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Abstract

The paper deals with a problem
of marginalization of multidimen-
sional probability distributions rep-
resented by compositional models,
more precisely by perfect sequence
models. It appears that from the
computational point of view, the
solution is more efficient than any
known marginalization process for
Bayesian networks. This is because
the process, which is in the paper
described in a form of an algorithm,
takes advantage of the fact that per-
fect sequence models have some in-
formation explicitly encoded, which
can be got from Bayesian networks
only by application of rather compu-
tationally expensive procedures.
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1 Introduction

Ability to represent and process multidimen-
sional probability distributions is a neces-
sary condition for application of probabilistic
methods in Artificial Intelligence. Most pop-
ular approaches to solve this task are based
on Graphical Markov Models (GMM - [8]),
from which Bayesian Networks (BN - [3]) are
most often used. In the present paper we
will deal with an alternative to GMM, so

called Compositional Models (CM - [4, 5, 6])
and present an algorithm enabling us to com-
pute marginal distributions from really mul-
tidimensional ones.

A possible solution of this task for BNs is
given in papers by R. Shachter [9, 10]1. His
famous procedure is based on two rules: node
deletion and edge reversal . Roughly speaking,
the efficiency of his approach corresponds to
the efficiency of our process in case we did
not employ marginalization by reduction the-
oretically supported by Theorem 3 of our pa-
per. This theorem, namely, takes advantage
of the main difference between Bayesian net-
works and compositional models revealed in
[7]. This advantage consists in the fact that
compositional models express explicitly some
marginals, whose computation in Bayesian
network may be computationally expensive.

2 Notation and Basic Properties

In this paper we will consider a system of
finite-valued random variables with indices
from a non-empty finite set N . All the prob-
ability distributions discussed in the paper
will be denoted by Greek letters. For K ⊂
N , π(xK) denotes a distribution of variables
{Xi}i∈K .

Having a distribution π(xK) and L ⊂ K, we
will denote its corresponding marginal distrib-
ution either π(xL), or, using the notation used
by Glenn Shafer [11] and Prakash Shenoy [12],
π↓L. These symbols are used when we want
to highlight the variables, for which the mar-

1Another solution can be found in [12].



ginal distribution is defined. If we want to
specify variables which are to be deleted in
the process of marginalization, we will use the
symbol π−M , where M is the set of indices
of the variables, which do not appear among
the arguments of the resulting marginal dis-
tribution. Thus, for π(xK) and M = K \ L,
π−M = π↓L.

In order to describe how to compose low-
dimensional distributions to get a distribution
of a higher dimension we will use the following
operator of composition.

Definition 1 For arbitrary two distributions
π(xK) and κ(xL) their composition is given by
the formula

π(xK) ⊲ κ(xL)

=

{

π(xK)κ(xL)
κ(xK∩L) when π↓K∩L ≪ κ↓K∩L,

undefined otherwise,

where the symbol π(xM ) ≪ κ(xM ) denotes
that π(xM ) is dominated by κ(xM ), which
means (in the considered finite setting)

∀xM ∈ ×i∈MXi (κ(xM ) = 0 =⇒ π(xM ) = 0).

Since the outcome of the composition (if it
is defined) is a new distribution, we can it-
eratively repeat the application of this opera-
tor composing thus a multidimensional model.
This is why these multidimensional distribu-
tions are called compositional models. To de-
scribe such a model it is enough to introduce
an ordered system of low-dimensional distrib-
utions π1, π2, . . . , πn, we will refer to it as to
a generating sequence, to which the operator
is applied from left to right:

π1 ⊲ π2 ⊲ π3 ⊲ . . . ⊲ πn−1 ⊲ πn

= (. . . ((π1 ⊲ π2) ⊲ π3) ⊲ . . . ⊲ πn−1) ⊲ πn.

Then we say that a generating sequence de-
fines (or represents) a multidimensional com-
positional model.

In the process of marginalization we will also
need another important operator.

