et
(1.2)
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is the standard logistic function. The MLE βn = βn (Y1, ..., Yn) of β0 minimizes the
deviances (negative scores)

Dn(β) =
n∑

i=1

di (β)

of the sample Y n = (Y1, ..., Yn) where

di (β) = − ln
[
πi (β)Yi (1− πi (β))1−Yi

]

= −Yi ln πi (β)− (1− Yi) ln (1− πi (β))
(1.3)

are the deviances (negative scores) of individual observations Yi. Thus

βn = arg minDn(β) = arg min
n∑

i=1

di (β) . (1.4)

Notice that the expected deviances are of the form

EDn(β) =
n∑

i=1

Edi (β) =
n∑

i=1

[I (πi(β0) ‖ πi(β)) + H(πi(β0))] (1.5)

where

I (p0 ‖ p) = p0 ln
p0

p
+ (1− p0) ln

1− p0

1− p

is the nonnegative information divergence of the Bernoulli models Be (p0) and Be (p)
which reduces to zero iff p0 = p and

H (p0) = −p0 ln p0 − (1− p0) ln(1− p0)

is the entropy of the model Be (p0) which does not depend on p. Therefore β0 is the
unique arg min EDn(β) unless there is β 6= β0 with the property

πi (β) = πi (β0)
(
i.e. xT

i (β − β0) = 0
)

for all 1 ≤ i ≤ n.

This leads to the consistency of MLE unless all regressors x1,x2, ....are on a hyperplane
in Rd (cf. Andersen (1990), Agresti (2002), Pardo et al. (2006) and references therein).

However, this optimistic picture dramatically changes as soon as the true models
Be (πi) for πi = π

(
xT

i β0

)
are positively ε-contaminated by some alternative Bernoulli

models Be (pi), e.g. by Be (1− πi) . Then the true models are

Be (πi + ε (1− 2πi)) = (1− ε) Be (πi) + εBe (1− πi) (1.6)

for some 0 < ε < 1 which differ from Be (πi) unless πi = 1/2. Hence β0 remains to be the
unique arg min EDn(β) for all sufficiently large n only in the trivial case

π
(
xT

i β0

)
= 1/2

(
i.e. xT

i β0 = 0
)

for all i ≥ 1. (1.7)

In the remaining cases even small contaminations ε > 0 may lead to large expected
deviances di (β0) for some i ≥ 1, thus pushing the MLE’s βn = arg minDn(β) far away
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from the true values β0. Indeed, the expected deviances di (β0) are in the contaminated
models (1.6) given by the formula

Edi (β0) = I (πi + ε (1− 2πi) ‖ πi) + H(πi + ε (1− 2πi)) (cf. (1.5)).

Hence for small πi (in symbols πi ≈ 0) we get 1 − πi ≈ 1 and πi + ε (1− 2πi) ≈ ε. This
means that for all n ≥ i

EDn(β0) ≥Edi (β0) ≈ ε ln
ε

πi

+ (1− ε) ln (1− ε) + H(ε)

where the right-hand term tends to infinity for πi → 0. At the same time β1 = 0 satisfies
xT

i β1 = 0 and therefore π
(
xT

i β1

)
= 1/2 (cf. (1.7)) so that for β0 6= 0

EDn(β1) = 0 < EDn(β0).

This means that, as stated above, the MLE βn will be with a great probability far away
from the true parameter β0.

In order to restrict the undesired influence of large deviances resulting from contami-
nations of logistic regression models Be (πi) = Be

(
π

(
xT

i β0

))
, previous authors replaced

the deviances di (β) in the definition (1.4) by appropriate functions % (di (β)) of deviances,
or even by more general expressions φ

(
Yi, π

(
xT

i β
))

. This led to M -estimators βn of the
type

βn = arg min
n∑

i=1

% (di (β)) (1.8)

and

βn = arg min
n∑

i=1

φ
(
Yi, π

(
xT

i β
))

(1.9)

for % : (0,∞) → R and φ : (0,∞)× (0, 1) → R, or to the related M -estimators βn solving
for suitable function ψ : R2d+1 → Rd the equations

n∑
i=1

ψ (Yi,xi,β) = 0. (1.10)

The robust estimator β(0)
n defined by (1.8) for a special function % (t) increasing with

the rate
√

t as t → ∞ was proposed by Pregibon (1982). Morgenthaler (1992) proposed
the robust estimator β(1)

n defined by (1.9) for the function

φ
(
Y, π

(
xT β

))
=

∣∣Y − π
(
xT β

)∣∣
√

π (xT β) (1− π (xT β))
.

In order to improve asymptotic properties he redefined β(1)
n as the solution of (1.10) for

the function

ψ (Y, x,β) =
√

π (xT β) (1− π (xT β))
(
Y − π

(
xT β

))
x. (1.11)

This estimator will be called Morg-estimator in the sequel.
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Bianco and Yohai (1996) improved the asymptotic properties and also the robustness
of the Pregibon’s β(0)

n by introducing the class of M -estimators defined as minimizers
(1.9) for

φ
(
Yi, π

(
xT

i β
))

= % (di (β)) + %0

(
π

(
xT

i β
))

(1.12)

where % (t) is bounded and differentiable on (0,∞) with a derivative %′ (t) and the com-
pensator function %0 is of the form

%0 (p) = %1 (p) + %1 (1− p) (1.13)

for %1 depending on % by the formula

%1 (p) =

p∫

0

%′ (− ln t) dt, p ∈ (0, 1) . (1.14)

These authors found pleasing statistical properties of the particular estimator fr6m their
family defined by

% (0) = 0 and %′ (t) = (1− t) I (0 < t < 1) . (1.15)

This M -estimator is denoted as β(2)
n and called briefly BY-estimator in the sequel. Croux

and Haesbroeck (2003) found that even more pleasing statistical properties are obtained
when the BY-estimator from (1.15) is replaced by the alternative estimator from the
general Bianco-Yohai class defined by

% (0) = 0 and %′ (t) = e−
√

1/2I (0 < t < 1/2) + e−
√

tI (t ≥ 1/2) . (1.16)

This particular M -estimator is denoted as β(3)
n and called CH-estimator in the sequel.

Extensions of the Morgenthaler-type M -estimators defined by equations (1.10) were
studied later by several authors, e.g. Kordzakhia et al. (2001), Adimiri and Ventura
(2001), Rousseeuw and Christmann (2003), Gervini (2005) and others cited there.

In this paper we propose a new robust M -estimator of the logistic regression parameter
β0 ∈ Rd obtained by application of the classical robust L1-method (cf. Hampel et al.
(1986), Jurečková and Sen (1996) or Zwanzig (1997)) to the continuous data

Zi = Yi + Ui, 1 ≤ i ≤ n (1.17)

obtained by adding mutually and on Yi independent U(0, 1)-distributed (i.e. uniformly
on (0, 1) distributed) random variables Ui to the mutually independent above introduced
observations

Yi ∼ Be
(
π

(
xT

i β0

))
. (1.18)

In other words, we define the estimator

β̂n = arg min
β

n∑
i=1

∣∣Zi −m
(
π

(
xT

i β
))∣∣ (1.19)

for Zi given by (1.17), (1.18) and for the median function

m (p) = F−1
p (1/2) = inf {z ∈ R : Fp (z) ≥ 1/2}
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corresponding to the class of distribution functions Fp of the random variables

Z = Be (p) + U(0, 1)

when the parameter p varies in the closed interval [0, 1]. Obviously, for each p ∈ [0, 1] and
z ∈ R

Fp (z) = (1− p) zI (0 < z < 1) + (1− 2p + pz)) I (1 < z ≤ 2) + I (z > 2) (1.20)

and the median function has the explicit form

m(p) = 1 +
p− 1/2

p ∨ (1− p)
, 0 ≤ p ≤ 1. (1.21)

Here and in the rest of the paper, I (·) denotes the indicator function,

a ∨ b = max {a, b} and a ∧ b = min {a, b} .

The graphs of functions Fp (z) and m(p) are presented in Figures 1.1 and 1.2. Figure
1.2 displays also the inverse median function

m−1(z) =
z − 1/2

2− z
I(1/2 ≤ z ≤ 1) +

1

2(2− z)
I(1 < z ≤ 3/2) (1.22)

used in the sequel.

0 1 2 3

p

1−p

1

z

Figure 1.1: Fp(z) full line, F1−p(z) dashed line.

Definition 1.1 The operation (1.17) is called a statistical smoothing of the discrete
observations Yi.

Definition 1.2 The estimator β̂n defined by (1.17)-(1.19) is a median estimator of logistic
regression parameters β0 called briefly Med-estimator in the sequel.

Remark 1.1 Median function m(p) defined by the continuous random variables Z =
Be (p) + U(0, 1) is strictly increasing in p ∈ [0, 1]. Since the logistic function is strictly
increasing too, the argument m

(
π

(
xT β

))
in (1.19) detects every change of the product

xT β. Contrary to this, the median function m̃(p) defined in a similar manner by the
discrete random variables Y = Be(p) themselves is piecewise constant in p ∈ (0, 1) so
that m̃

(
π

(
xT β

))
is insensitive to small variations of the product xT β. Therefore the
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Figure 1.2: Median function m(p) and its inverse m−1(z).

robust L1-estimation cannot be applied directly to the logistic regression data Yi, i.e., the
estimator

β̃n = arg min
β

n∑
i=1

∣∣Yi − m̃
(
π

(
xT

i β
))∣∣

is not of a too much practical interest.

Remark 1.2 The operation of statistical smoothing Zi = T (Yi) given by (1.17) is sta-
tistically sufficient because the image Zi allows complete recovery of the original Yi by
applying the integer-part operation [·] to Zi. It is equivalent to observation of discrete
data through a semicontinuous channel of information theory. Such an observation pro-
cedure goes in the opposite direction than the statistical quantization frequently applied
to continuous data. The quantization is usually accompanied with the loss of information
so that it is not statistically sufficient.

Remark 1.3 The statistical smoothing (1.17) can be applied to integer valued observa-
tions Yi also in others discrete statistical models. This opens much wider applicability
of the methods developed for continuous models in the discrete statistics than is the one
particular situation studied in this paper.

In the sections that follow we establish some desirable statistical properties of the
Med-estimators such as the consistency and asymptotic normality. In simple situations
we compare asymptotic variances of these estimators with the asymptotic variances of
the above mentioned selected classical estimators. We verify the robustness of our Med-
estimators by demonstrating their low sensitivity to high leverage outliers and also by
demonstrating that they outperform the above mentioned classical robust estimators in
certain special situations (e.g. heavy contaminations and large sample sizes). Our con-
clusions are based partly on simulations in the models used in the previous literature for
mutual comparison of various estimators in logistic regression.
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2 Asymptotic theory

A large class of statistical models assumes independent real valued observations Z1, ..., Zn

of the form
Zi ∼ Fu(xT

i β0) (z) , 1 ≤ i ≤ n. (2.1)

Similarly as above, here xi ∈ Rd are vectors of explanatory variables (regressors), β0 ∈ Rd

is a vector of true parameters and xT
i β the scalar product. Further, u : R→ Θ is a smooth

mapping and F = {Fθ : θ ∈ Θ} a family of distribution functions on R with an interval
parameter space Θ ⊆ R. The basic statistical problem related to these models is to
find mappings β̂n = β̂n (Z1, ..., Zn) from Rn into Rd which can be used to estimate the
unknown parameters β0 on the basis of observations (2.1).

Various desirable asymptotic or non-asymptotic properties are usually required from
estimators β̂n.Such properties are often found in the class of so-called least absolute devi-
ation estimators (briefly L1−estimators) defined by

β̂n = arg min
β

n∑
i=1

∣∣Zi −m
(
u

(
xT

i β
))∣∣ (2.2)

for a given function m : Θ → R. From the extensive literature related to these estimators
one can mention e.g. Koenker and Bassett (1978), Richardson and Bhattacharyya (1987),
Yohai (1987), Pollard (1991), Morgenthaler (1992), Chen, Zhao and Wu (1993), Jurečková
and Procházka (1994), Knight (1998), Arcones (2001), Liese and Vajda (1999, 2003, 2004)
and Maronna et al. (2006).

