Bicriterial dual control with multiple linearization

Miroslav Flídr and Miroslav Šimandl

Research Center Data, Algorithms, Decision Department of Cybernetics Faculty of Applied Sciences University of West Bohemia in Pilsen Czech Republic

Miroslav Flídr and Miroslav Šimandl

16th IFAC World Congress

Outline

1

Introduction

- Dual control
- Bicriterial approach

2 Generalized Bicriterial controller

- Goal of the paper
- Bicriterial controller for MIMO state space system
- Bicriterial controller with multiple linearization

Dual control (Feldbaum 1960)

- > Arises in control problem with insufficient knowledge of parameters
- > Two conflicting goals meet control objective and improve estimation
- > Optimal dual control problem mostly cannot be solved analytically

Suboptimal solutions (Tse *et al.* 1973, Wittenmark *et al.* 1975, Millito *et al.* 1982,...)

- ➤ Augmenting the cautious control law (Bicriterial controller,...)
- ➤ Modification of criterion (e.g. IDC, ASOD,...)
- ➤ Criterion approximation (e.g. WDC, Utility cost,...)

Feasible solution - Bicriterial approach (Filatov et al. 1996)

- > clear interpretation (two objectives \Rightarrow two criteria)
- computationally moderate (only one step ahead horizon)
- > enhances the *cautious control* with a suitable *probing* signal

Bicriterial approach

Filatov, N. M., U. Keuchel and H. Unbehauen (1996). Dual control for an unstable mechanical plant. *IEEE Control Systems Magazine* **16**(4), 31–37.

- ✓ The controlled system considered SISO ARMAX
- \checkmark Parameter estimation by Recursive leat square method

The criteria

- > Control objective criterion leading to cautious control $J_{k}^{c}(u_{k}) = E\left\{ \left(\bar{y}_{k+1} - y_{k+1} \right)^{2} \middle| \Im_{k} \right\}, \Im_{k} = (u_{0}, \dots, u_{k-1}, y_{0}, \dots, y_{k})$
- ➤ Estimation objective criterion

$$J_{k}^{e}(u_{k}) = -E\left\{\left(y_{k+1} - \hat{y}_{k+1}\right)^{2} \middle| \mathfrak{I}_{k}\right\}$$
$$u_{k}^{*} = \operatorname*{argmin}_{u_{k} \in \Omega_{k}} J_{k}^{e}(u_{k}), \qquad \Omega_{k} = \left[u_{k}^{c} - \delta_{k}, u_{k}^{c} + \delta_{k}\right]$$

$$\delta_k = f(\boldsymbol{P}_k) = \eta \cdot \operatorname{tr} \boldsymbol{P}_k$$

Dual control Bicriterial approach

Bicriterial approach

Bicriterial control law

$$u_k^* = u_k^c + \delta_k \operatorname{sign}(\omega_k)$$

$$\omega_{k} = J_{k}^{e} \left(u_{k}^{c} + \delta_{k} \right) - J_{k}^{e} \left(u_{k}^{c} - \delta_{k} \right)$$

Maximization of criterion $J_k^e(u_k)$ on domain Ω_k

Miroslav Flídr and Miroslav Šimandl

16th IFAC World Congress

Goal - Generalization of the basic Bicriterial controller

- Generalization to the class of MIMO state space systems with random variables described by an arbitrary probability density functions (pdf's)
- > Appropriate design of the criteria
- Usage of the Gaussian sum method for estimation and employment of its multiple linearization to the dual controller

> Analysis of the Bicriterial dual controller with multiple linearization

Consider the MIMO stochastic system

 $\mathbf{y}_k = \mathbf{C}\mathbf{s}_k + \mathbf{v}_k,$

$$s_{k+1} = \boldsymbol{A}(\boldsymbol{\theta}_k) s_k + \boldsymbol{B}(\boldsymbol{\theta}_k) \boldsymbol{u}_k + \boldsymbol{w}_k,$$

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\Phi}_k \boldsymbol{\theta}_k + \boldsymbol{\epsilon}_k,$$

$$k=0,\ldots,N-1$$

s_k	$\in \mathbb{R}^n$		non-measurable state
$\boldsymbol{\theta}_k$	$\in \mathbb{R}^p$	•••	unknown parameters
\boldsymbol{u}_k	$\in \mathbb{R}^{r}$		control
\mathbf{y}_k	$\in \mathbb{R}^m$		measurement

- ✓ The elements of matrices $A(\theta_k)$ and $B(\theta_k)$ are known linear function of the unknown parameters θ_k
- ✓ The random variables s_0 , θ_0 , w_k , ϵ_k and v_k are described by known pdf's

Goal of the paper Bicriterial controller for MIMO state space system Bicriterial controller with multiple linearization

