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9.1 Introduction

Imaging devices have limited achievable resolution due to many theoreti-
cal and practical restrictions. An original scene with a continuous intensity
function o[x, y] warps at the camera lens because of the scene motion and/or
change of the camera position. In addition, several external effects blur im-
ages: atmospheric turbulence, camera lens, relative camera-scene motion, etc.
We will call these effects volatile blurs to emphasize their unpredictable and
transitory behavior, yet we will assume that we can model them as convolution
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with an unknown point spread function (PSF) v[x, y]. This is a reasonable
assumption if the original scene is flat and perpendicular to the optical axis.
Finally, the CCD discretizes the images and produces digitized noisy image
g[i, j] (frame). We refer to g[i, j] as a low-resolution (LR) image, since the
spatial resolution is too low to capture all the details of the original scene. In
conclusion, the acquisition model becomes

g[i, j] = D((v ∗ o[W (n1, n2)])[x, y]) + n[i, j] , (9.1)

where n[i, j] is additive noise and W denotes the geometric deformation (warp-
ing). D(·) = S(g∗·) is the decimation operator that models the function of the
CCD sensors. It consists of convolution with the sensor PSF g[i, j] followed
by the sampling operator S, which we define as multiplication by a sum of
delta functions placed on an evenly spaced grid. The above model for one sin-
gle observation g[i, j] is extremely ill-posed. Instead of taking a single image
we can take K (K > 1) images of the original scene and this way partially
overcome the equivocation of the problem. Hence we write

gk[i, j] = D((vk ∗ o[Wk(n1, n2)])[x, y]) + nk[i, j] , (9.2)

where k = 1, . . . , K, and D remains the same in all the acquisitions. In
the perspective of this multiframe model, the original scene o[x, y] is a single
input and the acquired LR images gk[i, j] are multiple outputs. The model is
therefore called a single input multiple output (SIMO) formation model. The
upper part of Fig. 9.1 illustrates the multiframe LR acquisition process. To
our knowledge, this is the most accurate, state-of-the-art model, as it takes
all possible degradations into account.

Superresolution (SR) is the process of combining a sequence of LR images
in order to produce a higher resolution image or sequence. It is unrealistic
to assume that the superresolved image can recover the original scene o[x, y]
exactly. A reasonable goal of SR is a discrete version of o[x, y] that has a
higher spatial resolution than the resolution of the LR images and that is
free of the volatile blurs (deconvolved). In the sequel, we will refer to this
superresolved image as a high resolution (HR) image f [i, j]. The standard
SR approach consists of subpixel registration, overlaying the LR images on
an HR grid, and interpolating the missing values. The subpixel shift between
images thus constitutes the essential assumption. We will demonstrate that
assuming volatile blurs in the model explicitly leads to a more general and
robust technique, with the subpixel shift being a special case thereof.

The acquisition model in Eq. (9.2) embraces three distinct cases frequently
encountered in literature. First, we face a registration problem, if we want to
resolve the geometric degradation Wk. Second, if the decimation operator D
and the geometric transform Wk are not considered, we face a multichannel (or
multiframe) blind deconvolution (MBD) problem. Third, if the volatile blur
vk is not considered or assumed known, and Wk is suppressed up to a subpixel
translation, we obtain a classical SR formulation. In practice, it is crucial to
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FIGURE 9.1: Low-resolution acquisition (top) and reconstruction flow
(bottom).

consider all three cases at once. We are then confronted with a problem of
blind superresolution (BSR), which is the subject of this investigation. The
approach presented in this chapter is one of the first attempts to solve BSR
with only little prior knowledge.

Proper registration techniques can suppress large and complex geometric
distortions (usually just up to a small between-image shift). There have been
hundreds of methods proposed; see e.g. [31] for a survey. We will assume in
the sequel that the LR images are roughly registered and that Wk’s reduce to
small translations.

The MBD problem has recently attracted considerable attention. First
blind deconvolution attempts were based on single-channel formulations, such
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as in [14, 21, 4, 9]. Kundur et al. [12, 13] provide a good overview. The
problem is extremely ill-posed in the single-channel framework and cannot be
resolved in the fully blind form. These methods do not exploit the potential
of the multichannel framework, because in the single-channel case missing in-
formation about the original image in one channel is not supplemented by
information in the other channels. Research on intrinsically multichannel
methods has begun fairly recently; refer to [11, 8, 18, 19, 24] for a survey and
other references. Such MBD methods overpass the limitations of previous
techniques and can recover the blurring functions from the degraded images
alone. We further developed the MBD theory in [25] by proposing a blind de-
convolution method for images, which might be mutually shifted by unknown
vectors.

A countless number of papers address the standard SR problem. A good
survey can be found for example in [20, 7]. Maximum likelihood (ML), maxi-
mum a posteriori (MAP), the set theoretic approach using POCS (projection
on convex sets), and fast Fourier techniques can all provide a solution to the
SR problem. Earlier approaches assumed that subpixel shifts are estimated
by other means. More advanced techniques, such as in [10, 22, 29], include the
shift estimation of the SR process. Other approaches focus on fast implemen-
tation [6], space-time SR [23] or SR of compressed video [22]. In general, most
of the SR techniques assume a priori known blurs. However, few exceptions
exist. Authors in [17, 28] proposed BSR that can handle parametric PSFs,
i.e., PSFs modeled with one parameter. This restriction is unfortunately very
limiting for most real applications. To our knowledge, first attempts for BSR
with an arbitrary PSF appeared in [27, 30]. The interesting idea proposed
therein is the conversion of the SR problem from SIMO to multiple input mul-
tiple output (MIMO) using so-called polyphase components. We will adopt
the same idea here as well. Other preliminary results of the BSR problem
with focus on fast calculation are given in [2], where the authors propose a
modification of the Richardson-Lucy algorithm.

Current multiframe blind deconvolution techniques require no or very lit-
tle prior information about the blurs, they are sufficiently robust to noise
and provide satisfying results in most real applications. However, they can
hardly cope with the downsampling operator, which violates the standard
convolution model. On the contrary, state-of-the-art SR techniques achieve
remarkable results in resolution enhancement in the case of no blur. They
accurately estimate the subpixel shift between images but lack any apparatus
for calculating the blurs.