In this section we study the asymptotics of the median estimator β̂n from (1.19)
which estimates the true parameter β0 ∈ Rd of the general logistic regression using the
statistically smoothed responses

Zi = Yi + Ui ∼ Fπ(xT
i β0) (z) (cf. (1.17))

to the regressors xi where π (t) and Fp (z) are given by (1.2) and (1.20). We see that our

data Zi as well as the estimator β̂n are special cases of (2.1) and (2.2) for π (t) and Fp (z)
given by (1.2) and (1.20) and for m(p) given by (1.21).

Our results are based on what Liese and Vajda (1999, 2003, 2004) proved concerning
the general median estimators (2.2) of parameters β0 in the general statistical models
(2.1). We shall study and adapt to the present estimators (1.19) the following conditions
(c1) - (c8) for consistency and asymptotic normality established by these authors.

(c1) The regressors x1, x2, . . . are from a compact set X ⊂ Rd and the probability
measures

Qn =
1

n

n∑
i=1

δxi
(2.3)

tend weakly for n →∞ to a probability measure Q on Borel subsets of X .
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Remark 2.1 If the regressors x1, x2, ..., xn are independently generated by a probability
measure Q on the Borel subsets of a compact set X ⊂ Rd then (c1) holds almost surely for
these X and Q. For example, if the dimension d = 1 then, by the Glivenko theorem, the
empirical probability measure (2.3) tends almost surely to Q in the Kolmogorov distance.
But the convergence in this distance implies the weak convergence required by (c1).

(c2) The smallest eigenvalue of the matrix

Σ =

∫

X

xxT dQ (x) (2.4)

is positive. Hence for every β ∈Rd different from β0

Q
(
x ∈X : xT (β − β0) 6= 0

)
> 0. (2.5)

The following conditions (c3) - (c5) obviously hold for the distribution functions
Fp(z) under consideration and their densities

fp (z) = (1− p) I (0 < z ≤ 1) + pI (1 < z < 2) , z ∈ R. (2.6)

(c3) Distributions functions Fp (z) are continuous in both arguments p ∈ (0, 1) and
z ∈ (0,∞) . Moreover, for each p ∈ (0, 1)

+∞∫

−∞

|z| fp (z) dz =
1

2
+ p < ∞. (2.7)

(c4) Distributions functions Fp, p ∈ (0, 1) are increasing on interval [0, 2] ⊆ R in the
strict sense

Fπ (z1) < Fπ (z2) for z1 < z2 from [0, 2] (2.8)

and constant on the complement R−[0, 2].

(c5) Distributions functions Fp, p ∈ (0, 1) are stochastically ordered in the sense that for
every 0 < p1 < p2 < 1 and z ∈ R it holds Fp1 (z) ≥ Fp2 (z) where

Fp1 (z) > Fp2 (z) if z ∈ [0, 2]. (2.9)

The present conditions (c1) - (c5) imply the assumptions (E1+), (E2), (EM1), (EM2)
and (M1)-(M4) of Theorem 2 and Lemmas 8 and 9 in Liese and Vajda (1999). For a
detailed proof of this assertion we refer to Section 3 of Hobza et al (2005). We shall
prove that in our model hold also the following less evident conditions of consistency and
asymptotic normality.
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(c6) for every 0 < p1 < p2 < 1 there exists a > 0 such that the densities (2.6) and the
median function m (p) satisfy the condition

Λ (a) ≡ inf
|y|≤a

(
inf

p1≤p≤p2

fp (m (p) + y)

)
> 0. (2.10)

(c7) The quantile function m (p) is differentiable on (0, 1) and the derivative m′(p) is
locally Lipschitz in the sense that for every p0 ∈ (0, 1)

|m′ (p)−m′ (p0)| ≤ 2 |p− p0| .

(c8) The densities (2.6) satisfy for every 0 < p1 < p2 < 1 the condition

lim
y→0

sup
p1≤p≤p2

|fp (m (p) + y)− fp (m (p))| = 0. (2.11)

Lemma 2.1 In the present model the conditions (c6) - (c8) hold.

Proof. (I) Condition (2.10) can be verified separately for p1 = 1/2 < p2 < 1 and
0 < p1 < p2 = 1/2. We shall do this for p1 = 1/2 < p2 < 1 as the alternative can be
verified similarly. Let p > 1/2 be arbitrary. By (1.21),

3

2
> m (p) = 1 +

2p− 1

2p
> 1

so that if y 6= 0 with |y| ≤ 1/2 is fixed then

fp (m (p) + y) = fp (m (p)) = p

unless m (p) + y ≤ 1 in which case fp (m (p) + y) = 1− p. Thus

inf
1/2≤p≤p2

fp (m (p) + y) ≥ 1− p

so that (2.10) holds.
(II) The median function (1.21) is on the interval (0, 1) continuously differentiable

with the positive derivative

m′ (p) =
1

2 [p ∨ (1− p)]2
. (2.12)

bounded above by 2. Therefore (c7) holds too.
(III) Similarly as (2.10), the condition (2.11) can be verified separately for p1 = 1/2 <

p2 < 1 and 0 < p1 < p2 = 1/2. We shall do this for p1 = 1/2 < p2 < 1 as the alternative
can be verified similarly. Let y 6= 0 with |y| ≤ 1/2 be arbitrary fixed. Then

inf
1/2≤p≤p2

fp (m (p) + y) ≥ 1− p.
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The absolute difference |fp (m (p) + y)− fp (m (p))| is either zero or p− (1− p) = 2p− 1.
This difference will be maximized if we take maximal p satisfying the inequality m (p)+y ≤
1 for the fixed y under consideration. Since m (p) is increasing in p, this means that

sup
1/2≤p<p2

|fp (m (p) + y)− fp (m (p))| = fp∗ (m (p∗) + y)− fp∗ (m (p∗))

where p∗ solves the equation m (p) + y = 1. Solutions p∗ exist only for y < 0 (i.e. for
−1/2 < y < 0) and then p∗ = 1/ [2 (1− |y|)] . Thus we proved that

sup
1/2≤p<p2

|fp (m (p) + y)− fp (m (p))| ≤ 2p∗ − 1 =
|y|

1− |y|

which implies (2.11) and completes the whole proof.

The median function m (p) of (1.21) is bounded on [0, 1]. By Lemma 8 in Liese and
Vajda (1999), this means that the sufficient condition of Lemma 9 ibid. reduces to (2.5)
assumed in (c2). Hence, by Theorem 2 and Lemmas 8, 9 in Liese and Vajda (1999),

under (c1)-(c5) our Med-estimator β̂n consistently estimates the true β0 ∈ Rd provided
the measure Q of (c1) defines the function

m (β) =

∫

R

∫

X

∣∣y − ϕ
(
xT β

)∣∣ dFπ(xT β) (y) dQ (x) for ϕ(t) = m(π(t)) (2.13)

of variable β ∈ Rd satisfying for every ε > 0 the condition

inf
‖β−β0‖≥ε

m (β) > m (β0) (2.14)

of identifiability of true parameters β0. This important fact will be used in the proof of
the following theorem.

Theorem 2.1 If the regressors of the model under consideration satisfy (c1), (c2) then

the Med-estimator β̂n consistently estimates the model parameters β0.

Proof. By what was said above, (c1)-(c8) hold. It suffices to prove that then (2.14)
holds as well. Put for ϕ of (2.13)

∆ = ∆ (x, β) = ϕ
(
xT β0

)− ϕ
(
xT β

)
(2.15)

and
Z = Y − ϕ

(
xT β0

)
.

Then the density of Z is

gx (z) = fπ(xT β0)
(
z + ϕ

(
xT β0

))
, z ∈ R,

and

m (β)−m (β0) =

∫

X

[
w

(
xT β

)− w
(
xT β0

)]
dQ (x) (2.16)
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for
w

(
xT β

)
= E

∣∣Y − ϕ
(
xT β

)∣∣

= E |Z + ∆ (x,β)| (cf. (2.15)) .

The difference
w

(
xT β

)− w
(
xT β0

)
= E (|Z + ∆ (x,β)| − |Z|) (2.17)

will be estimated by using the generalized Taylor formula

|Z + ∆| − |Z| = D+ |Z|∆ +R (Z, ∆) (2.18)

valid for all real ∆ where

D+ |z| = I (0 ≤ z < ∞)− I (−∞ < z < 0) (2.19)

is the right-hand derivative of the function |z| for z ∈ R andR (z, ∆) = (z + ∆) I(−∆ < z
< 0) is a remainder in the formula (2.18). This follows from the generalized Taylor
expansion of arbitrary convex function established in (2.7) of Liese and Vajda (2003).
Since med(Z) = 0, it holds ED+ |Z| = 0. Therefore we get from (2.17), (2.18)

w
(
xT β

)− w
(
xT β0

)
= ER (Z, ∆)

=
∫

(z + ∆) I (−∆ < z < 0) gx (z) dz

=
∆∫
0

(∆− z) gx (−z) dz

=
∆∫
0

(∆− z) fπ(xT β0)
(
ϕ

(
xT β0

)− z
)
dz.

Since X ⊂ Rd is bounded, the values

p1 = inf
x∈X

π
(
xT β0

)
and p2 = sup

x∈X
π

(
xT β0

)

are bounded away from 0 and 1. Thus, taking into account that ϕ
(
xT β0

)
= m

(
π

(
xT β0

))
,

we see from (c6) that we can find a > 0 such that

inf
|z|≤a

inf
x∈X

fπ(xT β0)
(
ϕ

(
xT β0

)− z
) ≥ Λ (a) > 0.

This implies that if 0 < b < a then for every |∆ (x, β)| > b it holds

w
(
xT β

)− w
(
xT β0

) ≥ b2

2
Λ (a) .

Hence, by (2.16), for every 0 < b < a we get

m (β)−m (β0) ≥
b2

2
Λ (a) Q (Xb,β) (2.20)

for the subset of regressors

Xb,β = { x ∈X : |∆ ( x, β)| ≥ b} .
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By (c2), the smallest eigenvalue λ (Σ) of the matrix (2.4) is positive. Further, for every
τ > 0

λ (Σ) ‖β − β0‖2 ≤ (β − β0)
T Σ (β − β0)

=
∫
X

(
xT (β − β0)

)2
dQ (x)

≤ ‖X‖ . ‖β − β0‖2 Q
(X 0

τ ,β

)
+ τ 2

where ‖X‖ stands for max ‖x‖ on X and X 0
τ ,β =

{
x ∈X :

∣∣xT(β − β0)
∣∣ > τ

}
. From here

we see that for all ε > 0 and all sufficiently small τ > 0

ψ (τ , ε) ≡ inf
‖β−β0‖≥ε

Q
(X 0

τ ,β

)
> 0. (2.21)

It is easy to see that ϕ (t) of (2.13) is strictly increasing on R (for details see p. 11 in
Hobza et al (2005)). Therefore the function

φ (τ) ≡ inf
|t|≤‖X‖.‖β0‖
|s−t|≥τ

|ϕ (s)− ϕ (t)|

is positive in the domain τ > 0 and, obviously,

Xφ(τ),β ⊇ X 0
τ ,β.

Further, ϕ (t) is continuous so that φ (τ) < a for all sufficiently small τ > 0. Consequently
(2.20) implies for any ε > 0

inf
‖β−β0‖≥ε

[m (β)−m (β0)] ≥ φ(τ)2

2
Λ (a) inf

‖β−β0‖≥ε
Q

(Xφ(τ),β

)

≥ φ(τ)2

2
Λ (a) inf

‖β−β0‖≥ε
Q

(X 0
τ ,β

)

= φ(τ)2

2
Λ (a) ψ (τ , ε) .

By (2.21), the last product is positive which proves the desired relation (2.14).

The function ϕ of (2.13) is continuously differentiable with the derivative ϕ′ (t) =
m′(π (t))π′ (t) where π′ (t) = π (t) (1− π (t)). Let us introduce similar notation as in the
proof of Theorem 2.1, namely let for i = 1, 2, ...