Definition 2 For arbitrary two distributions
π(xK), κ(xL) and a set of indices of variables

M ⊂ N , by application of an anticipating op-
erator parameterized by the index set M we
understand computation of the following dis-
tribution

π©⊲M κ =
(

κ↓(M\K)∩L π
)

⊲ κ.

The most basic properties of the introduced
operators are expressed in the following asser-
tions (for their proofs see [4] and [5]).

Lemma 1 Consider two distributions π(xK)
and κ(xL). If the composition π ⊲ κ is defined
then

(π ⊲ κ)↓K = π.

Lemma 2 If π1(xK1
), π2(xK2

) and π3(xK3
)

are such that the composition π1 ⊲ π2 ⊲ π3 is
defined, then

π1 ⊲π2 ⊲π3 = (π1 ⊲π2)⊲π3 = π1 ⊲ (π2©⊲K1
π3).

3 Perfect Sequence Models

Now we will focus our attention on marginal-
ization of distributions given by a special sub-
class of generating sequences. ¿From now on,
we will consider generating sequences

π1(xK1
) ⊲ π2(xK2

) ⊲ . . .πn(xKn).

Therefore whenever we use distribution πj, we
assume it is defined for variables {Xi}i∈Kj

.

Definition 3 We call a generating sequence
π1, π2, . . . , πn perfect if for all j = 2, . . . , n

(π1 ⊲ . . . ⊲ πj−1) ⊲ πj = πj ⊲ (π1 ⊲ . . . ⊲ πj−1)

hold true.

Perfect sequences have a lot of pleasant prop-
erties, which are advantageous for multidi-
mensional distributions representation. The
most important one is expressed in the fol-
lowing assertion.

Theorem 1 A generating sequence
π1, π2, . . . , πn is perfect iff all the distri-
butions πi are marginal to the represented
distribution, i.e. for all i = 1, 2, . . . , n

(π1 ⊲ . . . ⊲ πn)↓Ki = πi.



Now, let us formulate rules, which make it
possible to decrease dimensionality of compo-
sitional models by one. By iterative applica-
tion of these rules we may obtain any required
marginal. The proof of the following asser-
tion, which holds not only for perfect but for
all generating sequences, can be found in [5].

Theorem 2 Let π1, π2, . . ., πn be a generat-
ing sequence and

ℓ ∈ Ki1 ∩Ki2 ∩ . . . ∩Kim

for a subsequence (i1, i2, . . ., im) of
(1, 2, . . . , n) such that ℓ 6∈ Kj for all
j 6∈ {i1, i2, . . ., im}. Then

(π1 ⊲ π2 ⊲ . . . ⊲ πn)−{ℓ} = κ1 ⊲ κ2 ⊲ . . . ⊲ κn,

where

κj = πj, ∀j 6∈ {i1, i2, . . ., im},

κi1 = π
−{ℓ}
i1

,

κi2 = (πi1©⊲Li2−1
πi2)

−{ℓ},

κi3 = (πi1©⊲Li2−1
πi2©⊲Li3−1

πi3)
−{ℓ},

...

κim = (πi1©⊲Li2−1
πi2©⊲Li3−1

. . .

©⊲Lim−1
πim)−{ℓ},

and Lik−1 = (K1 ∪K2 ∪ . . . ∪Kik−1) \ {ℓ}.

Iterative application of this theorem always
leads to the desired marginal distribution and
corresponds to the Shachter’s marginalization
procedure. In fact, application of the an-
ticipating operator in a way corresponds to
the inheritance of parents in his edge reversal
rule. However, its application can be com-
putationally rather expensive. It is simple
only in case when the variable to be delete
is boundary , i.e. when this variable is con-
tained among the arguments of only one of
the distributions from a generating sequence
in question. Then Theorem 2 simplifies into
the following form.

