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Coalition Game

• decision-making in the cooperative environment
• coalition game is fully determined by

players N = {1,2, . . . ,n}
coalition A ∈ P
game v : P → R, v(∅) = 0

HOW SHOULD THE PLAYERS DISTRIBUTE GAINS FROM
COOPERATION?

Shapley value linear mapping Φ : v 7→ (Φ1(v), . . . ,Φn(v)) ∈ Rn

- Efficiency
- Null-player condition
- Symmetry
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How Payoffs Are to Be Divided?

Shapley (1953) - a normative concept of fair allocation

Φi(v) =
∑

S∈P | i∈S

(|S| − 1)! (n − |S|)!
n!

(v(S)− v(S \ {i}))



Example

• The player 1 (owner of business) does not work but
provides the crucial capital: without him no gains can be
obtained.

• Other players 2, . . . ,11 (workers) each contributing
the amount $10 000 to the total profit.

Model:
N = {1, . . . ,11}

v(A) =

{
0, 1 /∈ A,
10 000 · (|A| − 1), 1 ∈ A.

Shapley value Φ1(v) = 50 000, Φi(v) = 5 000 for i > 1.
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Classes of Coalition Games

• N finite, A ⊆ N, v : P → R (Shapley; 1953)
• N infinite, A is a measurable subset of N, game v is

a non-atomic measure (Aumann, Shapley; 1974)
• N finite,

A is a (fuzzy) coalition A = (A(1), . . . ,A(n)) ∈ [0,1]N ,
game is a function [0,1]N → R (Aubin; 1974)

Correspondence:

coalition A ⊆ N ←→ corner of the unit cube [0,1]n

fuzzy coalition A ←→ point of the unit cube [0,1]n
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The Model

IDEA: Inspect the structure of coalitions level-by-level

players on the same level At = {i ∈ N | A(i) = t}, t ∈ [0,1]
weight function ψ : [0,1]→ R

(ψ(t) = 0⇔ t = 0) and (ψ(1) = 1)
class of games studied

G[ψ] =

v : [0,1]N → R | v(A) =
∑

t∈[0,1]

ψ(t)v(At)
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Motivating Example

N . . . set of investors, each i ∈ N having capital ci
A(i) . . . ratio of i ’s investment in A to ci

measure of the risk
g : R→ R . . . expected return function satisfying

g(tq) = tg(q), t ∈ [0,1]
χ : [0,1]→ R . . . risk rewarding function satisfying χ(1) = 1

The player invests q (fraction t of his capital)
⇒

the player gets χ(t)g(q) instead of g(q)
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Motivating Example (ctnd.)

Each fuzzy coalition A is assigned the total expected revenue of
its level sets weighted with the rewards for each level of risk:

v(A) =
∑

t∈[0,1]

χ(t) g
(

t
∑
i∈At

ci

)
=

∑
t∈[0,1]

χ(t)t g
(∑

i∈At

ci

)
=

∑
t∈[0,1]

ψ(t)v(At)

Check

Crucial questions for player i :
1 What is i ’s expected return of investing a share A(i) of his

capital into the coalition A?
2 Is i ’s position improved by investing to any coalition at all?
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Shapley Mapping: Axiomatic Approach

Definition
A Shapley mapping is a linear mapping Φ : G[ψ]→ (RN)[0,1]N

such that for any v ∈ G[ψ] and any A ∈ [0,1]N :

Efficiency For every v -carrier B ∈ [0,1]N of A:∑
i∈N:B(i)>0

Φi(v)(A) = v(B)

Non-Member If A(j) = 0, then Φj(v)(A) = 0
Symmetry If π is a permutation of N, then

Φπi(πv)(πA) = Φi(v)(A)

EXISTENCE?
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Shapley Mapping: Constructive Approach

Theorem
There exists a unique Shapley mapping

Φ : v 7→ (Φ1(v)(A), . . . ,Φn(v)(A))

and

Φi(v)(A) =

ψ(r)
∑

S∈Pi (Ar )

(|S|−1)!(|Ar |−|S|)!
|Ar |! (v(S)− v(S \ {i})), if A(i) = r > 0,

0, otherwise,

where
Pi(Ar ) = {R ⊆ N|i ∈ R and R ⊆ Ar}.

WHAT IS THE EXPECTED TOTAL ALLOCATION Φi(v) OF
PLAYER i IN THE COOPERATIVE PROCESS?
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Cumulative Value

Definition
The cumulative value of player i is defined as

Φi(v) =

∫
[0,1]N

Φi(v)(A) dA

Theorem
If the weight function ψ is bounded and Lebesgue integrable,
then the cumulative value Φi(v) is well defined and

Φi(v) = v({i})
∫ 1

0
ψ(t) dt
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Game from G[ψ] and Outside G[ψ]

Example

• N = {1,2}, ψ(t) = t
• v defined by v({1}) = 1, v({2}) = 1, v({1,2}) = 3

determines a game that is not continuous at (1,1)

• Shapley mapping Φi(v)(A) = A(i),
cumulative value Φi(v) = 0.5

Example

• N = {1,2}
• v(A) = max

i∈N
A(i), v /∈ G[ψ]

• Aubin’s value is the subgradient

∂v(1,1) = {x ∈ [0,1]n | 〈x ,d〉 ≤ v ′
d(1,1),∀d ∈ R2}
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