Shapley Mappings and Values of Coalition Games

Dan Butnariu ${ }^{1}$ Tomáš Kroupa²

${ }^{1}$ Department of Mathematics
University of Haifa, Israel
${ }^{2}$ Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

Coalition Game

- decision-making in the cooperative environment
- coalition game is fully determined by

$$
\begin{array}{ll}
\text { players } & N=\{1,2, \ldots, n\} \\
\text { coalition } & A \in \mathcal{P} \\
\text { game } & v: \mathcal{P} \rightarrow \mathbb{R}, \quad v(\emptyset)=0
\end{array}
$$

HOW SHOULD THE PLAYERS DISTRIBUTE GAINS FROM COOPERATION?

Shapley value linear mapping $\Phi: v \mapsto\left(\Phi_{1}(v), \ldots, \Phi_{n}(v)\right) \in \mathbb{R}^{n}$ - Efficiency

Coalition Game

- decision-making in the cooperative environment
- coalition game is fully determined by

$$
\begin{array}{ll}
\text { players } & N=\{1,2, \ldots, n\} \\
\text { coalition } & A \in \mathcal{P} \\
\text { game } & v: \mathcal{P} \rightarrow \mathbb{R}, \quad v(\emptyset)=0
\end{array}
$$

HOW SHOULD THE PLAYERS DISTRIBUTE GAINS FROM COOPERATION?

Shapley value linear mapping $\Phi: v \mapsto\left(\Phi_{1}(v), \ldots, \Phi_{n}(v)\right) \in \mathbb{R}^{n}$

- Efficiency
- Null-player condition
- Symmetry

How Payoffs Are to Be Divided?

Shapley (1953) - a normative concept of fair allocation

$$
\Phi_{i}(v)=\sum_{S \in \mathcal{P} \mid i \in S} \frac{(|S|-1)!(n-|S|)!}{n!}(v(S)-v(S \backslash\{i\}))
$$

Example

- The player 1 (owner of business) does not work but provides the crucial capital: without him no gains can be obtained.
- Other players $2, \ldots, 11$ (workers) each contributing the amount $\$ 10000$ to the total profit.

Shapley value $\Phi_{1}(v)=50000, \Phi_{i}(v)=5000$ for $i>1$.

Example

- The player 1 (owner of business) does not work but provides the crucial capital: without him no gains can be obtained.
- Other players $2, \ldots, 11$ (workers) each contributing the amount $\$ 10000$ to the total profit.

Model:
$N=\{1, \ldots, 11\}$

$$
v(A)= \begin{cases}0, & 1 \notin A \\ 10000 \cdot(|A|-1), & 1 \in A\end{cases}
$$

Shapley value $\Phi_{1}(v)=50000, \Phi_{i}(v)=5000$ for $i>1$.

Example

- The player 1 (owner of business) does not work but provides the crucial capital: without him no gains can be obtained.
- Other players $2, \ldots, 11$ (workers) each contributing the amount $\$ 10000$ to the total profit.

Model:
$N=\{1, \ldots, 11\}$

$$
v(A)= \begin{cases}0, & 1 \notin A \\ 10000 \cdot(|A|-1), & 1 \in A\end{cases}
$$

Shapley value $\Phi_{1}(v)=50000, \Phi_{i}(v)=5000$ for $i>1$.

Classes of Coalition Games

- N finite, $A \subseteq N, v: \mathcal{P} \rightarrow \mathbb{R}$
(Shapley; 1953)
- N infinite, A is a measurable subset of N, game v is a non-atomic measure (Aumann, Shapley; 1974)
- N finite,
A is a (fuzzy) coalition $A=(A(1), \ldots, A(n)) \in[0,1]^{N}$,
game is a function $[0,1]^{N} \rightarrow \mathbb{R} \quad$ (Aubin; 1974)

Classes of Coalition Games

- N finite, $A \subseteq N, v: \mathcal{P} \rightarrow \mathbb{R}$
(Shapley; 1953)
- N infinite, A is a measurable subset of N, game v is a non-atomic measure (Aumann, Shapley; 1974)
- N finite,
A is a (fuzzy) coalition $A=(A(1), \ldots, A(n)) \in[0,1]^{N}$,
game is a function $[0,1]^{N} \rightarrow \mathbb{R} \quad$ (Aubin; 1974)
Correspondence:
coalition $A \subseteq N \quad \longleftrightarrow$ corner of the unit cube $[0,1]^{n}$ fuzzy coalition $A \longleftrightarrow$ point of the unit cube $[0,1]^{n}$

The Model

IDEA: Inspect the structure of coalitions level-by-level

class of games studied

The Model

IDEA: Inspect the structure of coalitions level-by-level
players on the same level $\quad A_{t}=\{i \in N \mid A(i)=t\}, \quad t \in[0,1]$ weight function $\psi:[0,1] \rightarrow \mathbb{R}$
$(\psi(t)=0 \Leftrightarrow t=0)$ and $(\psi(1)=1)$
class of games studied

The Model

IDEA: Inspect the structure of coalitions level-by-level
players on the same level $\quad A_{t}=\{i \in N \mid A(i)=t\}, \quad t \in[0,1]$ weight function $\quad \psi:[0,1] \rightarrow \mathbb{R}$
$(\psi(t)=0 \Leftrightarrow t=0)$ and $(\psi(1)=1)$
class of games studied

$$
\mathcal{G}[\psi]=\left\{v:[0,1]^{N} \rightarrow \mathbb{R} \quad \mid \quad v(A)=\sum_{t \in[0,1]} \psi(t) v\left(A_{t}\right)\right\}
$$