We propose a unifying method that simultaneously estimates the volatile
blurs and HR image without any prior knowledge of the blurs and the original
image. We accomplish this by formulating the problem as a minimization of
a regularized energy function, where the regularization is carried out in both
the image and blur domains. The image regularization is based on variational
integrals, and a consequent anisotropic diffusion with good edge-preserving
capabilities. A typical example of such regularization is total variation. How-
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ever, the main contribution of this work lies in the development of the blur
regularization term. We show that the blurs can be recovered from the LR
images up to small ambiguity. One can consider this as a generalization of
the results proposed for blur estimation in the case of MBD problems. This
fundamental observation enables us to build a simple regularization term for
the blurs even in the case of the SR problem. To tackle the minimization
task, we use an alternating minimization approach (see Fig. 9.1), consisting
of two simple linear equations.

The rest of the chapter is organized as follows. Section 9.2 outlines the
degradation model. Section 9.3 reformulates the degradation model using
polyphase formalism, which we utilize in the next section and develop a pro-
cedure for the volatile blur estimation. These results effortlessly blend in a
regularization term of the BSR algorithm as described in Section 9.5. Finally,
Section 9.6 illustrates applicability of the proposed method to real situations.

9.2 Mathematical Model

To simplify the notation, we will assume only images and PSFs with square
supports. An extension to rectangular images is straightforward. Let f [x, y]
be an arbitrary discrete image of size F ×F , then f denotes an image column
vector of size F 2 × 1 and CA{f} denotes a matrix that performs convolution
of f with a kernel of size A×A, i.e., CA{f}k is the vector form of f ∗k, where
k is of size A × A. The convolution matrix can have a different output size.
Adopting the Matlab naming convention, we distinguish two cases: “full”
convolution CA{f} of size (F + A− 1)2×A2 and “valid” convolution Cv

A{f}
of size (F −A + 1)2 ×A2. In both case the convolution matrix is a Toeplitz-
block-Toeplitz (TBT) matrix. In the sequel we will not specify dimensions of
convolution matrices, if it is obvious from the size of the right argument.

Let us assume we have K different LR frames {gk} (each of size G × G)
that represent degraded (blurred and noisy) versions of the original scene.
Our goal is to estimate the HR representation of the original scene, which we
denoted as the HR image f of size F ×F . The LR frames are linked with the
HR image through a series of degradations similar to those between o[x, y]
and gk in (9.2). First f is geometrically warped (Wk), then it is convolved
with an volatile PSF (Vk) and finally it is decimated (D). The formation of
the LR images in vector-matrix notation is then described as

gk = DVkWkf + nk , (9.3)

where nk is additive noise present in every channel. The decimation matrix
D = SU simulates the behavior of digital sensors by performing first con-
volution with the U × U sensor PSF (U) and then downsampling (S). The
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Gaussian function is widely accepted as an appropriate sensor PSF and it is
also used here. Its justification is experimentally verified in [3]. A physical
interpretation of the sensor blur is that the sensor is of finite size and it in-
tegrates impinging light over its surface. The sensitvity of the sensor is the
highest in the middle and decreases towards its borders with Gaussian-like de-
cay. Further we assume that the subsampling factor (or SR factor, depending
on the point of view), denoted by ε, is the same in both x and y directions.
It is important to underline that ε is a user-defined parameter. In principle,
Wk can be a very complex geometric transform that must be estimated by
image registration or motion detection techniques. We have to keep in mind
that sub-pixel accuracy in gk’s is necessary for SR to work. Standard image
registration techniques can hardly achieve this and they leave a small misalign-
ment behind. Therefore, we will assume that complex geometric transforms
are removed in the preprocessing step and Wk reduces to a small translation.
Hence VkWk = Hk, where Hk performs convolution with the shifted version
of the volatile PSF vk, and the acquisition model becomes

gk = DHkf + nk = SUHkf + nk . (9.4)

The BSR problem then adopts the following form: We know the LR images
{gk} and we want to estimate the HR image f for the given S and the sen-
sor blur U. To avoid boundary effects, we assume that each observation gk

captures only a part of f . Hence Hk and U are “valid” convolution matri-
ces Cv

F {hk} and Cv
F−H+1{u}, respectively. In general, the PSFs hk are of

different size. However, we postulate that they all fit into a H ×H support.
In the case of ε = 1, the downsampling S is not present and we face a

slightly modified MBD problem that has been solved elsewhere [11, 25]. Here
we are interested in the case of ε > 1, when the downsampling occurs. Can
we estimate the blurs like in the ε = 1 case? The presence of S prevents us
to use the cited results directly. In the next section we use the polyphase
formulation and transfer the problem from SIMO to MIMO. We then show
that conclusions obtained for MBD apply here in a slightly modified form as
well.

9.3 Polyphase Formulation

Polyphase formalism is an elegant way how to rewrite the acquisition model
and thus get a better insight into BSR. First we will assume integer SR factors,
for which the model is simple and easy to understand. Then we will generalize
it for rational SR factors, for which we will take the full advantage of polyphase
formalism. It will allow us to formulate the model for rational factors using a
combination of integer factors.
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Before we proceed, it is necessary to define precisely the sampling matrix
S. Let Sε

i denote a 1-D sampling matrix, where ε is the integer subsampling
factor and i = 1, . . . , ε. Each row of the sampling matrix is a unit vector whose
nonzero element is at such position that, if the matrix multiplies an arbitrary
vector b, the result of the product is every ε-th element of b starting from bi.
If the vector length is M then the size of the sampling matrix is (M/ε)×M .
If M is not divisible by ε, we can pad the vector with an appropriate number
of zeros to make it divisible. A 2-D sampling matrix is defined by

Sε
i,j := Sε

i ⊗ Sε
j . (9.5)

If the starting index (i, j) will be (1, 1) we will omit the subscript and simply
write Sε. Note that the transposed matrix (Sε)T behaves as an upsampling
operator that interlaces the original samples with (ε− 1) zeros. Now, we are
ready to define polyphase components of an image f [x, y] as

f ij := Sε
i,jf , (9.6)

which is equivalent to

f ij := [f [i, j], f [i + ε, j], f [i + 2ε, j], . . . , f [i, j + ε], f [i + ε, j + ε], . . . ]T .