∆i (β) = ϕ
(
xT

i β0

)− ϕ
(
xT

i β
)
, β ∈Rd,

Zi = Yi − ϕ
(
xT

i β0

)
,

where
f̃i (z) = fπ(xT

i β0)
(
z + ϕ

(
xT

i β0

))
, z ∈ R,

is the probability density function of Zi. The functions ∆i (β) are continuously differen-
tiable on Rd with gradients

grad (∆i (β)) = −ϕ′
(
xT

i β
)
xi.
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Therefore the linear term Ln (h) considered in (2.3) of Liese and Vajda (2004) is given
here by

Ln (h) = − 1√
n

n∑
i=1

D+ |Zi|ϕ′
(
xT

i β
)
xT

i h, h ∈ Rd,

where D+ |z| denotes the right-hand derivative (2.19). Since E D+ |Zi| = 0, the variance of
Ln (h) is hT Σnh for the matrix given in accordance with (2.5) of Liese and Vajda (2004)
by

Σn =
1

n

n∑
i=1

E
(
D+ |Zi|

)2 (
ϕ′

(
xT

i β
))2

xix
T
i .

But E (D+ |Zi|)2
= 1 so that we can write the matrix Σn in the integral form

Σn =

∫

X

(
ϕ′

(
xT β

))2
xT x dQn (x)

where Qn is the empirical measure from (c1). Since ϕ′
(
xT β

)
is continuous and bounded

on X , it holds

lim
n→∞

Σn = Σ ≡
∫

X

(
ϕ′

(
xT β

))2
xT x dQ (x) (2.22)

where Q is the limit measure from (c1).

The next step is evaluation of the matrices

Qn =
1

n

n∑
i=1

gi (0)∇ϕ
(
xT

i β0

) (∇ϕ
(
xT

i β0

))T

where gi (t) denote derivatives of the functions Gi (t) = ED |Zi + t| of variable t ∈ R
introduced on p. 467 in Liese and Vajda (2003). By the definition of D+ |z| in (2.19), for
πi = π

(
xT

i β0

)
and ϕi = ϕ

(
xT

i β0

)

Gi (t) = EI (Zi + t > 0)− EI (Zi + t ≤ 0)

= EI (Yi > ϕi − t)− EI (Yi ≤ ϕi − t)

= 1− 2Fπi
(ϕi − t) .

Thus gi (t) = 2fπi
(ϕi − t) and

gi (0) = 2fπ(xT
i β0)

(
ϕ

(
xT

i β0

))
.

Therefore the matrices Qn may be represented as the integrals

Qn = 2

∫

X

fπ(xT β0)
(
ϕ

(
xT β0

)) (
ϕ′

(
xT β0

))2
xT x dQn (x) .

Since ϕ′
(
xT

i β0

)
is continuous and bounded on X and, by (c8), the function

fπ(xT β0)
(
ϕ

(
xT β0

))
= fπ(xT β0)

(
m

(
π

(
xT β0

)))

13



is continuous and bounded on X too, it holds

lim
n→∞

Qn = Q ≡ 2

∫

X

fπ(xT β0)
(
ϕ

(
xT β0

)) (
ϕ′

(
xT β0

))2
xT x dQ (x) . (2.23)

Finally, D+ρ (Zi) = D+ |Zi| is in the present situation bounded and∇fi (β0) = grad (∆i (β0))
= −ϕ′

(
xT

i β0

)
xi is bounded uniformly for all possible xi ∈ X . Consequently the Lia-

punov condition (2.6) of Liese and Vajda (2004) holds. Similarly, one can verify that the
conditions (C3), (C4) of Liese and Vajda (2003) as well as (2.39), (2.40) ibid. hold.
Thus, by Lemma 3 in Liese and Vajda (2003), (C5) and (C6) ibid. hold too.

To finalize the evaluation of the matrices Σ and Q given in (2.22),(2.23), take into
account that (2.11) implies in the present situation

ϕ (t) =





3

2
− e−t

2
if t ≥ 0

1

2
+

et

2
if t < 0 .

Therefore

ϕ′ (t) =
e−|t|

2
if t ∈ R.

Further
fπ(t) (ϕ (t)) = π (t) ∨ (1− π (t))

=
1

1 + e−t
∨ 1

1 + et
=

1

1 + e−|t|
=

e|t|

1 + e|t|
.

Consequently,

fπ(t) (ϕ (t)) (ϕ′ (t))2
=

e−|t|

4 (1 + e|t|)

and by (2.22), (2.23)

Σ =
1

4

∫

X

e−2|xT β0|xxT dQ(x) (2.24)

and

Q =
1

2

∫

X

e−|xT β0|
1 + e|xT β0| xxT dQ(x). (2.25)

Thus we can conclude that if (c1), (c2) hold then all assumptions of Theorem 1 in Liese
and Vajda (2004) are satisfied and the following assertion follows from there.

Theorem 2.2 Let the regressors of the model under consideration satisfy (c1), (c2). If

the limit matrix Q in (2.25) is positive definite then the Med-estimator β̂n of the model
parameters β0 is asymptotically normal in the sense that

√
n

(
β̂n − β0

) L−→
n→∞

N
(
0, Q−1ΣQ−1

)
(2.26)

for Σ given by (2.24).
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Proof. See above.

Example 2.1. Most simple is the application of Theorem 2.2. to the univariate logistic
regression

Yi ∼ Be(π(xiβ0)), 1 ≤ i ≤ n (2.27)

with identical regressors x1 = x2 = .... = 1 and β0 ∈ R. In this model the Med-estimator

β̂n ∈ R is defined by

β̂n = arg min
β

n∑
i=1

|Zi −m (π (β))| for Zi = Yi + Ui (cf. (1.17)-(1.19)) (2.28)

Then (c1) and (c2) hold for the Dirac measure Q = δ1 concentrated at the point
x1 = x2 = ... = 1 from the singleton X = {1} ⊂ R. Therefore we get from (2.24) and
(2.25)

Σ =
1

4
e−2|β0|, Q =

e−|β0|

2 (1 + e|β0|)

so that Q−1ΣQ−1 =
[
1 + e|β0|

]2
and according (2.26)

√
n

(
β̂n − β0

) L−→
n→∞

N
(
0,

[
1 + e|β0|

]2
)

. (2.29)

This asymptotic normality can be verified also directly from the central limit theorem
applied to the explicit formula

β̂n = π−1
(
m−1

(
Z(n/2)

))
(2.30)

easily obtained from the definition (2.28). Here Z(n/2) denotes the median of Z1, ..., Zn,
m−1 (z) is the inverse function from (1.22) given also in Figure 1.2 and

π−1 (p) = ln
p

1− p
, 0 < p < 1 (2.31)

is the inverse to the logistic function π (t) of (1.2). To verify (2.29), take first into account
that if p0 = π (β0) is the true Bernoulli parameter then, by p. 490 in Rényi (1970), the
central limit theorem for Z(n/2) takes on the form

√
n

Z(n/2) −m (p0)

1/ [2fp0(m (p0)]

D−→
n→∞

N (0, 1) (2.32)

where fp0(z) is the probability density of Zi given by (2.6) so that

fp0 (m (p0)) = p0 ∨ (1− p0) . (2.33)

We first deduce from here the limit law

√
n (p̂n − p0)

D−→
n→∞

N
(
0, [p0 ∨ (1− p0)]

2) (2.34)
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useful here and also in the next section. The function φ (z) = m−1(z) is continuously
differentiable with

φ′ (z) =
1

m′ (φ (z))
= 2 [φ (z) ∨ (1− φ (z))]2 (cf. (2.12).

Therefore by the Taylor expansion of φ (z) around z0 = m(p0) we get

φ
(
Z(n/2)

)− φ (m(p0)) = φ′ (m(p0))
(
Z(n/2) −m (p0)

)
+ op

(
Z(n/2) −m (p0)

)
= 2 [p0 ∨ (1− p0)]

2 (
Z(n/2) −m (p0)

)
+ op

(
Z(n/2) −m (p0)

)
.

Combining this with (2.32), (2.33) we obtain the desired result (2.34).

Further, by combining the Taylor expansion of π−1 (p) around p0 = π (β0) with (2.34)
and using

d

dp
π−1 (p) = [p (1− p)]−1 (2.35)

we get

√
n

(
β̂n − β0

) D−→
n→∞

N

(
0,

[
p0 ∨ (1− p0)

p0 (1− p0)

]2
)

= N
(
0, [p0 ∧ (1− p0)]

−2) .

Equivalently, √
n

(
β̂n − β0

) D−→
n→∞

N
(
0, [π (β0) ∧ (1− π (β0))]

−2) (2.36)

where

π (β0) ∧ (1− π (β0)) =
1

e−β0 + 1
∧ 1

eβ0 + 1
=

1

e|β0| + 1
.

In other words, the asymptotic normality (2.29) obtained from Theorem 2.2 follows also
directly from the explicit formula (2.30) and from the central limit theorem (2.32).

Notice that [π (β0) ∧ (1− π (β0))]
2 in (2.36) is strictly smaller than the Fisher infor-

mation
J (β0) = π (β0) (1− π (β0))

in the statistical model Be(π (β0)). Thus the Med-estimator β̂n of (2.28) or (2.30) is
not asymptotically efficient. Its subefficiency can to some extent be suppressed by the
enhancing introduced in the next Section 3. In Section 4 we shall see that this subefficiency
is compensated by the positive property of robustness with respect to contaminations of
the model Be(π (β0)).

3 Enhancement

As illustrated on the lines above, application of the L1−estimators (2.2) in discrete sta-
tistical models with observations Yi, 1 ≤ i ≤ n statistically smoothed into the continuous
form (2.1) is usually accompanied by a loss of efficiency achievable in the original discrete
models.

16



An example of L1−estimator which is even simpler than the Med-estimator (2.28),
(2.30) is the median estimator

p̂n = arg min
p

n∑
i=1

|Zi −m (p)| = m−1
(
Z(n/2)

)
(3.1)

of the Bernoulli parameter p0 ∈ (0, 1) based on the smoothed versions Zi = Yi + Ui (cf.
(1.17)) of the original discrete observations Yi ∼ Be(p0). In (3.1), m(p) is the median
function (1.21), m−1(z) is its inverse (1.22) and Z(n/2) is the median of Z1, ..., Zn. As well
known, the Fisher information in the model Be(p0) is J (p0) = 1/ [p0 (1− p0)] and the
MLE

pn =
1

n

n∑
i=1

Yi (3.2)

of p0 is asymptotically efficient in the sense

√
n (pn − p0)

D−→
n→∞

N(0, 1/J (p0)) = N (0, p0 (1− p0)) .

On the other hand, by (2.34) the Med-estimator p̂n is asymptotically normal in the
sense √

n (p̂n − p0)
D→

n→∞
N(0, [p0 ∨ (1− p0)]

2) (3.3)

where
[p0 ∨ (1− p0)]

2 ≥ p0 (1− p0) .

Since this inequality is strict unless p0 = 1/2, the Med-estimator p̂n is asymptotically less
efficient than the MLE pn except the special case p0 = 1/2.

The set of statistically smoothed data Zi = Yi + Ui, 1 ≤ i ≤ n can be expanded by
considering for k > 1 the matrix of data

Zij = Yi + Uij, 1 ≤ i ≤ n, 1 ≤ j ≤ k (3.4)

where Uij are mutually and also on Y1, ..., Yn independent U (0, 1)-distributed random
variables. If a method of processing the data Z1, ..., Zn is statistically optimal in an
appropriate sense, like e.g. the MLE

p̃n (Z1, ..., Zn) = arg max
p

n∏
i=1

fp(Zi)

= arg max
p

n∏
i=1

pYi(1− p)1−Yi

coinciding with the classical Bernoulli MLE pn = pn (Y1, ..., Yn) introduced in (3.2), then
its performance cannot be improved by expanding the sufficient statistic (Z1, ..., Zn). For
example, it is easy to see that the MLE

p̃n (Z11, ..., Znn) = arg max
p

k∏
j=1

n∏
i=1

fp(Zij)
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“enhanced” by utilizing the expanded data set (3.4) coincides with the previous MLE
p̃n (Z1, ..., Zn) ≡ pn. On the other hand, if the method is suboptimal like e.g. the median
estimator p̂n = p̂n (Z1, ..., Zn) introduced in (3.1), then its performance can be improved
by passing to the expanded data set (3.4).