Corollary Let π1, π2, . . ., πn be a generating
sequence. If ℓ ∈ Ki for some i ∈ {1, . . . , n}
and ℓ 6∈ Kj for all j 6= i then

(π1 ⊲ π2 ⊲ . . . ⊲ πn)−{ℓ}

= π1 ⊲ . . . ⊲ πi−1 ⊲ π
−{ℓ}
i ⊲ πi+1 ⊲ . . . ⊲ πn.

More effective marginalizing procedures are
however based on the following assertion,
which was proven in [1]. But first let us define
an auxiliary notion of a reduction of a generat-
ing sequence, which will simplify formulations
in the following text.

Definition 4 Let π1, π2, . . . , πn be a generat-
ing sequence, (j1, j2, . . . , jm) a subsequence of
{1, 2, . . . , n} and s ∈ Z = {j1, . . . , jm} be such
that

(
⋃

j∈Z

Kj) ∩ (
⋃

j 6∈Z

Kj) ⊆ Ks.

Then we say that s and Z determine a re-
duction of generating sequence π1, . . . , πn (or
simply that (s, Z) is a reduction).

Theorem 3 Let s ∈ Z and Z = {j1, . . . , jm}
determine a reduction of a perfect sequence
π1, π2, . . . , πn. Then, denoting

L̄j =
⋃

i∈{1,...,j}\Z

Ki,

for all j 6∈ Z, marginal distribution (π1 ⊲ π2 ⊲

. . . ⊲ πn)↓L can be expressed

(π1 ⊲ π2 ⊲ . . . ⊲ πn)↓L = κ1 ⊲ κ2 ⊲ . . . ⊲ κn,

where

κj = πj for j ∈ Z,

κj = π
↓Ks∩L̄j
s for j 6∈ Z.

4 Marginalization Algorithm

In the current section, which is un-
fortunately rather technical, we present
the main results of this contribution.
Considering a perfect generating sequence
π1(xK1

), π2(xK2
), . . . , πn(xKn) and a set of

indices L ⊂ (K1 ∪ K2 ∪ . . . ∪ Kn) we
are going to describe an algorithm perform-
ing computation of a generating sequence
κ1(xL1

), . . . , κm(xLm), representing the re-
quired marginal distribution:

(π1(xK1
) ⊲ π2(xK2

) ⊲ . . . ⊲ πn(xKn))↓L

= κ1(xL1
) ⊲ κ2(xL2

) ⊲ . . . ⊲ κm(xLm).

For this we have to keep in mind that in prac-
tical situations distribution π1 ⊲ . . . ⊲ πn is de-
fined for hundreds (if not thousands) of vari-
ables while the required marginal distribution



κ1 ⊲ . . . ⊲ κm should have only small number
of arguments (usually tens at maximum).

The complete algorithm is depicted in Fig-
ure 2 and will be described in Section 4.3. As
the reader can see, the algorithm consists in
(cyclical) employment of five procedures, four
of which are quite simple (these are described
in Section 4.1) and only one, to which whole
Section 4.2 is devoted, is more complicated.

4.1 Simple Procedures

All the following four simple procedures,
which are based on the theoretical proper-
ties introduced in the previous sections, some-
how modify a generating sequence. There-
fore, the considered generating sequence must
be a part of an input, and a modified se-
quence must form an output of each of these
procedures. So, when describing the proce-
dures we assume that they have the sequence
π1(xK1

), π2(xK2
), . . . , πn(xKn) available.

The first procedure realizes the simplest pos-
sible marginalization based on application of
Lemma 1. Therefore, the procedure must be
informed, which variables may be deleted. It
is done through the index set L, which con-
tains indices of all the variables that must be
retained in the required marginal distribution.

Truncation of an unavailing tail [L].

Find the smallest m, for which

K1 ∪ . . . ∪Km ⊇ L;

Delete distributions πm+1, . . . , πn

from the input sequence.

The second procedure does not realize any
marginalization but simplifies the respective
generating sequence. The fact that this pro-
cedures does not change the respective multi-
dimensional distribution follows immediately
from Lemma 1.