Therefore, each image breaks into ε2 distinct polyphase components (down-
sampled versions of the image); see Fig. 9.2. We will refer to this decomposi-
tion as a polyphase decomposition, and write Pεf , where

Pε := [(Sε
1,1)

T , . . . , (Sε
ε,1)

T , (Sε
1,2)

T , . . . , (Sε
ε,ε)

T ]T . (9.7)

Similar decomposition was proposed in [15]. Note that P is a permutation
matrix and therefore PT P = PPT = I. We first derive polyphase formulation
for integer SR factors and then using a simple trick we extend it to rational
ones.

9.3.1 Integer downsampling factor

Let us consider a simple convolution equation

g = Hf , (9.8)

and explore the benefits of the polyphase decomposition. Multiplying by Pε,
we get

[Pεg] = [PεH(Pε)T ][Pεf ] . (9.9)

The permutation matrix Pε decomposes an image into ε2 polyphase compo-
nents, and in our case, Pεg = [(g11)T , . . . , (gεε)T ]T and Pεf = [(f11)T , . . . , (fεε)T ]T .
For the next discussion it is fundamental to make the observation that [PεH(Pε)T ]
consists of ε2×ε2 blocks. Each block retains the TBT shape of H but performs
convolution with one polyphase component of h.
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FIGURE 9.2: Polyphase decomposition for ε = 2: Original image f de-
composes into 4 downsampled images.

We see that (9.9) is just a permutation of rows and columns of (9.8). The
advantage of the polyphase formulation resides in the fact that downsampling
is equivalent to a section of (9.9) that corresponds to one polyphase com-
ponent. We conclude this part by reformulating the acquisition model (9.4)
using polyphase components and obtain

gk = SεUHkf + nk = [SεUHk(Pε)T ][Pεf ] + nk , (9.10)

for k = 1, . . . , K. Instead of Sε = Sε
1,1 one can use any Sε

i,j . However, they
are all equivalent from the reconstruction point of view as they correspond to
different translations of the HR image f . In the introduction we regarded the
acquisition model as SIMO, with one input channel f and K output channels
gk. Under closer examination of the above polyphase formulation, one can
see that [SεUHk(Pε)T ] consists of 1 × ε2 convolution matrices and that in
reality the model is of the MIMO type with ε2 input channels (polyphase
components of f) and K output channels gk.

9.3.2 Rational downsampling factor

Integer SR factors are too limiting. From the practical point of view, we
would like to have non-integer SR factors as well. We can extend the above
results to factors expressed as a fraction p/q where p and q are positive integers
and p > q (p and q are reduced so that they do not have any common factor).

Let ε = p/q and the sampling frequency of the LR images gk be q, then
the sampling frequency (number of pixels per unit distance) of the HR image
f is p. From each LR image gk we generate q2 polyphase components. We
consider these polyphase components as new output (downsampled-LR) im-
ages with the sampling frequency 1. Now, to obtain the HR image from the
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FIGURE 9.3: Rational downsampling ε = 3/2 in 1-D: We have LR signals
(middle row) with the sampling frequency 2 and we want to obtain a HR
signal (top row) with the sampling frequency 3. We convert this scenario to
the one with the integer SR factor by considering every second sample of the
LR signal and thus creating from each LR signal two signals (bottom row) of
half size. These downsampled-LR signals are then used in the SR problem
with the integer factor 3.

downsampled-LR images, we must solve a SR problem with the integer factor
ε = p and not with the rational one as before. In other words, in order to
get an integer SR factor we downsample the LR images and thus artificially
increase the number of channels. However, the number of unknown PSFs hk

remains the same. We still have K PSFs since every pack of q2 downsampled-
LR images contains the same blur. An illustrative diagram of the process in
1-D for ε = 3/2 is given in Fig. 9.3.

It is important to understand the discretization of the sensor PSF u in the
case of fractional SR factors. Since p is not divisible by q, the product SU is
shift-variant and it depends on a relative shift between the HR and LR pixels.
One can readily see that the relative shift repeats every q-th pixels (in both
directions x and y) of the LR image and therefore we have q2 distinct PSF
discretizations. To better understand this concept, see the configuration for
ε = 3/2 in Fig. 9.4.

Similarly to (9.10), we reformulate the acquisition model (9.4) using polyphase
components and write

[Pqgk] =






SpU1,1

...
SpUq,q


Hk(Pp)T


 [Ppf ] + nk , (9.11)

where each Ui,j performs convolution with one of the q2 discretizations of the
sensor PSF u. We see that the rational and integer SR factors lead to similar
expressions. Only in the rational case, the resulting MIMO problem has Kq2
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FIGURE 9.4: Sensor PSF discretization for the SR factor 3/2: Different
discretizations of the PSF reside in a varying relative shift between LR and
HR pixels. If the LR pixels is 1.5× the size of the HR pixel, then two distinct
discretizations (a) and (b) show up in 1-D (in 2-D we have 4 discretizations).
The plotted curves depict the sensor PSF in the continuous domain at different
locations and the bar plots its discrete version.

output channels and p2 input channels.

9.4 Reconstruction of Volatile Blurs

Estimation of blurs in the MBD case (no downsampling) attracted consid-
erable attention in the past. A wide variety of methods were proposed, such
as in [11, 8], that provide a satisfactory solution. For these methods to work
correctly, certain channel disparity is necessary. The disparity is defined as
weak co-primeness of the channel blurs, which states that the blurs have no
common factor except of a scalar constant. In other words, if the channel blurs
can be expressed as a convolution of two subkernels then there is no subkernel
that is common to all blurs. An exact definition of weakly co-prime blurs can
be found in [8]. The channel co-primeness is satisfied for many practical cases,
since the necessary channel disparity is mostly guaranteed by the nature of
the acquisition scheme and random processes therein. We refer the reader to
[11] for a relevant discussion. This channel disparity is also necessary for the
BSR case.