The following theorem motivates this section. It deals with the k-enhanced median
estimator

p̂n∗k = arg min
p

k∑
j=1

n∑
i=1

|Zij −m (p)| = m−1
(
Z(nk/2)

)
(3.5)

of the Bernoulli parameter p0 ∈ (0, 1) where m(p) is the same as in (3.1), Z11, ..., Zkn are
the smoothed observations (3.4) and Z(nk/2) is the median of all these observations. More
precisely, it deals with the variance

σ2 (p̂n∗k) = E (p̂n∗k − p0)
2 (3.6)

of the estimator p̂n∗k and compares it with the variance

σ2 (pn) = E (pn − p0)
2 =

p0 (1− p0)

n
(3.7)

of the classical MLE pn minimizing the variance in the class of all unbiased estimators
(see e. g. Example 31 on p. 322 in Mood et al.(1974)).

Theorem 3.1 The k-enhanced median estimator p̂n∗k is asymptotically optimal in the
sense that for each n ≥ 1

σ2 (p̂n∗k) −→
k→∞

p0(1− p0)

n
(cf (3.7)) . (3.8)

Proof. Let n ≥ 1 be arbitrary fixed and consider for every 0 ≤ r ≤ n the random event

Er =

{
n∑

i=1

Yi = r

}

where Yi ∼ Be(p0) are the observations assumed in (3.4). If Er takes place then k(n− r)
observations (3.4) are of the form Zij = Uij and the remaining kr observations are of
the form Zij = 1 + Uij. Therefore under Er the random data (3.4) are generated by the
distribution function Fr/n(z) defined by (1.20) for p = r/n (cf. also Figure 1.1). Hence by
the Glivenko theorem (p. 100 in Rényi (1970)), the empirical distribution function Gkn

of the data (3.4) satisfies under Er the relation

sup
z

∣∣Gkn(z)− Fr/n(z)
∣∣ a.s.−→

k→∞
0.

Consequently, under Er the median of Gkn(z) tends a.s. to m(r/n),

med Gkn(z)
a.s.−→

k→∞
m (r/n) ,

and the bounded sequence of random variables p̂n∗1, p̂n∗2, ....satisfies the limit relation

p̂n∗k = m−1(med Gkn(z))
a.s.−→

k→∞
r

n
. (3.9)
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The events Er, and hence the relations (3.9) take place with the binomial probabilities(
n
r

)
pr

0 (1− p0)
n−r . From here we deduce for each fixed k ≥ 1 the equality

E (p̂n∗k − p0)
2 =

n∑
r=0

E
(
(p̂n∗k − p0)

2 | Er

) (
n

r

)
pr

0 (1− p0)
n−r

where (3.9) implies for each fixed 0 ≤ r ≤ n

E
(
(p̂n∗k − p0)

2 | Er

) −→
k→∞

( r

n
− p0

)2

. (3.10)

Consequently,

E (p̂n∗k − p0)
2 −→

k→∞

n∑
r=0

( r

n
− p0

)2
(

n

r

)
pr

0 (1− p0)
n−r

where the right-hand side is σ2(pn) = p0(1− p0)/n which completes the proof.

The method of statistical smoothing and the subsequent median estimation originally
introduced for continuous statistical models is studied in Table 3.1, together with the loss
of efficiency and its compensation by means of the enhancement procedure introduced
above. Presented are the mean absolute errors

MAE = MAE (p̃n) =
1

1000

1000∑

l=1

∣∣p̃(l)
n − p0

∣∣ (3.11)

and the standard deviations (roots of the mean squared errors)

STD = STD (p̃n) =

(
1

1000

1000∑

l=1

(
p̃(l)

n − p0

)2

)1/2

(3.12)

obtained from 1000 independent realizations p̃
(l)
n of the estimators

p̃n ∈ {pn, p̂n = p̂n∗1, and p̂n∗k for k > 1} . (3.13)

For sample sizes n ∈ {10, 20, 50, 100} and several true values p0 are printed in bold the
minimal errors MAE and STD achieved by the studied estimators p̃n.

From (3.7) we see that if the true parameters are p0 ∈ {0.1, 0.2, 0.5} then
√

nσ (pn) =√
p0 (1− p0) takes on the values {0.3, 0.4, 0.5} . In it is easy to verify that the values of√
nσ (pn) are well approximated by the products

√
nSTD obtained by simulations. Table

3.1 also clearly indicates that for all fixed 10 ≤ n ≤ 100 the STD’s of the k-enhanced
suboptimal median estimators p̂n∗k tend for increasing k to the STD’s of the optimal
MLE pn as predicted by Theorem 3.1. Finally, this table demonstrates that the level k
of enhancing needed to achieve STD(p̂n∗k) comparable to the optimal STD(pn) decreases
with increasing n and p0. E.g. if p0 = 0.5 and n ≥ 20 then the optimal values STD(pn)
are achieved by STD(p̂n∗k) already for k = 50. If p0 = 0.2 then we need k = 100.

Remark 3.1 Obviously, the modification

E (|p̂n∗k − p0| | Er) −→
k→∞

∣∣∣ r
n
− p0

∣∣∣

19



n = 10 n = 20 n = 50 n = 100

p0 p̃n MAE STD MAE STD MAE STD MAE STD

pn 0.071 0.093 0.052 0.068 0.032 0.041 0.025 0.031

p̂n 0.231 0.344 0.170 0.238 0.101 0.132 0.073 0.092

0.1 p̂n∗5 0.123 0.160 0.091 0.114 0.055 0.070 0.039 0.049

p̂n∗10 0.103 0.129 0.073 0.094 0.047 0.059 0.032 0.040

p̂n∗50 0.084 0.102 0.059 0.074 0.036 0.045 0.026 0.033

p̂n∗100 0.079 0.098 0.055 0.069 0.035 0.043 0.026 0.032

pn 0.097 0.127 0.071 0.090 0.045 0.057 0.032 0.040

p̂n 0.214 0.326 0.153 0.214 0.091 0.119 0.065 0.082

0.2 p̂n∗5 0.133 0.171 0.093 0.118 0.058 0.073 0.039 0.049

p̂n∗10 0.118 0.149 0.082 0.104 0.052 0.066 0.035 0.044

p̂n∗50 0.105 0.132 0.074 0.092 0.047 0.059 0.033 0.041

p̂n∗100 0.104 0.131 0.073 0.090 0.046 0.058 0.032 0.040

pn 0.118 0.153 0.091 0.116 0.056 0.070 0.039 0.050

p̂n 0.169 0.240 0.120 0.168 0.069 0.091 0.045 0.058

0.5 p̂n∗5 0.131 0.177 0.095 0.124 0.058 0.074 0.040 0.051

p̂n∗10 0.123 0.162 0.093 0.119 0.057 0.072 0.040 0.051

p̂n∗50 0.119 0.155 0.090 0.116 0.056 0.070 0.040 0.050

p̂n∗100 0.119 0.155 0.091 0.116 0.056 0.070 0.039 0.050

Table 3.1: Analysis of the proposed smoothing method in the Bernoulli model Be(p0).
Compared are two estimators p̃n, namely the MLE pn and the Med-estimator p̂n together
with its enhanced versions p̂n∗k for selected k > 1. The table presents for given sample
sizes n the errors defined by (3.11)-( 3.12).

of (3.10) holds too. Therefore Theorem 3.1 can be extended in the sense that for each
n ≥ 1 the expected absolute errors

e (p̂n∗k) = E |p̂n∗k − p0|
of the enhanced Med-estimators p̂n∗k tend for k →∞ to the expected error

e (pn) = E |pn − p0| = 1

n

n∑
r=0

|r − np0|
(

n

r

)
pr

0 (1− p0)
n−r

of the MLE pn. This convergence is illustrated in Table 3.1 too. Restrict ourselves
for simplicity to n = 10. We see that then the expected absolute errors e (pn) ∈
{0.070, 0.097, 0.123} of the MLE pn corresponding to the errors p0 ∈ {0.1, 0.2, 0.5}
are well approximated by the bold printed values of MAE(pn) from the column n = 10
obtained by simulations. At the same time the values of MAE(p̂n∗k) from this column
seem to tend for increasing k to the bold printed values of MAE(pn).

Motivated by Theorem 3.1, Remark 3.1 and their experimental verification by the
results presented in Table 3.1, we extend Definition 1.2 as follows.
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Definition 3.1 For every k ≥ 1 we define the k-enhanced median estimator (briefly,

k-Med estimator) β̂n∗k of the parameters of logistic regression β0 by the condition

β̂n∗k = arg min
β

k∑
j=1

n∑
i=1

∣∣Zij −m
(
π

(
xT

i β
))∣∣ (3.14)

where Zij are defined by (3.4) for the same logistic Yi ∼ Be
(
π

(
xT

i β0

))
as considered in

the special case k = 1 in Definition 1.2.

Obviously, if k = 1 then the estimator introduced by Definition 3.1 coincides with the
median estimator of Definition 1.2.

Example 3.1 Let us consider the simple logistic regression model of Example 2.1 with
an unknown parameter β0 ∈ R and the Med-estimator β̂n satisfying (2.29). The MLE in
this example is

βn = π−1 (pn) for pn =
1

n

n∑
i=1

Yi (cf. (3.2)) (3.15)

where π−1 is the inverse function to π (t) of (1.2) and

Yi ∼ Be (p0) for p0 = π (β0) . (3.16)

Combining the Taylor expansion of π−1 (p) around p0 = π (β0) with (3.3) and using (2.35),
we get √

n (βn − β0)
D−→

n→∞
N

(
0, [π (β0) (1− π (β0))]

−1) (cf. (2.36)) (3.17)

where the asymptotic variance

[π (β0) (1− π (β0))]
−1 =

(
e−β0 + 1

) (
eβ0 + 1

)
(3.18)

of the MLE βn is minimal in the class of all unbiased estimators of β0. In particular, it is

for all β0 6= 0 smaller than the asymptotic variance
(
e|β0| + 1

)2
of the Med-estimator β̂n

found in (2.29).

We shall prove that the k -Med estimators β̂n∗k satisfy for every k ≥ 1 the limit law

√
n

(
β̂n∗k − β0

)2 D−→
n→∞

N(0, s2
k(β0)) (3.19)

where s2
k(β0) is an asymptotic variance of β̂n∗k for fixed k and n → ∞, tending for

fixed n and k → ∞ to the minimal asymptotic variance (3.18). Thus in the model of
present example the enhancing enables to bring the asymptotic performance of the Med-
estimator arbitrarily close to the optimal MLE βn. The relation (3.19) as well as the
desired convergence

s2
k(β0) −→

k→∞
[π (β0) (1− π (β0))]

−1 (3.20)

of the variances appearing in (3.19) follow from the fact that, similarly as in (2.34), the
k-Med estimator p̂n∗k considered in Theorem 3.1 satisfies for each k > 1 and p0 = π (β0)
the limit law √

n (p̂n∗k − p0)
D−→

n→∞
N

(
0, σ2

k(p0)
)

(3.21)
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where σ2
k(p0) −→

k→∞
p0 (1− p0) (cf. Theorem 3.1). Indeed, by Definition 3.1 β̂n∗k =

π−1 (p̂n∗k) . Using the Taylor expansion of the function π−1 (p) around p0 and employ-
ing (2.35), we get both the desired convergences (3.19) and (3.20) from (3.21) by putting

s2
k(β0) =

σ2
k(p0)

[p0 (1− p0)]
2 =

σ2
k(π (β0))

[π (β0) (1− π (β0))]
2 .

A systematic general theory of k−enhanced median estimators in the logistic regression
exceeds the scope of the present paper. We restrict ourselves to a simulation study which
in the next section demonstrates that the enhancement improves the efficiency of median
estimators but in some situations deteriorates their robustness.