Deletion of redundant elements.

Delete all πj from the input

sequence, for which

Kj ⊆ K1 ∪ . . . ∪Kj−1.

The following two procedures decrease dimen-
sion of the represented distribution by one.

They marginalize one variable, namely Xj,
out. Therefore, index j is an input parameter
of these procedures. The correctness of these
procedures follows from Theorem 2. Whilst
General marginalization procedure may al-
ways be applied, Simple marginalization may
be applied only when j is an element of only
one Kj , i.e. when Xj is a boundary variable.

Simple marginalization [j].

Find ℓ ∈ {1, 2, . . . , n} : j ∈ Kℓ;

Substitute πℓ with π
−{j}
ℓ .

General marginalization [j].

k ← 0;
FOR ℓ ∈ {1, . . . , n} DO {

IF j ∈ Kℓ THEN {
Substitute πℓ with

(κ1©⊲L2
κ2©⊲L3

. . .©⊲Lk
κk©⊲Lπℓ)

−{j};

k ← k + 1; κk ← πℓ; Lk ← L

}
L← L ∪ (Kj \ {j})

}.

4.2 Marginalization by means of

Reduction

The procedures described in the previous sub-
section could decrease dimensionality of the
multidimensional distribution either by one,
or by more than one but only when the vari-
ables to be deleted appeared “in the tail” of
the generating sequence. In this subsection
we describe another possibility, which proves
to be very efficient in many situations, espe-
cially when the number of the variables to be
deleted is really high. This procedure realizes
the situation described by Theorem 3. For
this, one has to find a reduction (s, Z) such
that Z contains all indices of the variables,
for which the computed marginal distribution
should be defined (L ⊆ Z). And it is this very
search for reduction what makes the process
rather complicated.

To find a reduction, the process employs sets
W (Z, j) (defined below) and their properties,
which were proven in [1].

Having a set Z ⊂ {1, . . . , n} and j 6∈ Z the
symbol W (Z, j) denotes the following subset



of indices:

W (Z, j) =

{

s ∈ Z :

(

⋃

i∈Z

Ki

)

∩Kj ⊆ Ks

}

(notice that sets W (Z, j) depend not only on
Z and j but naturally also on the considered
generating sequence).

Lemma 3 If for nonempty Z  {1, . . . , n}
there exists s ∈ Z, for which s ∈

⋂

j 6∈Z

W (Z, j),

then s and Z determine a reduction (of the
considered generating sequence).

Lemma 4 If for j 6∈ Z  {1, . . . , n} ( Z 6=
∅) W (Z, j) ∩ Z = ∅ then for any reduction
determining couple s and Z ′

Z ⊂ Z ′ =⇒ W (Z, j) ∩ Z ′ 6= ∅.

The whole procedure of marginalization by
means of reduction is described in Figure 1.
It employs four simple steps we are now go-
ing to describe and which are theoretically
supported by Theorem 3 and Lemmata 3
and 4. Quite naturally, all these procedures
work with the generating sequence in ques-
tion π1(xK1

), π2(xK2
), . . . , πn(xKn) (but only

one of them - Marginalization [s, Z ′] - modifies
it).

The first procedure extends Z and computes
all sets W (Z, j). This means that Z must
be in both input and output and W (Z, j)
in output of the procedure. The extension
is based on Lemma 4, which, in case that
W (Z, j) = {j}, says that all reductions com-
ing into consideration are such, that the re-
duction set contains not only Z but also j,
and therefore j is automatically added to Z2.

2By application of an heuristic rule, j is added to Z

also in some other situations, namely, when W (Z, j)∩
Z = ∅

Extension of Z

Z n= { ,..., }?1

Exit

Z

Construction of a

connected set

W Z j
i Z

( , ) ?= ∅
∈
∩

Marginalization

s n Z, ,..., \1{ } 

Construction of
a bridge Z

Z Z Z← ∪

Yes No

YesNo

Find the smallest

Z n M Ki
i Z

⊆ ⊆
∈

{ ,..., }: ( )1 ∪

s W Z j
j Z

∈
∈

( , )∩Choose

( )

Figure 1: Marginalization by means of reduc-
tion

Extension of Z.