Let us first recall how to estimate blurs in the MBD case and then we
will show how to generalize the results for integer and rational downsampling
factors. In the following, we will assume that noise n is not present and wait
till the next section 9.5, where we will address noise appropriately.
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9.4.1 The MBD case

The downsampling matrix S is not present in (9.4) and only convolution
binds the input with the outputs. The acquisition model is of the SIMO type
with one input channel f and K output channels gk. Under the assumption of
channel co-primeness, we can see that any two correct blurs hi and hj satisfy

‖gi ∗ hj − gj ∗ hi‖2 = 0 . (9.12)

Considering all possible pairs of blurs, we can arrange the above relation into
one system

N ′h = 0 , (9.13)

where h = [hT
1 , . . . ,hT

K ]T and N ′ is constructed solely by matrices that per-
form convolution with gk. In most real situations the correct blur size (we
have assumed square size H × H) is not known in advance and therefore
we can generate the above equation for different blur dimensions Ĥ1 × Ĥ2.
The nullity (null-space dimension) of N ′ is exactly 1 if the blur size is cor-
rectly estimated. By applying SVD (singular value decomposition), we re-
cover precisely the blurs except to a scalar factor. One can eliminate this
magnitude ambiguity by stipulating that

∑
x,y hk[x, y] = 1, which is a com-

mon brightness preserving assumption. If the blur size is underestimated,
the above equation has no solution. If the blur size is overestimated, then
nullity(N ′) = (Ĥ1 −H + 1)(Ĥ2 −H + 1).

9.4.2 The BSR case

A naive approach, e.g. proposed in [26, 5], is to modify (9.13) in the MBD
case by applying downsampling and formulating the problem as

min
h
‖N ′[IK ⊗ SεU]h‖2 , (9.14)

where IK is the K ×K identity matrix. One can easily verify that the condi-
tion in (9.12) is not satisfied for the BSR case as the presence of downsampling
operators violates the commutative property of convolution. Even more dis-
turbing is the fact that minimizers of (9.14) do not have to correspond to the
correct blurs. However, if we use the MIMO polyphase formulation in (9.10)
or in (9.11), we will show that the reconstruction of the volatile PSFs hk is
possible even in the BSR case. We will see that for the integer SR factors ε,
some ambiguity in the solution of hk is inevitable, irrespective of the knowl-
edge of the sensor blur u. For the rational ε, a solution is possible if and
only if the sensor blur u is known and surprisingly the solution is without any
ambiguity. Note that for correct reconstruction of the HR image, the sensor
blur is necessary in any case.

First, we need to rearrange the acquisition model (9.4) and construct from
the LR images gk a convolution matrix G with a predetermined nullity. Then
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we take the null space of G and construct a matrix N , which will contain the
correct PSFs hk in its null space.

Let E×E be the size of “nullifying” filters. The meaning of this name will
be clear later. Define G := [G1, . . . ,GK ], where Gk := Cv

E{gk} are “valid”
convolution matrices. Using (9.10) without noise, we can express G in terms
of f , u and hk as

G = SεFUH , (9.15)

where
H := [CεE{h1}(Sε)T , . . . ,CεE{hK}(Sε)T ] , (9.16)

U := CεE+H−1{u} and F := Cv
εE+H+U−2{f}.

The convolution matrix U has more rows than columns and therefore it is
of full column rank (see proof in [11] for general convolution matrices). We
assume that SεF has full column rank as well. This is almost certainly true
for real images if F has at least ε2-times more rows than columns. Thus
Null(G) ≡ Null(H) and the difference between the number of columns and
rows of H bounds from below the null space dimension, i.e.,

nullity(G) ≥ KE2 − (εE + H − 1)2 . (9.17)

Setting N := KE2 − (εE + H − 1)2 and N := Null(G), we visualize the null
space as

N =




η1,1 . . . η1,N
...

. . .
...

ηK,1 . . . ηK,N


 , (9.18)

where ηkn is the vector representation of the nullifying filter ηkn of size E×E,
k = 1, . . . , K and n = 1, . . . , N . Let η̃kn denote upsampled ηkn by factor ε,
i.e., η̃kn := (Sε)T ηkn. Then, we define

N :=




CH{η̃1,1} . . . CH{η̃K,1}
...

. . .
...

CH{η̃1,N} . . . CH{η̃K,N}


 (9.19)

and conclude that
Nh = 0 , (9.20)

where hT = [h1, . . . ,hK ]. We have arrived to an equation that is of the
same form as (9.13) in the MBD case. Here we have the solution to the blur
estimation problem for the BSR case. However, since it was derived from
(9.10), which is of the MIMO type, the ambiguity of the solution is higher. It
has been shown in [16] that the solution of the blind 1-D MIMO case is unique
apart from a mixing matrix of input signals. The same holds true here as well.
Without proofs we provide the following statements. For the correct blur size,
nullity(N ) = ε4. For the underestimated blur size, (9.20) has no solution. For
the overestimated blur size Ĥ1×Ĥ2, nullity(N ) = ε2(Ĥ1−H+ε)(Ĥ2−H+ε).



Reconstruction of Volatile Blurs 21

The conclusion may seem to be pessimistic. For example, for ε = 2 the
nullity is at least 16, and for ε = 3 the nullity is already 81. Nevertheless,
Section 9.5 shows thatN plays an important role in the regularized restoration
algorithm and its ambiguity is not a serious drawback.

It remains to describe the procedure for the rational downsampling fac-
tors ε = p/q. The analysis starts by rearranging the acquisition model in
(9.11). Again, let E × E be the size of nullifying filters. In the previous
section, we have seen that there are q2 distinct discretizations of the sen-
sor PSF u that depend on the relative shift between HR and LR pixels.
Let ui,j (i, j = 1, . . . , q) denote such discretizations. We define “full” con-
volution matrix Ui,j := CpE+H−1{ui,j} and “valid” convolution matrices
F := Cv

pE+U+H−2{f}, Gk := Cv
qE{gk}. Then define

G := [G1, . . . ,GK ] ,

H′ := [Iq2 ⊗CpE{h1}, . . . , Iq2 ⊗CpE{hK}][IKq2 ⊗ (Sε)T ]

The degradation model for the rational SR factor ε = p/q becomes

SqG[IK ⊗Pq] = SpF[U1,1, . . . ,Uq,q]H′ (9.21)

The integer SR factor is a special case of this equation. By setting q = 1 we
obtain (9.15).