The criteria

The control objective criterion

$$J_{k}^{c}\left(\boldsymbol{u}_{k}\right) = E\left\{\left(\boldsymbol{y}_{k+1} - \bar{\boldsymbol{y}}_{k+1}\right)^{T} \boldsymbol{V}_{k+1}\left(\boldsymbol{y}_{k+1} - \bar{\boldsymbol{y}}_{k+1}\right) + \boldsymbol{u}_{k}^{T} \boldsymbol{W}_{k} \boldsymbol{u}_{k} \left| \boldsymbol{\mathfrak{I}}_{k} \right\}\right\}$$

$$\boldsymbol{u}_{k}^{c} = \operatorname*{argmin}_{\boldsymbol{u}_{k}} J_{k}^{c} \left(\boldsymbol{u}_{k} \right)$$

The estimation objective criterion

$$J_{k}^{e}\left(\boldsymbol{u}_{k}\right)=E\left\{\left(\boldsymbol{y}_{k+1}-\hat{\boldsymbol{y}}_{k+1}\right)^{T}\boldsymbol{\mathcal{V}}_{k+1}\left(\boldsymbol{y}_{k+1}-\hat{\boldsymbol{y}}_{k+1}\right)\left|\boldsymbol{\mathfrak{I}}_{k}\right.\right\}$$

 $\boldsymbol{u}_{k}^{*} = \operatorname*{argmax}_{\boldsymbol{u}_{k} \in \Omega_{k}} J_{k}^{e} \left(\boldsymbol{u}_{k}\right)$

$$\Omega_k = [\boldsymbol{u}_k^c - \boldsymbol{\delta}_k, \boldsymbol{u}_k^c + \boldsymbol{\delta}_k]$$
$$\boldsymbol{\delta}_k = f(\boldsymbol{P}_k) = \eta \cdot \operatorname{tr} \boldsymbol{P}_k$$

Miroslav Flídr and Miroslav Šimandl

16th IFAC World Congress

Bicriterial control law for considered MIMO system

 \succ Structure of the control law

$$u_k^* = u_k^c + \delta_k \operatorname{sign} (\omega_k)$$

$$\omega_k = J_k^e (u_k^c + \delta_k) - J_k^e (u_k^c - \delta_k)$$

> Denote α_k , β_k and γ_k as the first, the second and the third moment of the augmented state $\mathbf{x}_k \stackrel{\Delta}{=} (\mathbf{s}_k, \boldsymbol{\theta}_k)^T$ given by the pdf $p(\mathbf{x}_k | \mathbf{y}_0^k)$, respectively. After the control law derivation the dependency of the cautious and the probing part can be written as

$$\boldsymbol{u}_{k}^{c} = f(\boldsymbol{\alpha}_{k}, \boldsymbol{\beta}_{k})$$
$$\boldsymbol{\omega}_{k} = f(\boldsymbol{\beta}_{k}, \boldsymbol{\gamma}_{k})$$

Estimation

- > To generate the u_k^* , it is necessary to know the filtering pdf $p(x_k | y_0^k)$ (the system is nonlinear system from the estimation point of view)
- > A suitable nonlinear filtering method has to be employed
- ➤ Non-Gaussian random variables ⇒ usage of a global filtering method would be advantageous

Goal of the paper Bicriterial controller for MIMO state space system Bicriterial controller with multiple linearization

Employment of global nonlinear filtering method

The Gaussian sum method was employed

$$p(\boldsymbol{x}_k|y_0^k) = \sum_{i=1}^{\ell} \alpha_i \,\mathcal{N}(\hat{\boldsymbol{x}}_{ki}, \operatorname{cov} \boldsymbol{x}_{ki})$$

Scheme of the Bicriterial controller

Two aspects of Bicriterial controller design

- ✓ The GSM filter is a bank of local Extended Kalman filters (EKF) which generates local point estimates (given by α_{ki} , β_{ki} and γ_{ki} , $\forall i$)
- ✓ The controller makes use of the global point estimate given by moments α_k , β_k and γ_k

\Rightarrow Would it possible to take advantage of the local estimates?