Zc ← {1, . . . , n} \ Z;
WHILE Zc 6= ∅ DO {

Choose any j ∈ Zc;

W (Z, j)←

{

s∈Z :

(

⋃

i∈Z

Ki

)

∩Kj ⊆ Ks

}

;

IF W (Z, j) = ∅ THEN {
Z ← Z ∪ {j};
Zc ← {1, . . . , n} \ Z

}
ELSE { Zc ← Zc \ {j}
}

}.

In [1] we have shown how sets W (Z, j) can be
used to find a required reduction. Lemma 3
says that we have already succeeded if there
exists s ∈

⋂

j 6∈Z

W (Z, j). We could do this test

immediately when Z is received (by comput-
ing W (Z, j)). However, it is rather improb-
able that we would find such s for all j 6∈ Z



Therefore we place the test after a construc-
tion of a connected set Z̄, which is a smallest
potential set of indices of distributions, which
has a chance to be deleted with the help of
Theorem 3 (for more details, the reader is re-
ferred to [1]).

Construction of a connected set Z̄.

Choose j 6∈ Z;

L̄←
⋃

i∈n̂

Ki \
⋃

i∈Z

Ki; Z̄ ← {j};

WHILE

Z ′←
{

k 6∈Z∪Z̄: ∃ℓ∈ Z̄: Kk∩Kℓ ∩L̄ 6=∅
}

6= ∅
DO {
Z̄ ← Z̄ ∪ Z ′;

}.

If the distributions with indices from Z̄ can be
deleted from the generating sequence (i.e. if
there exists s ∈

⋂

j 6∈Z

W (Z, j)) we perform the

marginalization guaranteed by Theorem 3.

Marginalization [s, Z ′].

L′ ← ∅;
FOR ℓ ∈ {1, . . . , n} DO {

IF ℓ 6∈ Z ′ THEN {
L′ ← L′ ∪ (Ks ∩Kℓ);

Substitute πℓ with π
↓L′

s

}
}.

If the distributions with indices from Z̄ can-
not be deleted from the generating sequence
(i.e. if there does not exists s ∈

⋂

j 6∈Z

W (Z, j))

we have to increase the set Z and continue
with looking for a reduction with a greater Z.
In case that there exist a couple j, k ∈ Z̄ for
which W (Z, j) ∩W (Z, k) ∩ Z = ∅ then it is
quite clear that both these indices must be
added to Z (not to loose a chance of finding a
reduction). If Kj ∩Kk ∩ L̄ = ∅ then it can be
shown that in the next step some other sets
from Z̄ would be added to Z. Therefore we
add to Z not only j and k but also the small-
est group of indices, which are found with the
help of a shortest path in an auxiliary graphs.

In [1] we have shown that in rather special
situations it can happen that there does not

exist a couple j, k ∈ Z̄ with

W (Z, j) ∩W (Z, k) ∩ Z = ∅.

In this case we cannot use the above men-
tioned sophisticated rule and therefore we add
to Z only the smallest group of indices, which
cannot be avoided.

Construction of a bridge Ẑ.

L←
⋃

i∈Z

Ki;

Search for a couple

j, k ∈ Z̄ : W (Z, j) ∩W (Z, k) ∩ Z = ∅;
IF such a couple exists THEN {

Construct a graph G = (V,E):
V = Z̄

E =
{

ℓ1, ℓ2 ∈ Z̄ : Kℓ1 ∩Kℓ2 ∩ L̄ 6= ∅
}

;

Assign to Ẑ the nodes on the

shortest path from j to k;

}
ELSE {

Ẑ ← {i ∈ Z̄ : Ki ∩ L 6= ∅};
}.