In analogy with the derivation steps for the integer case, we proceed as
follows. Set N := Null(SqG). The size of N is K(qE)2×N , where we assume
N ≥ K(qE)2 − (pE + H + U − 1)2 > 0. We visualize the null space as

N =




η1,1 . . . η1,N
...

. . .
...

ηq2,1 . . . ηq2,N
...

. . .
...

ηKq2,1 . . . ηKq2,N




, (9.22)

where ηkn is the vector representation of the nullifying filter ηkn of size E×E.
Let η̃kn denote upsampled ηkn by factor p. Then

N :=




CU+H−1{η̃1,1} . . . CU+H−1{η̃Kq2,1}
...

. . .
...

CU+H−1{η̃1,N} . . . CU+H−1{η̃Kq2,N}


× IK ⊗



CH{u1,1}

...
CH{uq,q}


 (9.23)

and we conclude that
Nh = 0 . (9.24)

The presence of shifted versions of u eliminates any ambiguity of the solution
and we can prove that for the correctly estimated blur size the nullity of N
is 1.
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While this conclusion may appear optimistic, one should realize an impor-
tant detail that distinguishes N for the rational factors from N for the integer
factors. The matrix N in the integer case does not depend on u and therefore
the reconstruction of hk, though ambiguous, can be carried out even without
the knowledge of the sensor PSF. On the other hand, N in the rational case
contains q2 distinct discretizations of the sensor PSF and the reconstruction
of hk can fail if the sensor PSF is incorrectly estimated.

Another interesting consequence of the above derivation is the minimum
necessary number of LR images for the blur reconstruction to work. The
condition of the G nullity in (9.17) implies that the minimum number is K >
ε2. For example, for ε = 3/2, 3 LR images are sufficient; for ε = 2, we need
at least 5 LR images to perform blur reconstruction.

9.5 Blind Superresolution

In order to solve the BSR problem, i.e, determine the HR image f and
volatile PSFs hk, we adopt a classical approach of minimizing a regularized
energy function. This way the method will be less vulnerable to noise and
better posed. The energy consists of three terms and takes the form

E(f ,h) =
K∑

k=1

‖DHkf − gk‖2 + αQ(f) + βR(h) . (9.25)

The first term measures the fidelity to the data and emanates from our acqui-
sition model (9.4). The remaining two are regularization terms with positive
weighting constants α and β that attract the minimum of E to an admissible
set of solutions. The form of E very much resembles the energy proposed in
[25] for MBD. Indeed, this should not come as a surprise since MBD and SR
are related problems in our formulation.

Regularization Q(f) is a smoothing term of the form

Q(f) = fT Lf , (9.26)

where L is a high-pass filter. A common strategy is to use convolution with the
Laplacian for L, which in the continuous case, corresponds to Q(f) =

∫ |∇f |2.
Recently, variational integrals Q(f) =

∫
φ(|∇f |) were proposed, where φ is a

strictly convex, nondecreasing function that grows at most linearly. Examples
of φ(s) are s (total variation),

√
1 + s2 − 1 (hypersurface minimal function),

log(cosh(s)), or nonconvex functions, such as log(1 + s2), s2/(1 + s2) and
arctan(s2) (Mumford-Shah functional). The advantage of the variational ap-
proach is that while in smooth areas it has the same isotropic behavior as
the Laplacian, it also preserves edges in images. The disadvantage is that it
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is highly nonlinear and to overcome this difficulty, one must use, e.g., half-
quadratic algorithm [1]. For the purpose of our discussion it suffices to state
that after discretization we arrive again at (9.26), where this time L is a posi-
tive semidefinite block tridiagonal matrix constructed of values depending on
the gradient of f . The rationale behind the choice of Q(f) is to constrain the
local spatial behavior of images; it resembles a Markov Random Field. Some
global constraints may be more desirable but are difficult (often impossible)
to define, since we develop a general method that should work with any class
of images.

The PSF regularization term R(h) directly follows from the conclusions of
the previous section. Since the matrix N in (9.20) (integer factor) or in (9.24)
(rational factor) contains the correct PSFs hk in its null space, we define the
regularization term as a least-squares fit

R(h) = ‖Nh‖2 = hTN TNh . (9.27)

The product N TN is a positive semidefinite matrix. More precisely, R is a
consistency term that binds the different volatile PSFs to prevent them from
moving freely and unlike the fidelity term (the first term in (9.25)) it is based
solely on the observed LR images. A good practice is to include with a small
weight a smoothing term hT Lh in R(h). This is especially useful in the case
of less noisy data to overcome the higher nullity of integer-factor N .

The complete energy then takes the form

E(f ,h) =
K∑

k=1

‖DHkf − gk‖2 + αfT Lf + β1‖Nh‖2 + β2hT Lh . (9.28)

To find a minimizer of the energy function, we perform alternating mini-
mizations (AM) of E over f and h. The advantage of this scheme lies in its
simplicity. Each term of (9.28) is quadratic and therefore convex (but not
necessarily strictly convex) and the derivatives w.r.t. f and h are easy to cal-
culate. This AM approach is a variation on the steepest-descent algorithm.
The search space is a concatenation of the blur subspace and the image sub-
space. The algorithm first descends in the image subspace and after reaching
the minimum, i.e., ∇fE = 0, it advances in the blur subspace in the direction
∇hE orthogonal to the previous one, and this scheme repeats. In conclusion,
starting with some initial h0 the two iterative steps are:

step 1) fm =arg min
f

E(f ,hm)

⇔(
K∑

k=1

HT
k DT DHk + αL)f =

K∑

k=1

HT
k DT gk , (9.29)

step 2) hm+1 =arg min
h

E(fm,h)

⇔([IK ⊗ FT DT DF] + β1N TN + β2L)h = [IK ⊗ FT DT ]g ,
(9.30)
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where F := Cv
H{f}, g := [gT

1 , . . . ,gT
K ]T and m is the iteration step. Note

that both steps consist of simple linear equations.
Energy E as a function of both variables f and h is not convex due to the

coupling of the variables via convolution in the first term of (9.28). Therefore,
it is not guaranteed that the BSR algorithm reaches the global minimum. In
our experience, convergence properties improve significantly if we add feasi-
ble regions for the HR image and PSFs specified as lower and upper bounds
constraints. To solve step 1, we use the method of conjugate gradients (func-
tion cgs in Matlab) and then adjust the solution fm to contain values in the
admissible range, typically, the range of values of g. It is common to as-
sume that PSF is positive (hk ≥ 0) and that it preserves image brightness.
We can therefore write the lower and upper bounds constraints for PSFs as
hk ∈ 〈0, 1〉H2

. In order to enforce the bounds in step 2, we solve (9.30) as a
constrained minimization problem (function fmincon in Matlab) rather than
using the projection as in step 1. Constrained minimization problems are
more computationally demanding but we can afford it in this case since the
size of h is much smaller than the size of f .