4 Robustness

The median estimator β̂n of logistic regression parameters β0 ∈ Rd was defined in Section
1.1 by means of the least absolute deviations principle (the L1−method principle) which
is motivated in the classical statistical literature by the robustness of the corresponding
statistical procedures (cf. Hampel et al. (1986) or Jurečková and Sen (1996)). Therefore
we expected that this estimator will be robust and this robustness was in fact our main
motivation for this research. A secondary motivation was to demonstrate that the general
theory of consistency and asymptotic normality of M -estimators developed by Liese and
Vajda (1999, 2003, 2004) is applicable in concrete particular situations.

The primary purpose of this section is verification of the desired robustness of β̂n. The

Med-estimator β̂n is in this respect compared with several robust estimators known from
the previous literature and discussed in Section 1.1, namely with the Morgenthaler’s Morg-
estimator β(1)

n , the Bianco and Yohai’s BY-estimator β(2)
n and the Croux and Haesbroeck’s

the CH-estimator β(3)
n . For the sake of completeness, in our comparisons is included also

the MLE βn. The robustness is compared by means of simulated performances of all these
estimators in the logistic models Be

(
π

(
xT β0

))
ε-contaminated at the levels 0 ≤ ε ≤ 0.3

by the alternative data source Be
(
1− π

(
xT β0

))
, or contaminated at the same levels ε by

the leverage points from logistic models Be
(
π

(
x̃T β0

))
with strongly distorted regressors

x̃ at the place of x. A secondary purpose of this section is to verify the effect of the
enhancing on performance of Med-estimator β̂n.

Our simulations are at first generated by a simple model where the correctness of
simulations can be verified by theoretical means such as the central limit theorem, and
where also the eventual inaccuracies of computational algorithms can be detected and
excluded. As the next step, they are generated by a more realistic model used formerly
by Bianco and Yohai (1996) for verification of the robustness of their BY-estimator β(2)

n .

(I) The first model is Be (π (xβ0)) for a real valued parameter β0 and regres-
sors x achieving at time 1 ≤ i ≤ n mutually independent binary random values xi ∈
X = {−1, 1} with equal probabilities Pr(xi = −1) = Pr(xi = 1) = 1/2. We use
the concrete parameter value β0 = − ln 4 for which p0 = π (β0) = 0.2. For the levels
ε ∈ {0, 0.1, 0.2, 0, 3} and 1 ≤ i ≤ n we consider the contaminated logistic regression
data

Yi ∼ (1− ε)Be (π (xiβ0)) + εBe (1− π (xiβ0)) (4.1)
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i.e. instead of the assumed Bernoulli data Yi ∼ Be (π (xiβ0)) we generate the distorted
Bernoulli data

Yi ∼ Be (xiπ (βε)) for βε = π−1 (π (β0) + ε (1− 2π (β0))) (4.2)

(cf. (1.6) and (1.2)). In this simulation model the above mentioned estimators β(1)
n −

β(3)
n and β̂n take on the univariate forms β(1)

n − β(3)
n and β̂n. Moreover, their formulas

considerably simplify. For derivation of these formulas it is useful to consider the sets

A+
n = {1 ≤ i ≤ n : xi = 1} , A−

n = {1, ..., n} − A+
n (4.3)

and the statistics

Ỹi =

{
Yi if i ∈ A+

n

1− Yi if i ∈ A−
n

. (4.4)

Clearly,
Ỹi ∼ Be (π (βε)) for all 1 ≤ i ≤ n and βε given by (4.2). (4.5)

By (1.10) and (1.11), the Morg-estimatotr β(1)
n solves the equation

∑

i∈A+
n

(Yi − π (β))−
∑

i∈A−n

(Yi − 1 + π (β)) = 0,

i.e. coincides with the MLE βn specified in the model of (4.5) by

βn = π−1 (p̃n) for p̃n =
1

n

n∑
i=1

Ỹi (4.6)

for Ỹi given in (4.5).

As to the BY-estimator β(2)
n , one can deduce from (1.3), (1.9) and (1.12)-(1.14) that

β(2)
n = π−1 (αn) for

αn = arg min
α∈(0.1)

L (pn, α) (4.7)

where
L (pn, α) = p̃nρ (− ln α) + (1− p̃n) ρ (− ln (1− α)) + ρ0 (α)

for p̃n given by (4.6) and the functions ρ, ρ0 appearing in (1.12). It is easy to see that

d

dα
L (p̃n, α) = (α− p̃n)

[
ρ′ (− ln α)

α
+

ρ′ (− ln (1− α))

1− α

]

where the derivative ρ′ (t) is by (1.15) nonnegative for t > 0 and positive for 0 < t < 1.
Therefore αn = p̃n is the unique argmin in (4.7) which means that β(2)

n coincides with the
estimator βn given in (4.6).

The CH-estimator β(3)
n differs from β(2)

n by a somewhat modified function ρ′ (t) and
an argument similar to that given above leads to the conclusion that in the model under
consideration β(3)

n coincides with the estimator βn of (4.6) too.
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Let us now turn attention to our Med-estimator β̂n and its k-enhanced versions β̂n∗k.
By Definition 3.1,

β̂n = π−1 (p̂n) = ln
p̂n

1− p̂n

(4.8)

where

p̂n = arg minp

(
∑

i∈A+
n

|Zi −m(p)|+ ∑
i∈A−n

|Zi −m(1− p)|
)

= arg minp

(
∑

i∈A+
n

|Yi + Ui −m(p)|+ ∑
i∈A−n

|Yi + Ui − 2 + m(p)|
)

.

The second equality holds because from (1.19) we deduce that m(1− p) = 2−m(p). But

|Yi + Ui − 2 + m(p)| =
∣∣∣Ỹi + Ũi −m(p)

∣∣∣

where Ỹi is defined by (4.4) and Ũi = 1 − Ui is the same uniform U (0,1)-variable as Ui.
Therefore

p̂n = arg min
p

(
n∑

i=1

∣∣∣Z̃i −m(p)
∣∣∣
)

= m−1(Z̃(n/2)) (4.9)

for

Z̃i = Ỹi + Ui (cf. (4.5), (1.17)) and Z̃(n/2) = median
(
Z̃1, ..., Z̃n

)
. (4.10)

Similarly,

β̂n∗k = π−1 (p̂n∗k) = ln
p̂n∗k

1− p̂n∗k
(4.11)

where

p̂n∗k = arg min
p

(
k∑

j=1

n∑
i=1

∣∣∣Z̃ij −m(p)
∣∣∣
)

= m−1
(
Z̃nk/2

)
(4.12)

for

Z̃ij = Ỹi + Uij (cf. (4.5)) and Z̃(nk/2) = median
(
Z̃11, ..., Z̃kn

)
, (4.13)

where Uij are independent and uniformly distributed on (0, 1) .

In Table 4.1 are evaluated from 1000 realizations β̃
(1)

n , ..., β̃
(1000)

n the mean absolute
errors

MAE =
1

1000

1000∑

l=1

∣∣∣β̃(l)

n − β0

∣∣∣ , (4.14)

standard deviations (roots of the mean squared errors)

STD =

(
1

1000

1000∑

l=1

(
β̃

(l)

n − β0

)2
)1/2

(4.15)
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n = 50 n = 100 n = 500 n = 1000
ε β̃n MAE STD RR% MAE STD RR% MAE STD RR% MAE STD RR%

βn 0.273 0.350 0 0.195 0.248 0 0.088 0.110 0 0.065 0.081 0

β̂n 0.579 0.854 7 0.436 0.617 0 0.180 0.246 0 0.121 0.153 0
0 β̂n∗5 0.371 0.504 1 0.256 0.338 0 0.114 0.142 0 0.082 0.104 0

β̂n∗10 0.324 0.424 0 0.233 0.297 0 0.102 0.128 0 0.073 0.091 0
β̂n∗50 0.291 0.376 0 0.201 0.256 0 0.091 0.114 0 0.067 0.083 0
βn 0.393 0.463 0 0.358 0.411 0 0.343 0.357 0 0.339 0.346 0

β̂n 0.563 0.708 3 0.448 0.617 0 0.346 0.380 0 0.335 0.354 0
0.1 β̂n∗5 0.432 0.509 0 0.373 0.432 0 0.338 0.357 0 0.338 0.348 0

β̂n∗10 0.417 0.498 0 0.365 0.418 0 0.341 0.357 0 0.337 0.346 0
β̂n∗50 0.399 0.467 0 0.360 0.413 0 0.342 0.357 0 0.339 0.346 0
βn 0.632 0.695 0 0.617 0.654 0 0.631 0.638 0 0.630 0.634 0

β̂n 0.685 0.783 1 0.624 0.685 0 0.623 0.640 0 0.626 0.633 0
0.2 β̂n∗5 0.631 0.702 0 0.615 0.659 0 0.630 0.639 0 0.629 0.634 0

β̂n∗10 0.629 0.700 0 0.616 0.657 0 0.632 0.639 0 0.629 0.633 0
β̂n∗50 0.633 0.696 0 0.619 0.656 0 0.631 0.638 0 0.630 0.634 0
βn 0.890 0.941 0 0.895 0.920 0 0.894 0.899 0 0.896 0.899 0

β̂n 0.874 0.950 0 0.879 0.920 0 0.885 0.894 0 0.894 0.897 0
0.3 β̂n∗5 0.883 0.940 0 0.892 0.920 0 0.893 0.899 0 0.896 0.898 0

β̂n∗10 0.887 0.940 0 0.893 0.919 0 0.892 0.897 0 0.896 0.899 0
β̂n∗50 0.889 0.940 0 0.895 0.920 0 0.893 0.898 0 0.896 0.899 0

Table 4.1: Mean absolute errors (4.14), standard deviations (4.15) and rejection rates

RR for selected estimators β̃n of the true parameter β0 = − ln 4 of the simple logistic
regression model Be(π(xiβ0)) for random independent xi with Pr(xi = 1) = Pr(xi =
−1) = 1/2. Compared is the common value βn of the Morg-, CH- and BY-estimators

with the median estimators β̂n and their k-enhancements β̂n∗k. The errors are evaluated
for the contaminated data Yi ∼ (1− ε)Be(π(xiβ0)) + εBe(1− π(xiβ0)).
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n = 50 n = 100 n = 500 n = 1000
ε β̃n MAE STD RR% MAE STD RR% MAE STD RR% MAE STD RR%

βn 0.273 0.350 0 0.195 0.248 0 0.088 0.110 0 0.065 0.081 0

β̂n 0.579 0.854 7 0.436 0.617 2 0.180 0.246 0 0.121 0.153 0
0 β̂n∗5 0.371 0.504 1 0.256 0.338 0 0.114 0.142 0 0.082 0.104 0

β̂n∗10 0.324 0.424 0 0.233 0.297 0 0.102 0.128 0 0.073 0.091 0
β̂n∗50 0.291 0.376 0 0.201 0.256 0 0.091 0.114 0 0.067 0.083 0
βn 0.454 0.520 0 0.441 0.478 0 0.441 0.449 0 0.443 0.447 0

β̂n 0.575 0.718 1 0.474 0.541 0 0.425 0.451 0 0.436 0.449 0
0.1 β̂n∗5 0.470 0.539 0 0.441 0.489 0 0.439 0.450 0 0.443 0.449 0

β̂n∗10 0.461 0.529 0 0.440 0.484 0 0.442 0.452 0 0.442 0.447 0
β̂n∗50 0.457 0.522 0 0.443 0.481 0 0.441 0.449 0 0.443 0.447 0
βn 0.791 0.820 0 0.809 0.823 0 0.811 0.815 0 0.811 0.813 0

β̂n 0.774 0.835 0 0.783 0.821 0 0.806 0.813 0 0.808 0.811 0
0.2 β̂n∗5 0.779 0.818 0 0.803 0.822 0 0.810 0.814 0 0.811 0.813 0

β̂n∗10 0.791 0.824 0 0.806 0.823 0 0.811 0.814 0 0.811 0.813 0
β̂n∗50 0.791 0.821 0 0.809 0.824 0 0.812 0.816 0 0.811 0.813 0
βn 1.135 1.151 0 1.141 1.149 0 1.143 1.145 0 1.143 1.144 0

β̂n 1.092 1.126 0 1.119 1.134 0 1.138 1.141 0 1.140 1.142 0
0.3 β̂n∗5 1.127 1.147 0 1.134 1.144 0 1.142 1.144 0 1.143 1.143 0

β̂n∗10 1.129 1.147 0 1.140 1.148 0 1.142 1.144 0 1.143 1.144 0
β̂n∗50 1.135 1.151 0 1.141 1.149 0 1.143 1.145 0 1.143 1.144 0

Table 4.2: The same simulations as in Table 4.1 evaluated for n(1 − ε) standard logistic
regression data Yi ∼ Be(π(xiβ0)) for 1 ≤ i ≤ n(1 − ε) and nε leverage points Yi ∼
Be(π(−10xiβ0)) for n(1− ε) + 1 ≤ i ≤ n.

and also the rejection rates RR, i.e. the percentages of those data vectors Z̃n =
(
Z̃1, ..., Z̃n

)

or data matrices Z̃k,n =
(
Z̃11, ..., Z̃kn

)
for which the corresponding estimator β̂n or β̂n∗k

was undefined because the median Z̃(n/2) or Z̃(nk/2) was outside of the definition domain
(1/2, 3/2) of the inverse median function m−1 (z) (cf. Figure 1.2).