4.3 Algorithm

Up to now, we have commented all the pro-
cedures appearing in the scheme in Figure 2
describing the marginalization algorithm:

• Truncation of an unavailing tail,

• Deletion of redundant elements,

• Simple marginalization [j],

• General marginalization [j],

• Marginalization by means of reduction.

So, we could stop describing the marginaliza-
tion algorithm if it were not for the decision
block “Is the condition for reduction fulfilled”.
What is the purpose of this block? One of the
purposes of this decision block is to prevent
unsuccessful repetition of Marginalization by
means of reduction. As we could see from the
last subsection, it can happen that no reduc-
tion pair is found in this process. If this hap-
pens, there is no other way to get the required
marginal distribution than to start applica-
tion of the General marginalization process,
which can always be applied.

And there is one additional purpose of the
discussed decision block, which is, regarding
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Figure 2: Marginalization algorithm

problems of computational optimality, even
more important. The process of marginaliza-
tion by reduction is so complicated, that it
is quite clear that it does not pay off to ap-
ply it when only several variables are to be
marginalized away. In such a case multiple
application of “General marginalization” may
be faster. Not speaking about the fact that
chances to find a reduction, when only sev-
eral superfluous variables have left, are rather
small. The simplest realization of the dis-
cussed decision step is to set up a boundary
for the number of variables to be deleted, for
which the process of marginalization by re-
duction is employed. To find a more sophisti-
cated realization of this step is a task for the

experiments, which are currently performed.
The results of them will be presented at the
conference.

5 Conclusions

In this paper we have described an algorithm
for marginalization in compositional models,
more precisely, models represented by perfect
sequences. The algorithm is based on theo-
retical properties proven in several assertions
published in [1]. The algorithm is currently
realized in the system MUDIM3 and its effi-
ciency is being tested on artificially generated
data. The first results show that a proper re-
alization of the decision step “Is the condition
for reduction fulfilled?” is even more impor-
tant than we expected.

As we do not have any theoretical support
to answer a question whether there exists a
suitable reduction in the considered compo-
sitional model, it may happen that we apply
the process of marginalization by means of re-
duction even in situations when a reduction
does not exist. Moreover, this algorithm is
computationally expensive. So, we expected
that this type of marginalization should be
switched off for small models, and generally
also when only a small number of variables are
to be deleted. Therefore we were quite pleas-
antly surprised that this approach can in-
crease computational efficiency even for small
“laboratory” situations (see first two rows of
Table 1).

In Table 1 we refer to computations with
two models constructed for artificially gen-
erated data. Let us stress that it would be
easy to construct a model, for which the re-
duction substantially decreases the computa-
tional time. Nevertheless, on purpose we are
presenting examples which are, in a way, from
this point of view inconvenient. They rep-
resent distributions of 24 and 100 variables.
The other difference between the models is
that in the first one there exists a reduction
whilst no reduction can be found for the sec-

3The system is realized in R language and all the
computations commented below were performed with
AMD Athlon64 3000+, 1024MB RAM computer.



Table 1: Computational time in seconds

reduction reduction
switched switched

on off

Model 1
marginalization

from 24 to 3
variables

0.12 s 0.69 s

Model 1
marginalization

from 24 to 3
variables

0.53 s 0.61 s

Model 2
marginalization
from 100 to 2

variables

12.45 s 1.67 s

Model 2
marginalization
from 100 to 4

variables

29.41 s 3.06 s

ond model. The difference between the first
two rows of Table 1 shows that the efficiency
of the process does not depend only on the
model – probability distribution, but also on
which variables are to be marginalized out.
This also explains the difference between the
3rd and 4th rows of the Table. The last one
refers to the situation when we deliberately
selected the most “inconvenient” variables for
marginalization.

More experiments with both real and artificial
data will be commented at the conference. By
this time we also hope to introduce a heuristic
rule realizing the critical decision step “Is the
condition for reduction fulfilled?”
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