The weighting constants α and βi depend on the level of noise. If noise
increases, α and β2 should increase, and β1 should decrease. One can use
parameter estimation techniques, such as cross-validation [17] or expectation
maximization [15], to determine the correct weights. However, in our exper-
iments we set the values manually according to a visual assessment. If the
iterative algorithm begins to amplify noise, we have underestimated the noise
level. On contrary, if the algorithm begins to segment the image, we have
overestimated the noise level.

9.6 Experiments

This section consists of two parts. In the first one, a set of experiments
on synthetic data evaluate performance of the BSR algorithm1 with respect
to noise and different regularization terms R(h). The second part demon-
strates the applicability of the proposed method to real data and evaluates
performance under different input scenarios. Moreover, we compare the re-
construction quality with other two methods: one interpolation technique and
one state-of-the-art SR approach. A brief description of these methods follows
later.

In all experiments, the sensor blur is fixed and set to a Gaussian function of
standard deviation σ = 0.34 (relative to the scale of LR images). One should
underline, that the proposed BSR method is fairly robust to the choice of

1The BSR algorithm is implemented in Matlab v7.1 and is available on request.
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FIGURE 9.5: Simulated data: (a) original 270× 200 image; (b) six 7× 7
volatile PSFs used to blur the original image.

the Gaussian variance, since it can compensate for the insufficient variance
by automatically including the missing factor of Gaussian functions in the
volatile blurs.

Another potential pitfall that we have take into consideration is a feasible
range of SR factors. Clearly, as the SR factor ε increases we need more LR
images and the stability of BSR decreases. In addition, rational SR factors
p/q, where p and q are incommensurable and large regardless of the effective
value of ε, also make the BSR algorithm unstable. It is the numerator p that
determines the internal SR factor used in the algorithm; see Section 9.3.2.
Hence we limit ourselves to ε between 1 and 2.5, such as 3/2, 5/3, 2, etc.,
which is sufficient in most practical applications.

9.6.1 Simulated data

First, let us demonstrate the BSR performance with a simple experiment.
A 270 × 200 image in Fig. 9.5(a) blurred with six masks in Fig. 9.5(b) and
downsampled with factor 2 generated six LR images. Using the LR images
as an input, we estimated the original HR image with the proposed BSR
algorithm for ε = 1.25 and 1.75. In Fig. 9.6 one can compare the results
printed in their original size. The HR image for ε = 1.25 (Fig. 9.6(b)) has
improved significantly on the LR images due to deconvolution, however some
details, such as the shirt texture, exhibit artifacts. For the SR factor 1.75, the
reconstructed image in Fig. 9.6(c) is almost perfect.

Next, we would like to compare performance of different matrices N in-
side the blur regularization term R(h) and robustness of the BSR algorithm
to noise. Section 9.4 has shown that two distinct approaches exist for blur
estimation. Either we use the naive approach in (9.14) that directly utilizes
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(a) (b) (c)

FIGURE 9.6: BSR of simulated data: (a) one of six LR images with the
downsampling factor 2; (b) BSR for ε = 1.25; (c) BSR for ε = 1.75. The
shirt texture shows interference for the SR factor 1.25 but becomes well re-
constructed for the SR factor 1.75.

the MBD formulation, or we apply the intrinsically SR approach (polyphase
formulation) proposed in (9.20) and (9.24) for integer and rational factors,
respectively. Depending on the approach, the nullity of N varies, which in-
fluences the shape of the blur regularization functional. We considered three
distinct scenarios with the original image and PSFs in Fig. 9.5. In the first
one, we downsampled the blurred images with the integer factor 2 and per-
formed BSR for ε = 2 using the naive approach inside blur regularization
R(h). In the second scenario, we again downsampled the images with the
factor 2 and performed BSR for ε = 2 but utilized the polyphase approach
for integer factors. The last scenario simulates a situation with rational SR
factors. We downsampled the images with the rational factor 7/4 (= 1.75)
and applied BSR with ε = 7/4 and with the polyphase approach for ratio-
nal factors. In order to evaluate also the noise robustness, we added white
Gaussian noise to the LR images with SNR 50dB and 30dB. Note that the
signal-to-noise ratio is defined as SNR = 10 log(σ2

f/σ2
n), where σf and σn are

the image and noise standard deviations, respectively. The BSR algorithm
ran without the smoothing term on volatile blurs (β2 = 0, refer to discussion
in Section 9.5) to avoid artificial enhancement of blurs and to study solely the
effect of different matrices N .