From the first (noncontamined) sector of Table 4.1 one can verify that
√

nSTD(βn)
agrees very well already for not too large n with the asymptotic standard deviation

σ (MLE) =
1√

π (β0) (1− π (β0))
=

1√
0.2× 0.8

= 2.5

obtained from the limit theorem of Example 2.1. E.g.,
√

50STD(β50) = 2.47, or
√

100·
STD(β100) = 2.48. Similarly one can verify that for the Med-estimator the scaled standard

deviation
√

nSTD
(
β̂n

)
tends with increasing n to the corresponding theoretic value

σ (Med) =
1

π (β0)
=

1

0.2
= 5,
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e.g.
√

100STD
(
β̂100

)
= 6.17 and

√
500STD

(
β̂500

)
= 5.5.

Similarly, from the ε-contaminated sector of Table 4.1 one can verify that
√

nSTD(βn)

and
√

nSTD
(
β̂n

)
approximate the theoretical standard deviations

σn (MLE) =

√
n (βε − β0)

2 + 1/[π (βε) (1− π (βε))]

and

σn (Med) =

√
n (βε − β0)

2 + (e|βε| + 1)
2
.

E.g., for ε = 0.2 we get βε = −0.7538 and (βε − β0)
2 = 0.4000 so that we compute

σn (MLE) = 6.68 while in the 0.2-contaminated sector of Table 4.1 we find
√

100STD(β100) =

6.54. Similarly we compute σn (Med) = 7.05 while in the table we find
√

100STD
(
β̂100

)
=

6.85 which is a satisfactory agreement.
All sectors of Table 4.1 also clearly indicate that for fixed n the error measures

STD
(
β̂n∗k

)
and MAE

(
β̂n∗k

)
tend with increasing k to the respective values STD(βn)

and MAE(βn), in accordance with what is asserted by Theorem 3.1.
However the main message of Table 4.1 is that for larger sample sizes n our Med-

estimators β̂n better resist to higher levels of contamination than the remaining four
estimators known from the previous literature.

Table 4.2 in some sense even more strongly supports the observations and conclusions
drawn from Table 4.1 above. In this table the ε-fractions of the data Yi were generated
by the false regressors x̃i = −10xi so that they represent leverage points in the common
sense of the regression analysis.

(II) Let us now turn to the second model and the corresponding results in Tables
4.3 - 4.10. These tables present similar characteristics as Tables 4.1, 4.2, just being
based on simulations in more realistic logistic regression models with bivariate parameters
β = (β0, β1)

T ∈ R2 and bivariate regressors x= (x0, x1)
T ∈ R2. This means among other

that in Tables 4.3 - 4.10 the MAE formula (4.14) is replaced by

MAE =
1

2000

1000∑

l=1

(∣∣∣β̃(l)

n0 − β00

∣∣∣ +
∣∣∣β̃(l)

n1 − β01

∣∣∣
)

(4.16)

obtained from 1000 simulated realizations β̃
(l)

n =
(
β̃

(l)

n0, β̃
(l)

n1

)T

of an estimator β̃n =

(β̃n0, β̃n1)
T of true parameters β0= (β00, β01)

T .

In order to achieve an ideal comparability, all selected estimators β̃n are evaluated
for the same simulated data vectors Y n = (Y1, . . . , Yn) and the related smoothed data
vectors or matrices

Zn = (Y1 + U1, . . . , Yn + Un) or Zk,n = (Y1 + U11, . . . , Yn + Ukn) cf. ((1.17), (3.4)).

If numerical evaluation of one of these estimators for a given Y n, Zn or Zk,n fails then this
Y n is rejected and replaced by a new independent realization. This procedure is repeated

until the computer successfully numerically evaluates 1000 realizations β̃
(1)

n , ..., β̃
(1000)

n for
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each of the selected estimators β̃n. The rejection rate RR then specifies for each such
estimator the percentage of the data vectors Y n rejected during evaluation of the corre-
sponding 1000 realizations.

Let us explain what is meant by the numerical evaluation of estimates β̃
(l)

n = (β̃
(l)

n0, β̃
(l)

n1)
T

used in the formulas (4.16) and leading to the characteristics appearing in the columns
and rows of Tables 4.3 - 4.10. This is the evaluation in accordance with the corresponding
definition given above, using the iteration procedures presented in the IMSL C Numerical
Libraries, version 3.0. The minimization of a function of two variables uses there a quasi-
Newton method (for details see Appendix A of Dennis and Schnabel (1983)), and systems
of equations is solved using a modified Powell hybrid algorithm (for further description
see Moré et al. (1980)). The initial iteration seeds for the MLE βn = (βn0, βn1)

T were
the true parameters β0= (β00, β01)

T and the initial iteration seeds for all the remaining

estimates β̃n = (β̃n0, β̃n1)
T were the MLE’s βn = (βn0, βn1)

T .

The results of the first four Tables 4.3 - 4.6 were obtained for the simulated data
Y n = (Y1, . . . , Yn) with

Yi ∼ (1− ε) Be
(
π

(
xT

i β0

))
+ εBe

(
1− π

(
xT

i β0

))
(cf. (4.1)) (4.17)

used previously by Bianco and Yohai (1996) to demonstrate the robustness of their BY-
estimator denoted above as β(2)

n . To be precise, the data Yi were generated using concrete
random regressors

xi = (xi0 ≡ 1, xi1 ∼ N(0, 1))T = (1, N(0, 1)i)
T (4.18)

and the true parameters β0= (β00, β01)
T from the following concrete set

{
(−2.82, 2.82)T ; (−2.16, 3.71)T ; (−1.16, 4.20)T ; (0.00, 4.36)T

}
(4.19)

leading to the corresponding probabilities

Pr (Yi = 1) ≡ Eπ
(
xT

i β0

) ∈ {0.2; 0.3; 0.4; 0.5} , (4.20)

exactly as in the mentioned paper of Bianco and Yohai.

The results of the last four Tables 4.7 - 4.10 were obtained for the simulated data
Y n = (Y1, . . . , Yn) with the contaminated data source (4.17) replaced by

Yi ∼ (1− ε) Be
(
π

(
xT

i β0

))
+ εBe

(
π

(
x̃T

i β0

))
(4.21)

with the random regressors xi and true parameters β0 given by the same formulas (4.18)
and (4.19) as in the previous tables, but with the random regressors x̃i different, given by

x̃i =

(
1, x̃i1 = β00 + 4sign

[
−β00

β01

− xi1

]
β01

)
, xi1 ∼ N(0, 1) (cf. (4.18)). (4.22)

We see that in (4.21) the source Be
(
1− π

(
xT

i β0

))
of contaminating data is replaced by

the source Be
(
π

(
x̃T

i β0

))
of leverage points where the regressors x̃i = x̃i(β0) given by

(4.22) are characterized by the property

π
(

xT
i β0

)
> 1/2 implies π

(
x̃T

i β0

)
≈ 0
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and
π

(
xT

i β0

) ≤ 1/2 implies π
(
x̃T

i β0

)
≈ 1.

We see that the results in Tables 4.3 - 4.10 basically agree with those in Tables 4.1,
4.2. An obvious difference between these two sets of tables is that in the present regression
models (4.17) - (4.20) the MLE βn, the Morg-estimator β(1)

n , the BY-estimator β(2)
n and

the CH-estimator β(3)
n mutually differ. Therefore the Tables 4.3 - 4.10 compare our Med-

estimator β̂n and its k-enhanced versions β̂n∗k with four different estimators. This means
that the reading and interpretation of these tables is more complicated than in case of
Tables 4.1, 4.2.

There is however one additional difference between the present Tables 4.3 - 4.10 and
the previous Tables 4.1, 4.2 which is visible at the first sight. Namely, in the present tables
the MAE of β̂n∗k does not seem to converge for increasing k to the MAE of the MLE

βn. But the MAE(β̂n∗k) still preserves another properties observed in Tables 4.1, 4.2:
For ε = 0 it monotonically decreases when 50 ≤ n ≤ 1000 remains fixed and k increases.
For ε > 0 the MAE(β̂n∗k) with increasing k first decreases and then increases, and this
phenomenon is the more evident the larger is the sample size n. Another feature shared
with Tables 4.1, 4.2 is that the conclusions drawn from the classical contaminated models
in Tables 4.3 - 4.6 are even more evidently supported by Tables 4.7 - 4.10 obtained from
the models contaminated by leverage points.

But the main message in Tables 4.3 - 4.10 remains the same as before: Our Med-
estimator β̂n is more resistent to the distortions of logistic regression models by con-
taminations and leverage points than the remaining four estimators when the levels of
distortions are higher and the sample sizes are medium (around n ≈ 100) or large (around
n ≈ 1000). For the medium sample sizes it is convenient to use the k-enhancing for k ≈ 10.
The preferences between the remaining estimators βn and β(1)

n - β(3)
n which can be drawn

from Tables 4.3 - 4.10 agree with what has been previously published in the literature, in
particular with what was stated in Bianco and Yohai (1996) and Croux and Haesbroeck
(2003).
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n = 50 n = 100 n = 500 n = 1000
ε β̃n MAE RR% MAE RR% MAE RR% MAE RR%

MLE 0.862 1 0.579 0 0.235 0 0.159 0
Morg 0.951 3 0.639 0 0.256 0 0.176 0
CH 0.840 1 0.582 0 0.247 0 0.171 0
BY 1.527 8 0.942 1 0.312 0 0.212 0

0 Med 3.267 18 2.554 9 0.925 0 0.497 0
5-Med 2.786 22 1.637 10 0.521 0 0.327 0
10-Med 2.496 24 1.730 10 0.464 0 0.306 0
50-Med 2.502 28 1.579 13 0.420 0 0.284 0
MLE 1.067 0 0.979 0 1.047 0 1.048 0
Morg 1.062 1 0.834 0 0.769 0 0.771 0
CH 0.984 0 0.850 0 0.843 0 0.843 0
BY 1.482 5 0.915 1 0.553 0 0.527 0

0.05 Med 2.715 13 2.524 8 0.848 0 0.587 0
5-Med 2.093 18 1.544 8 0.579 0 0.487 0
10-Med 2.098 19 1.444 9 0.547 0 0.475 0
50-Med 2.403 26 1.475 13 0.526 0 0.470 0
MLE 1.425 0 1.473 0 1.510 0 1.525 0
Morg 1.347 0 1.290 0 1.320 0 1.338 0
CH 1.334 0 1.333 0 1.357 0 1.373 0
BY 1.446 3 1.220 0 1.072 0 1.100 0

0.1 Med 2.701 11 2.293 4 0.977 0 0.921 0
5-Med 1.907 14 1.589 5 0.920 0 0.931 0
10-Med 1.819 16 1.569 6 0.909 0 0.934 0
50-Med 2.189 22 1.623 10 0.908 0 0.939 0
MLE 1.989 0 2.011 0 2.029 0 2.034 0
Morg 1.939 0 1.956 0 1.975 0 1.979 0
CH 1.945 0 1.957 0 1.973 0 1.977 0
BY 1.897 0 1.891 0 1.941 0 1.948 0