Proposal – make use of local estimates in order to generate a probing signal that could support the estimation better

Goal of the paper Bicriterial controller for MIMO state space system Bicriterial controller with multiple linearization

Bicriterial controller with multiple linearization

The i-th bicriterial controller coupled with the i-th EKF

$$\boldsymbol{u}_{ki}^{*} = \operatorname*{argmax}_{\boldsymbol{u}_{ki} \in \Omega_{ki}} J_{k}^{e} \left(\boldsymbol{u}_{ki} \right), \qquad \Omega_{ki} = \left[\boldsymbol{u}_{ki}^{c} - \boldsymbol{\delta}_{ki}, \boldsymbol{u}_{ki}^{c} + \boldsymbol{\delta}_{ki} \right], \ \boldsymbol{\delta}_{k} = \eta \operatorname{tr} \boldsymbol{P}_{ki}$$

$$\boldsymbol{u}_{ki}^{*} = \boldsymbol{u}_{ki}^{c} + \boldsymbol{\delta}_{ki} \operatorname{sign}\left(\boldsymbol{\omega}_{ki}\right), \qquad \boldsymbol{\omega}_{ki} = J_{k}^{e} \left(\boldsymbol{u}_{ki}^{c} + \boldsymbol{\delta}_{ki}\right) - J_{k}^{e} \left(\boldsymbol{u}_{ki}^{c} - \boldsymbol{\delta}_{ki}\right)$$

$$\boldsymbol{u}_{k}^{*} = \sum_{i=1}^{c} \alpha_{i} \boldsymbol{u}_{ki}^{*} = \boldsymbol{u}_{k}^{c} + \sum_{i=1}^{c} \alpha_{i} \boldsymbol{\delta}_{ki} \operatorname{sign} (\boldsymbol{\omega}_{ki})$$

Does the controller induce different probing signal?

$$\boldsymbol{\delta}_k \operatorname{sign}(\boldsymbol{\omega}_k) \stackrel{?}{\neq} \sum_{i=1}^{\ell} \alpha_i \boldsymbol{\delta}_{ki} \operatorname{sign}(\boldsymbol{\omega}_{ki}).$$

Miroslav Flídr and Miroslav Šimandl

16th IFAC World Congress

Goal of the paper Bicriterial controller for MIMO state space system Bicriterial controller with multiple linearization

Bicriterial controller with multiple linearization

Numerical example

Considered system

$$s_{k+1} = \begin{pmatrix} 0 & 1 \\ \theta_1 & \theta_2 \end{pmatrix} s_k + \begin{pmatrix} \theta_3 \\ \theta_{4k} \end{pmatrix} u_k + \boldsymbol{w}_k$$
$$\theta_{4k+1} = \theta_{4k} + \epsilon_k$$
$$y_k = (1, 1)s_k + v_k$$

 \checkmark Prior pdf of the state and the parameters

$$\succ p(\mathbf{s}_0) = \mathcal{N} \left((0, 0)^T, 5 \cdot \mathbf{I} \right)$$

>
$$p(\theta_0) = \mathcal{N}\left(\hat{\theta}_0, \text{diag}(0.8, 0.8, 1.3, 1.3)\right)$$

$$\hat{\boldsymbol{\theta}}_0 = (-2.0427, \ 0.3427, \ 0, \ 1)^T$$

✓ Noise pdf's

$$\succ p(\boldsymbol{w}_k) = \mathcal{N}\left((0, 0)^T, 10^{-4}\boldsymbol{I}\right)$$

$$(v_k) = \mathcal{N}(0, 10^{-3})$$

> $p(\epsilon_k) \sim \mathcal{U}(-0.1, 0.1)$ approximated by a Gaussian mixture with term number $\ell = 5$

✓ Probing parameter $\eta = .58$

Goal of the paper Bicriterial controller for MIMO state space system Bicriterial controller with multiple linearization

Q: Does the inequality of probing signals hold?

 \Rightarrow The probing signals indeed differ!

Goal of the paper Bicriterial controller for MIMO state space system Bicriterial controller with multiple linearization

Comparison to other controllers

The following index is chosen as a measure of the control performance

$$\mathcal{M} = \sqrt{\frac{1}{N} \sum_{k=1}^{N} (y_k - \bar{y}_k)^2}$$

- \checkmark y_k represents the measurement
- $\checkmark \bar{y}_k$ represents the reference value
- \checkmark N determines length of one simulation run

The expected value $\hat{\mathcal{M}} = E \{\mathcal{M}\}$ is estimated using 5000 Monte Carlo simulations.

Control quality comparison using the index $\hat{\mathcal{M}}$				
	$\hat{\mathcal{M}}$			
Certainty equivalent controller	9.9212			
Cautious controller	4.9824			
Bicriterial controller	4.8634			
Bicriterial controller with multiple linearization	4.8578			

Goal of the paper Bicriterial controller for MIMO state space system Bicriterial controller with multiple linearization

Comparison to other controllers

Miroslav Flídr and Miroslav Šimandl

16th IFAC World Congress

Concluding remarks

- Generalization of the Bicriterial dual controller was presented
- > Some aspects of Bicriterial controller were discused
- Bicriterial control scheme employing multiple linearization was suggested
- > The cautious part of the multiple linearized control law is unchanged

> The two Bicriterial controller schemes induces different probing signal