Results are not evaluated with any measure of reconstruction quality, such
as mean-square errors or peak signal to noise ratios. Instead we print the
results and leave the comparison to a human eye as we believe that in this case
the visual assessment is the only reasonable method. Estimated HR images
and volatile blurs for three scenarios and two levels of noise are in Figs. 9.7 and
9.8. For 50dB (low noise), the performance strongly depend on the applied
regularization. If we use the naive approach in the first scenario, the estimated
PSFs are inaccurate and hence the reconstructed HR image contains many
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artefacts as one can see in Fig. 9.7(a). In the second scenario (Fig. 9.7(b)), the
reconstructed PSFs resemble the original ones but exhibit patch-like patterns
due to higher nullity of N , which is 16 for the integer SR factor 2. The
patch-like pattern emanates from our inability to determine the mixing matrix
for polyphase components. However, the reconstructed HR images display
quality comparable to the original image. The third scenario (Fig. 9.7(c))
with the rational SR factor 1.75 provides the most accurate estimates of the
PSFs (the nullity is 1) but for the HR image the improvement on the SR
factor 2 is negligible. Clearly, more strict and accurate regularization terms
improve HR images, yet as the noise level increases the performance boost
diminishes. In the case of 30dB in Fig. 9.8, the reconstructed HR images
are very similar for all three scenarios, though the PSFs still differ a lot and,
e.g., the naive approach gives totally erroneous estimates. The reason for this
higher tolerance to inaccurate PSFs resides in constants α and β (weights).
To prevent amplification of noise, the weight α of the image smoothing term
must be set higher and the other terms in the energy function become less
important. Consequently, the estimated HR images tend to piecewise constant
functions (general behavior of the TV seminorm) and discrepancies in the
volatile blurs become less important. The BSR algorithm flattens interiors
of objects to nearly homogeneous regions. Notice, e.g., that the shirt texture
well reconstructed in 50dB is removed in 30dB reconstruction.

9.6.2 Real data

We tested the BSR method on real photos acquired with three different
acquisition devices: mobile phone, webcamera and standard digital camera.
The mobile phone of Nokia brand was equipped with a 1 Mpixel camera. The
webcam was Logitech QuickCam for Notebooks Pro with the maximum video
resolution 640 × 480 and the minimum shutter speed 1/10s. The last and
most advanced device was a 5 Mpixel color digital camera (Olympus C5050Z)
equipped with an optical zoom 3×. Since this work considers gray-level im-
ages, LR images correspond either to green channels or to gray-level images
converted from color photos. To compare the quality of SR reconstruction, we
provide results of two additional methods: interpolation technique and state-
of-the-art SR method. The former technique consists of the MBD method
proposed in [25] followed by standard bilinear interpolation (BI) resampling.
The MBD method first removes volatile blurs and then BI of the deconvolved
image achieves the desired spatial resolution. The latter method, which we
will call herein a “standard SR algorithm”, is a MAP formulation of the SR
problem proposed, e.g., in [10, 22]. This method uses a MAP framework for
the joint estimation of image registration parameters (in our case only trans-
lation) and the HR image, assuming only the sensor blur (U) and no volatile
blurs. For an image prior, we use edge preserving Huber Markov Random
Fields [3].

First, the performance of the proposed BSR method was tested on data
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FIGURE 9.7: BSR of simulated data with SNR = 50dB: Estimated HR
images and PSFs for three different regularization matrices; (a) naive ap-
proach for the SR factor 2; (b) proposed polyphase approach for the integer
SR factor 2; (c) proposed polyphase approach for the rational SR factor 7/4
(1.75). Note artifacts in (a) and the accurate PSF reconstruction in (c).

with negligible volatile blurs. Using the mobile phone, we took eight images
of a sheet of paper with text. Fig. 9.9(a) shows one part (70 × 80) of the
image (zero-order interpolation) considered in this experiment. Since the
light conditions were good, the shutter speed of the mobile was short, which
minimized any possible occurrence of volatile blurs. We set the desired SR
factor to 2 and applied the standard SR method, MBD with BI, and BSR with
outcomes in Figs. 9.9(b), (c) and (d), respectively. The standard SR technique
gave results equivalent to those obtained by the BSR algorithm. In both
cases the text is legible and the PSFs are almost identical, which indicates
that the volatile blurs estimated by the BSR method were close to Dirac
pulses. Consequently, the MBD method achieved only a little improvement
as there was no blurring and bilinear interpolation does not create any new
information.

The next two experiments demonstrate the true power of the BSR algo-
rithm as we now consider LR images with substantial blurring. In the first
one, we hold the webcam in hands and captured a short video sequence under
poor light conditions. Then we extracted 10 consecutive frames and consid-
ered a small section of size 80×60; see one frame with zero-order interpolation
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FIGURE 9.8: BSR of simulated data with SNR = 30dB: Estimated HR
images and PSFs for three different regularization matrices; (a) naive ap-
proach for the SR factor 2; (b) proposed polyphase approach for the integer
SR factor 2; (c) proposed polyphase approach for the rational SR factor 7/4
(1.75). Due to noise, the image smoothing regularization term takes over and
the HR images are smoother than for SNR = 50dB in Fig. 9.7.

in Fig. 9.10(a). The long shutter speed (1/10s) together with the inevitable
motion of hands introduced blurring into the images. In this experiment,
the SR factor was again 2. The standard SR algorithm could not handle
this complicated situation with volatile blurs and the reconstructed HR im-
age in Fig. 9.10(b) shows many disturbing artefacts. The MBD combined
with BI removed blurring but subtle details in the image remained hidden;
see Fig. 9.10(c). On the other hand, the proposed BSR algorithm removed
blurring and performed SR correctly as one can compare in Fig. 9.10(d); note,
e.g., the word “BŘEZEN”. The PSFs estimated by the MBD and BSR look
similar, as expected, but the BSR blurs contain more details.

In the second experiment, we compare the three reconstruction techniques
on blurred photos of a car front. With the digital camera, we took four shots
in a row and cropped a 120 × 125 rectangle from each. All four cuttings
printed in their original size (no interpolation) are in Fig. 9.11(a). Similar
to the previous experiment, the camera was held in hands, and due to the
longer shutter speed, the LR images exhibit blurring. We set the SR factor
to 5/3. Again we applied all three techniques as before. In order to better
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asses the obtained results we took one additional image with optical zoom
1.7× (close to the desired SR factor 5/3) and with the camera mounted on
a tripod to avoid any volatile blurs. This image served as the ground truth;
see Fig. 9.11(e). Both MBD with BI in Fig. 9.11(b) and the standard SR
approach in Fig. 9.11(c) failed to provide sharp HR images. The proposed
BSR method outperformed both techniques and returned a well reconstructed
HR image (Fig. 9.11(d)), which is comparable to the “ground-true” image
acquired with the optical zoom and tripod. The PSFs estimated with BSR
are in Fig. 9.11(f). To better evaluate the results, refer to four close-ups in
Fig. 9.11(g).