0.2 Med 2.381 5 1.988 2 1.683 0 1.710 0
5-Med 2.029 5 1.879 2 1.721 0 1.732 0
10-Med 2.042 8 1.735 3 1.725 0 1.734 0
50-Med 2.194 10 1.808 4 1.731 0 1.739 0
MLE 2.335 0 2.336 0 2.354 0 2.356 0
Morg 2.323 0 2.323 0 2.342 0 2.344 0
CH 2.321 0 2.320 0 2.338 0 2.340 0
BY 2.306 0 2.316 0 2.339 0 2.341 0

0.3 Med 2.464 3 2.271 1 2.231 0 2.245 0
5-Med 2.269 2 2.239 0 2.245 0 2.252 0
10-Med 2.289 3 2.225 0 2.248 0 2.253 0
50-Med 2.261 4 2.207 1 2.249 0 2.253 0

Table 4.3: Mean absolute errors (4.16) and rejection rates RR for selected estimators

β̃n = (β̃n0, β̃n1)
T of the true parameter β0 = (β00, β01)

T = (−2.82, 2.82)T in the ε-
contaminated logistic regression model (4.17) with Pr(Y = 1) = 0.2.
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n = 50 n = 100 n = 500 n = 1000
ε β̃n MAE RR% MAE RR% MAE RR% MAE RR%

MLE 0.948 1 0.574 0 0.242 0 0.170 0
Morg 0.993 3 0.649 0 0.269 0 0.187 0
CH 0.900 1 0.596 0 0.259 0 0.181 0
BY 1.358 7 0.944 1 0.334 0 0.222 0

0 Med 3.125 17 2.607 9 1.079 0 0.542 0
5-Med 2.482 22 1.660 11 0.567 0 0.345 0
10-Med 2.381 24 1.647 11 0.499 0 0.322 0
50-Med 2.433 27 1.569 12 0.450 0 0.293 0
MLE 1.128 0 1.079 0 1.127 0 1.136 0
Morg 1.114 1 0.842 0 0.774 0 0.779 0
CH 1.040 0 0.891 0 0.870 0 0.876 0
BY 1.447 5 0.951 1 0.547 0 0.521 0

0.05 Med 2.899 14 2.282 7 0.854 0 0.605 0
5-Med 2.238 18 1.571 8 0.565 0 0.483 0
10-Med 2.033 20 1.508 8 0.537 0 0.476 0
50-Med 2.350 27 1.338 13 0.518 0 0.469 0
MLE 1.556 0 1.584 0 1.634 0 1.647 0
Morg 1.447 0 1.349 0 1.382 0 1.400 0
CH 1.440 0 1.407 0 1.439 0 1.454 0
BY 1.533 3 1.170 0 1.080 0 1.111 0

0.1 Med 2.569 12 2.182 5 1.035 0 0.928 0
5-Med 2.210 15 1.606 6 0.948 0 0.942 0
10-Med 1.960 18 1.541 7 0.941 0 0.947 0
50-Med 2.050 21 1.627 10 0.935 0 0.958 0
MLE 2.129 0 2.129 0 2.170 0 2.167 0
Morg 2.059 0 2.053 0 2.097 0 2.093 0
CH 2.070 0 2.059 0 2.097 0 2.093 0
BY 2.012 1 1.954 0 2.040 0 2.040 0

0.2 Med 2.314 6 2.041 3 1.729 0 1.786 0
5-Med 2.097 7 1.863 2 1.782 0 1.803 0
10-Med 2.109 10 1.817 3 1.793 0 1.805 0
50-Med 2.207 13 1.860 4 1.798 0 1.806 0
MLE 2.465 0 2.467 0 2.484 0 2.486 0
Morg 2.449 0 2.448 0 2.467 0 2.470 0
CH 2.448 0 2.445 0 2.463 0 2.465 0
BY 2.432 0 2.436 0 2.463 0 2.466 0

0.3 Med 2.481 3 2.345 0 2.337 0 2.352 0
5-Med 2.370 3 2.291 0 2.354 0 2.360 0
10-Med 2.428 4 2.293 0 2.354 0 2.359 0
50-Med 2.484 5 2.304 0 2.355 0 2.360 0

Table 4.4: Mean absolute errors (4.16) and rejection rates RR for selected estimators

β̃n = (β̃n0, β̃n1)
T of the true parameter β0 = (β00, β01)

T = (−2.16, 3.71)T in the ε-
contaminated logistic regression model (4.17) with Pr(Y = 1) = 0.3.
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n = 50 n = 100 n = 500 n = 1000
ε β̃n MAE RR% MAE RR% MAE RR% MAE RR%

MLE 0.865 1 0.560 0 0.235 0 0.167 0
Morg 0.921 2 0.603 0 0.254 0 0.184 0
CH 0.845 1 0.567 0 0.247 0 0.178 0
BY 1.289 8 0.842 2 0.304 0 0.213 0

0 Med 2.724 19 2.338 10 0.891 0 0.518 0
5-Med 2.228 22 1.651 10 0.509 0 0.320 0
10-Med 2.164 24 1.559 12 0.477 0 0.297 0
50-Med 2.171 28 1.377 14 0.429 0 0.276 0
MLE 1.051 0 1.003 0 1.045 0 1.057 0
Morg 1.071 1 0.817 0 0.715 0 0.720 0
CH 0.970 0 0.856 0 0.805 0 0.811 0
BY 1.382 4 0.813 0 0.513 0 0.488 0

0.05 Med 2.450 15 1.969 6 0.781 0 0.538 0
5-Med 1.991 18 1.346 8 0.542 0 0.466 0
10-Med 1.999 21 1.211 7 0.516 0 0.455 0
50-Med 1.995 28 1.223 13 0.492 0 0.442 0
MLE 1.429 0 1.459 0 1.509 0 1.513 0
Morg 1.321 1 1.255 0 1.271 0 1.276 0
CH 1.329 0 1.305 0 1.325 0 1.329 0
BY 1.340 3 1.083 0 0.996 0 1.012 0

0.1 Med 2.120 12 1.680 6 0.966 0 0.863 0
5-Med 1.857 15 1.342 6 0.841 0 0.873 0
10-Med 1.737 18 1.230 7 0.843 0 0.870 0
50-Med 1.780 24 1.160 11 0.839 0 0.874 0
MLE 1.968 0 1.951 0 1.994 0 1.994 0
Morg 1.904 0 1.880 0 1.920 0 1.922 0
CH 1.910 0 1.884 0 1.921 0 1.922 0
BY 1.849 1 1.788 0 1.861 0 1.869 0

0.2 Med 2.190 6 1.925 2 1.572 0 1.623 0
5-Med 2.009 8 1.773 3 1.622 0 1.643 0
10-Med 1.889 9 1.769 3 1.621 0 1.647 0
50-Med 1.895 14 1.639 3 1.630 0 1.648 0
MLE 2.248 0 2.273 0 2.276 0 2.277 0
Morg 2.228 0 2.256 0 2.259 0 2.261 0
CH 2.228 0 2.253 0 2.255 0 2.256 0
BY 2.217 0 2.246 0 2.255 0 2.257 0

0.3 Med 2.279 5 2.098 1 2.135 0 2.144 0
5-Med 2.139 4 2.099 1 2.146 0 2.153 0
10-Med 2.172 4 2.100 0 2.149 0 2.153 0
50-Med 2.182 7 2.119 1 2.149 0 2.154 0

Table 4.5: Mean absolute errors (4.16) and rejection rates RR for selected estimators

β̃n = (β̃n0, β̃n1)
T of the true parameter β0 = (β00, β01)

T = (−1.16, 4.20)T in the ε-
contaminated logistic regression model (4.17) with Pr(Y = 1) = 0.4.
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n = 50 n = 100 n = 500 n = 1000
ε β̃n MAE RR% MAE RR% MAE RR% MAE RR%

MLE 0.906 1 0.563 0 0.231 0 0.160 0
Morg 0.939 2 0.616 0 0.256 0 0.176 0
CH 0.873 1 0.584 0 0.249 0 0.170 0
BY 1.210 8 0.821 1 0.303 0 0.207 0

0 Med 2.735 20 2.095 10 0.863 0 0.457 0
5-Med 1.982 23 1.472 10 0.497 0 0.314 0
10-Med 1.888 25 1.325 12 0.459 0 0.290 0
50-Med 1.845 31 1.308 12 0.419 0 0.275 0
MLE 0.981 0 0.919 0 0.901 0 0.898 0
Morg 1.003 1 0.761 0 0.636 0 0.630 0
CH 0.921 0 0.781 0 0.707 0 0.702 0
BY 1.156 5 0.803 1 0.472 0 0.445 0

0.05 Med 2.224 15 1.891 8 0.715 0 0.505 0
5-Med 1.835 19 1.427 8 0.515 0 0.428 0
10-Med 1.725 21 1.419 9 0.482 0 0.421 0
50-Med 1.811 27 1.179 13 0.460 0 0.417 0
MLE 1.302 0 1.284 0 1.270 0 1.265 0
Morg 1.227 0 1.108 0 1.075 0 1.074 0
CH 1.218 0 1.152 0 1.119 0 1.115 0
BY 1.321 2 1.026 0 0.855 0 0.860 0

0.1 Med 2.179 11 1.686 6 0.877 0 0.762 0
5-Med 1.863 14 1.266 6 0.769 0 0.747 0
10-Med 1.798 16 1.175 7 0.744 0 0.752 0
50-Med 1.925 23 1.161 12 0.748 0 0.753 0
MLE 1.718 0 1.685 0 1.658 0 1.652 0
Morg 1.665 0 1.627 0 1.598 0 1.594 0
CH 1.672 0 1.630 0 1.599 0 1.594 0
BY 1.610 1 1.561 0 1.552 0 1.552 0

0.2 Med 1.960 7 1.737 2 1.364 0 1.369 0
5-Med 1.815 9 1.537 3 1.365 0 1.377 0
10-Med 1.717 12 1.529 3 1.368 0 1.379 0
50-Med 1.744 15 1.509 3 1.368 0 1.379 0
MLE 1.958 0 1.914 0 1.892 0 1.879 0
Morg 1.942 0 1.899 0 1.879 0 1.866 0
CH 1.941 0 1.896 0 1.875 0 1.862 0
BY 1.932 0 1.890 0 1.875 0 1.862 0

0.3 Med 2.102 4 1.927 1 1.777 0 1.776 0
5-Med 1.994 3 1.817 1 1.784 0 1.779 0
10-Med 1.976 4 1.797 1 1.786 0 1.779 0
50-Med 1.953 6 1.787 0 1.787 0 1.779 0

Table 4.6: Mean absolute errors (4.16) and rejection rates RR for selected estimators β̃n =

(β̃n0, β̃n1)
T of the true parameter β0 = (β00, β01)

T = (0, 4.36)T in the ε-contaminated
logistic regression model (4.17) with Pr(Y = 1) = 0.5.
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n = 50 n = 100 n = 500 n = 1000
ε β̃n MAE RR% MAE RR% MAE RR% MAE RR%

MLE 0.862 1 0.579 0 0.235 0 0.159 0
Morg 0.951 3 0.639 0 0.256 0 0.176 0
CH 0.840 1 0.582 0 0.247 0 0.171 0
BY 1.527 8 0.942 1 0.312 0 0.212 0

0 Med 3.267 18 2.554 9 0.925 0 0.497 0
5-Med 2.786 22 1.637 10 0.521 0 0.327 0
10-Med 2.496 24 1.730 10 0.464 0 0.306 0
50-Med 2.502 28 1.579 13 0.420 0 0.284 0
MLE 1.074 0 1.000 0 1.062 0 1.072 0
Morg 1.048 1 0.851 0 0.818 0 0.822 0
CH 0.995 0 0.871 0 0.881 0 0.886 0
BY 1.362 4 0.915 1 0.623 0 0.611 0

0.05 Med 2.659 12 2.358 7 0.832 0 0.617 0
5-Med 2.004 17 1.777 6 0.638 0 0.586 0
10-Med 1.953 17 1.546 8 0.615 0 0.585 0
50-Med 2.166 24 1.386 13 0.601 0 0.581 0
MLE 1.484 0 1.500 0 1.551 0 1.550 0
Morg 1.417 1 1.339 0 1.395 0 1.395 0
CH 1.411 0 1.375 0 1.424 0 1.423 0
BY 1.435 3 1.171 0 1.213 0 1.216 0

0.1 Med 2.460 10 1.715 3 1.105 0 1.109 0
5-Med 1.948 12 1.458 4 1.101 0 1.130 0
10-Med 1.958 15 1.356 5 1.102 0 1.133 0
50-Med 2.231 19 1.252 8 1.112 0 1.134 0
MLE 2.041 0 2.052 0 2.060 0 2.069 0
Morg 2.006 0 2.009 0 2.019 0 2.029 0
CH 2.010 0 2.010 0 2.018 0 2.027 0
BY 1.966 0 1.966 0 1.997 0 2.009 0

0.2 Med 2.222 5 1.996 2 1.835 0 1.879 0
5-Med 1.956 5 1.896 2 1.875 0 1.890 0
10-Med 2.037 5 1.837 1 1.879 0 1.889 0
50-Med 2.054 8 1.826 2 1.881 0 1.891 0
MLE 2.374 0 2.374 0 2.389 0 2.389 0
Morg 2.367 0 2.365 0 2.381 0 2.381 0
CH 2.367 0 2.363 0 2.379 0 2.379 0
BY 2.357 0 2.361 0 2.380 0 2.380 0

0.3 Med 2.359 2 2.279 0 2.330 0 2.336 0
5-Med 2.312 1 2.286 0 2.336 0 2.340 0
10-Med 2.318 2 2.290 0 2.337 0 2.340 0
50-Med 2.320 1 2.291 0 2.338 0 2.341 0

Table 4.7: Mean absolute errors (4.16) and rejection rates RR for selected estimators

β̃n = (β̃n0, β̃n1)
T of the true parameter β0 = (β00, β01)

T = (−2.82, 2.82)T in the logistic
regression model (4.21) ε-contaminated by leverage points and preserving Pr(Y = 1) =
0.2.
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n = 50 n = 100 n = 500 n = 1000
ε β̃n MAE RR% MAE RR% MAE RR% MAE RR%

MLE 0.948 1 0.574 0 0.242 0 0.170 0
Morg 0.993 3 0.649 0 0.269 0 0.187 0
CH 0.900 1 0.596 0 0.259 0 0.181 0
BY 1.358 7 0.944 1 0.334 0 0.222 0

0 Med 3.125 17 2.607 9 1.079 0 0.542 0
5-Med 2.482 22 1.660 11 0.567 0 0.345 0
10-Med 2.381 24 1.647 11 0.499 0 0.322 0
50-Med 2.433 27 1.569 12 0.450 0 0.293 0
MLE 1.137 0 1.110 0 1.154 0 1.169 0
Morg 1.122 1 0.889 0 0.844 0 0.860 0
CH 1.059 0 0.933 0 0.927 0 0.942 0
BY 1.420 4 0.881 0 0.632 0 0.636 0

0.05 Med 2.822 13 2.118 7 0.823 0 0.649 0
5-Med 2.270 17 1.465 6 0.668 0 0.614 0
10-Med 1.906 19 1.389 7 0.629 0 0.610 0
50-Med 2.279 25 1.354 12 0.609 0 0.611 0
MLE 1.578 0 1.628 0 1.668 0 1.668 0
Morg 1.445 0 1.435 0 1.459 0 1.456 0
CH 1.467 0 1.481 0 1.504 0 1.501 0
BY 1.518 2 1.282 0 1.223 0 1.230 0

0.1 Med 2.333 10 1.894 5 1.139 0 1.126 0
5-Med 2.082 12 1.567 5 1.145 0 1.144 0
10-Med 2.130 15 1.456 6 1.111 0 1.148 0
50-Med 2.166 19 1.564 8 1.114 0 1.155 0
MLE 2.152 0 2.173 0 2.190 0 2.199 0
Morg 2.095 0 2.111 0 2.133 0 2.144 0
CH 2.102 0 2.115 0 2.133 0 2.143 0
BY 2.032 0 2.038 0 2.094 0 2.110 0

0.2 Med 2.409 6 2.021 2 1.920 0 1.961 0
5-Med 2.103 5 1.922 2 1.948 0 1.975 0
10-Med 2.082 6 1.921 1 1.949 0 1.977 0
50-Med 2.165 10 1.910 2 1.954 0 1.977 0
MLE 2.489 0 2.509 0 2.516 0 2.519 0
Morg 2.478 0 2.496 0 2.505 0 2.509 0
CH 2.477 0 2.494 0 2.502 0 2.505 0
BY 2.464 0 2.490 0 2.503 0 2.507 0

0.3 Med 2.527 3 2.405 0 2.439 0 2.451 0
5-Med 2.454 1 2.398 0 2.446 0 2.456 0
10-Med 2.406 2 2.437 0 2.448 0 2.456 0
50-Med 2.442 2 2.439 0 2.450 0 2.456 0

Table 4.8: Mean absolute errors (4.16) and rejection rates RR for selected estimators

β̃n = (β̃n0, β̃n1)
T of the true parameter β0 = (β00, β01)

T = (−2.16, 3.71)T in the logistic
regression model (4.21) ε-contaminated by leverage points and preserving Pr(Y = 1) =
0.3.
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n = 50 n = 100 n = 500 n = 1000
ε β̃n MAE RR% MAE RR% MAE RR% MAE RR%

MLE 0.865 1 0.560 0 0.235 0 0.167 0
Morg 0.921 2 0.603 0 0.254 0 0.184 0
CH 0.845 1 0.567 0 0.247 0 0.178 0
BY 1.289 8 0.842 2 0.304 0 0.213 0

0 Med 2.724 19 2.338 10 0.891 0 0.518 0
5-Med 2.228 22 1.651 10 0.509 0 0.320 0
10-Med 2.164 24 1.559 12 0.477 0 0.297 0
50-Med 2.171 28 1.377 14 0.429 0 0.276 0
MLE 1.068 0 0.988 0 1.071 0 1.085 0
Morg 1.065 1 0.806 0 0.775 0 0.791 0
CH 0.992 0 0.839 0 0.855 0 0.869 0
BY 1.294 3 0.893 0 0.583 0 0.590 0

0.05 Med 2.371 14 1.970 6 0.756 0 0.628 0
5-Med 1.925 17 1.439 5 0.599 0 0.569 0
10-Med 1.967 19 1.275 7 0.592 0 0.567 0
50-Med 1.922 26 1.317 10 0.573 0 0.569 0
MLE 1.469 0 1.492 0 1.540 0 1.542 0
Morg 1.353 0 1.319 0 1.336 0 1.343 0
CH 1.376 0 1.360 0 1.381 0 1.385 0
BY 1.299 2 1.165 0 1.113 0 1.137 0

0.1 Med 2.127 11 1.802 4 1.033 0 1.033 0
5-Med 1.653 13 1.400 6 1.022 0 1.058 0
10-Med 1.580 15 1.307 6 1.025 0 1.057 0
50-Med 1.645 21 1.288 7 1.033 0 1.059 0
MLE 1.983 0 1.989 0 2.016 0 2.022 0
Morg 1.934 0 1.933 0 1.959 0 1.967 0
CH 1.940 0 1.937 0 1.959 0 1.967 0
BY 1.891 0 1.870 0 1.920 0 1.933 0

0.2 Med 2.107 5 1.879 2 1.759 0 1.792 0
5-Med 2.005 5 1.801 1 1.786 0 1.805 0
10-Med 1.917 6 1.889 1 1.789 0 1.808 0
50-Med 1.967 11 1.757 2 1.791 0 1.808 0
MLE 2.290 0 2.292 0 2.309 0 2.307 0
Morg 2.278 0 2.280 0 2.299 0 2.296 0
CH 2.278 0 2.277 0 2.296 0 2.293 0
BY 2.264 0 2.273 0 2.296 0 2.294 0

0.3 Med 2.455 2 2.237 0 2.236 0 2.242 0
5-Med 2.258 2 2.184 0 2.245 0 2.245 0
10-Med 2.260 3 2.198 0 2.244 0 2.244 0
50-Med 2.230 5 2.193 0 2.245 0 2.244 0

Table 4.9: Mean absolute errors (4.16) and rejection rates RR for selected estimators

β̃n = (β̃n0, β̃n1)
T of the true parameter β0 = (β00, β01)

T = (−1.16, 4.20)T in the logistic
regression model (4.21) ε-contaminated by leverage points and preserving Pr(Y = 1) =
0.4.
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n = 50 n = 100 n = 500 n = 1000
ε β̃n MAE RR% MAE RR% MAE RR% MAE RR%

MLE 0.906 1 0.563 0 0.231 0 0.160 0
Morg 0.939 2 0.616 0 0.256 0 0.176 0
CH 0.873 1 0.584 0 0.249 0 0.170 0
BY 1.210 8 0.821 1 0.303 0 0.207 0

0 Med 2.735 20 2.095 10 0.863 0 0.457 0
5-Med 1.982 23 1.472 10 0.497 0 0.314 0
10-Med 1.888 25 1.325 12 0.459 0 0.290 0
50-Med 1.845 31 1.308 12 0.419 0 0.275 0
MLE 0.989 0 0.938 0 0.913 0 0.911 0
Morg 0.992 1 0.779 0 0.670 0 0.675 0
CH 0.927 0 0.804 0 0.736 0 0.737 0
BY 1.103 4 0.788 0 0.511 0 0.518 0

0.05 Med 2.140 15 1.689 6 0.737 0 0.560 0
5-Med 1.735 18 1.214 7 0.550 0 0.516 0
10-Med 1.762 20 1.218 8 0.538 0 0.508 0
50-Med 1.710 26 1.122 11 0.521 0 0.506 0
MLE 1.321 0 1.314 0 1.290 0 1.285 0
Morg 1.220 0 1.173 0 1.130 0 1.126 0
CH 1.240 0 1.207 0 1.164 0 1.159 0
BY 1.191 2 1.057 0 0.963 0 0.963 0

0.1 Med 2.094 11 1.592 5 0.912 0 0.890 0
5-Med 1.751 13 1.309 5 0.903 0 0.910 0
10-Med 1.790 16 1.227 5 0.905 0 0.916 0
50-Med 1.825 21 1.212 7 0.908 0 0.914 0
MLE 1.745 0 1.712 0 1.682 0 1.671 0
Morg 1.704 0 1.669 0 1.636 0 1.626 0
CH 1.708 0 1.670 0 1.636 0 1.625 0
BY 1.685 0 1.624 0 1.606 0 1.598 0

0.2 Med 2.063 5 1.610 2 1.490 0 1.501 0
5-Med 1.896 5 1.533 1 1.504 0 1.501 0
10-Med 1.862 7 1.564 2 1.505 0 1.501 0
50-Med 1.763 8 1.533 3 1.508 0 1.501 0
MLE 1.972 0 1.947 0 1.910 0 1.903 0
Morg 1.963 0 1.937 0 1.901 0 1.894 0
CH 1.963 0 1.935 0 1.898 0 1.891 0
BY 1.956 0 1.932 0 1.899 0 1.892 0

0.3 Med 2.057 2 1.863 0 1.859 0 1.854 0
5-Med 2.110 3 1.891 0 1.858 0 1.854 0
10-Med 2.007 3 1.891 1 1.859 0 1.855 0
50-Med 1.991 4 1.880 0 1.860 0 1.855 0

Table 4.10: Mean absolute errors (4.16) and rejection rates RR for selected estimators

β̃n = (β̃n0, β̃n1)
T of the true parameter β0 = (β00, β01)

T = (0, 4.36)T in the logistic
regression model (4.21) ε-contaminated by leverage points and preserving Pr(Y = 1) =
0.5.
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