9.6.3 Performance experiments

When dealing with real data, one cannot expect that the performance will
increase indefinitely as the number of available LR images increases. At a cer-
tain point, possible discrepancies between the measured data and our mathe-
matical model take over, and the estimated HR image does not improve any
more or it can even get worse. We conducted several experiments on real data
(short shutter speed and still shooting objects) with different SR factors and
number of LR images K. See the results of one such experiment in Fig. 9.12
for ε = 7/4 and the number of LR images ranging from 4 to 10. Note, that
at the end of Section 9.4.2 we concluded that the minimum number of LR
images necessary to construct the blur regularization R(h) for ε = 7/4 is 4.
A certain improvement is apparent in using 6 instead of 4 LR images; see
Fig. 9.12(c). However, results obtained with more images (8 and 10) show
almost no improvement. We deduce that for each SR factor exists an optimal
number of LR images that is close to the minimum necessary number. There-
fore in practice, we recommend to use the minimum or close to minimum
number of LR images for the given SR factor.

The last experiment of this chapter demonstrates that the BSR method
truly reconstructs high-frequency information, which is otherwise unavailable
in the single LR image. With the digital camera, we took eight images of
a ISO test pattern “Chart”. The original chart is in Fig. 9.13(b) and one
of the acquired LR images with zero-order interpolation is in Fig. 9.13(a).
A riveting feature of this chart is that if BSR can recover high frequencies
then we should be able to distinguish the rays closer to the center and thus
eliminate the Moire effect apparent on the LR images. We applied the BSR
algorithm with six different SR factors from ε = 1 to 2.5; see the estimated HR
images in Fig. 9.13(c). From the obtained results it is clear that the amount
of high-frequency information estimated by BSR depends on the SR factor.
The Moire effect still visible for ε = 1.25, disappears for ε = 1.5. As the SR
factor increases, the rays become better outlined closer to the center of the
chart. However, this does not continue to infinity for real noisy data. In this
case, we did not see any objective improvement beyond ε = 2.
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FIGURE 9.9: Reconstruction of images acquired with a mobile phone
(ε = 2): (a) one of eight LR images shot with the mobile phone, zero-order
interpolation; (b) HR image and blur shifts estimated by the standard SR
algorithm; (c) HR image and blurs estimated by MBD with bilinear inter-
polation; (d) HR image and blurs estimated by the BSR algorithm. Volatile
blurs were negligible in this case and the main source of degradation in (a)
was the insufficient resolution of the device. Both, the standard SR (b) and
BSR (d) methods, give similar results that improve legibility of the text signif-
icantly. MBD (c) can hardly achieve any improvement. The LR images in (a)
have been courtesy of Janne Heikkila from the University of Oulu, Finland.
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FIGURE 9.10: Reconstruction of images acquired with a webcam (ε = 2):
(a) one of ten LR frames extracted from a short video sequence captured
with the webcam, zero-order interpolation; (b) standard SR algorithm; (c)
HR image and blurs estimated by MBD with bilinear interpolation; (d) HR
image and blurs estimated by the BSR algorithm. Due to blurring in the LR
frames, the standard SR method (b) gives unsatisfactory results. MBD (c)
improves the image slightly but the true enhancement is achieved only with
the BSR method (d).
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FIGURE 9.11: Reconstruction of images acquired with a digital camera
(ε = 5/3): (a) four LR images used in the reconstruction; (b) MBD followed
by bilinear interpolation; (c) standard SR algorithm; (d-f) BSR algorithm
showing the HR image together with recovered blurs; (e) image acquired with
the camera mounted on a tripod and with optical zoom 1.7×; (g) close-ups
of the results (b), (c) on top and (d), (e) on bottom. Due to blurring and
insufficient resolution of the LR images, both MBD (b) and the standard SR
method (c) give unsatisfactory results. Only the BSR algorithm (d) achieves
reconstruction comparable to the image with optical zoom (e).
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(a) (b)

(c)

FIGURE 9.12: Performance of the BSR algorithm with respect to the
number of LR images (ε = 7/4 = 1.75): (a) one of ten LR images, zero-
order interpolation; (b) original image; (c) HR images estimated by the BSR
algorithm using 4, 6, 8 and 10 LR images (from left to right). A small im-
provement is visible between 4 and 6 images (compare letter “S” and details of
the tree images). However, any further increase of the number of LR images
proves fruitless.



Experiments 35

(a) (b)

1 1.25 1.5

1.7 2 2.5
(c)

FIGURE 9.13: Performance of the BSR algorithm with respect to the
SR factor: (a) one of eight LR images acquired with a camera, zero-order
interpolation; (b) original cropped “Chart” ISO image, courtesy of B. Brower
(ITT Industries); (c) HR images estimated by the BSR algorithm with the SR
factor 1, 1.25, 1.5, 1.7, 2, and 2.5. The HR images were bilinearly interpolated
to have the same size. The BSR algorithm truly reconstructs high-frequency
information. With the increasing SR factor, we can distinguish chart rays
closer to the center. The Moire effect visible on the LR images (a) disappears
completely for the SR factor 1.5 and more.
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9.7 Conclusions

This chapter described a general method for blind deconvolution and res-
olution enhancement. We have shown that the SR problem permits a stable
solution even in the case of unknown blurs. The fundamental idea is to split
radiometric deformations into sensor and volatile parts and assume that only
the sensor part is known. We can then construct a convex functional using the
LR images and observe that the volatile part minimizes this functional. Due
to resolution decimation, the functional is not strictly convex and reaches its
minimum on a subspace that depends on the integer SR factor. We have also
extended our conclusions to rational factors by means of polyphase decom-
position. To achieve robust solution, the regularized energy minimization ap-
proach was adopted. The proposed BSR method goes far beyond the standard
SR techniques. The introduction of volatile blurs makes the method particu-
larly appealing to real situations. While reconstructing the blurs, we estimate
not only subpixel shifts but also any possible blurs imposed by the acquisition
process. To our knowledge, this is the only method that can perform deconvo-
lution and resolution enhancement simultaneously. Several experiments with
promising results give the reader a precise notion of the quality of the BSR
methodology and wide applicability of the proposed algorithm to all sorts of
real problems.
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