Motivating Example

$N \quad \ldots$ set of investors, each $i \in N$ having capital c_{i}
$A(i) \quad \ldots$ ratio of i 's investment in A to c_{i} measure of the risk
$g: \mathbb{R} \rightarrow \mathbb{R} \quad \ldots \quad$ expected return function satisfying $g(t q)=\operatorname{tg}(q), t \in[0,1]$
$\chi:[0,1] \rightarrow \mathbb{R} \quad \ldots \quad$ risk rewarding function satisfying $\chi(1)=1$
The player invests q (fraction t of his capital)
the player gets $\chi(t) g(q)$ instead of $g(q)$

Motivating Example

$\begin{array}{lll}N & \ldots & \text { set of investors, each } i \in N \text { having capital } c_{i} \\ A(i) & \ldots & \begin{array}{l}\text { ratio of } i \text { 's investment in } A \text { to } c_{i} \\ \text { measure of the risk }\end{array} \\ g: \mathbb{R} \rightarrow \mathbb{R} & \ldots & \begin{array}{l}\text { expected return function satisfying } \\ g(t q)=\operatorname{tg}(q), t \in[0,1]\end{array} \\ \chi:[0,1] \rightarrow \mathbb{R} & \ldots & \text { risk rewarding function satisfying } \chi(1)=1\end{array}$
The player invests q (fraction t of his capital)
the player gets $\chi(t) g(q)$ instead of $g(q)$

Motivating Example (ctnd.)

Each fuzzy coalition A is assigned the total expected revenue of its level sets weighted with the rewards for each level of risk:

$$
\begin{aligned}
v(A) & =\sum_{t \in[0,1]} \chi(t) g\left(t \sum_{i \in A_{t}} c_{i}\right)=\sum_{t \in[0,1]} \chi(t) t g\left(\sum_{i \in A_{t}} c_{i}\right) \\
& =\sum_{t \in[0,1]} \psi(t) v\left(A_{t}\right)
\end{aligned}
$$

Crucial questions for player i :
(1) What is i's expected return of investing a share $A(i)$ of his capital into the coalition A ?

Motivating Example (ctnd.)

Each fuzzy coalition A is assigned the total expected revenue of its level sets weighted with the rewards for each level of risk:

$$
\begin{aligned}
v(A) & =\sum_{t \in[0,1]} \chi(t) g\left(t \sum_{i \in A_{t}} c_{i}\right)=\sum_{t \in[0,1]} \chi(t) t g\left(\sum_{i \in A_{t}} c_{i}\right) \\
& =\sum_{t \in[0,1]} \psi(t) v\left(A_{t}\right)
\end{aligned}
$$

Crucial questions for player i :
(1) What is i's expected return of investing a share $A(i)$ of his capital into the coalition A ?
2. Is i's position improved by investing to any coalition at all?

Shapley Mapping: Axiomatic Approach

Definition
A Shapley mapping is a linear mapping $\Phi: \mathcal{G}[\psi] \rightarrow\left(\mathbb{R}^{N}\right)^{[0,1]^{N}}$ such that for any $v \in \mathcal{G}[\psi]$ and any $A \in[0,1]^{N}$:
Efficiency For every v-carrier $B \in[0,1]^{N}$ of A :

$$
\sum_{i \in N: B(i)>0} \Phi_{i}(v)(A)=v(B)
$$

Non-Member If $A(j)=0$, then $\Phi_{j}(v)(A)=0$
Symmetry If π is a permutation of N, then

$$
\Phi_{\pi i}(\pi v)(\pi A)=\Phi_{i}(v)(A)
$$

EXISTENCE?

Shapley Mapping: Axiomatic Approach

Definition
A Shapley mapping is a linear mapping $\Phi: \mathcal{G}[\psi] \rightarrow\left(\mathbb{R}^{N}\right)^{[0,1]^{N}}$ such that for any $v \in \mathcal{G}[\psi]$ and any $A \in[0,1]^{N}$:
Efficiency For every v-carrier $B \in[0,1]^{N}$ of A :

$$
\sum_{i \in N: B(i)>0} \Phi_{i}(v)(A)=v(B)
$$

Non-Member If $A(j)=0$, then $\Phi_{j}(v)(A)=0$
Symmetry If π is a permutation of N, then

$$
\Phi_{\pi i}(\pi v)(\pi A)=\Phi_{i}(v)(A)
$$

EXISTENCE?

Shapley Mapping: Constructive Approach

Theorem
There exists a unique Shapley mapping

$$
\Phi: v \mapsto\left(\Phi_{1}(v)(A), \ldots, \Phi_{n}(v)(A)\right)
$$

and

$$
\Phi_{i}(v)(A)= \begin{cases}\psi(r) \sum_{S \in \mathcal{P}_{i}\left(A_{r}\right)} \frac{(|S|-1)!\left(\left|A_{r}\right|-|S|\right)!}{\left|A_{r}\right|!}(v(S)-v(S \backslash\{i\})), & \text { if } A(i)=r \\ 0, & \text { otherwise }\end{cases}
$$

where

$$
\mathcal{P}_{i}\left(A_{r}\right)=\left\{R \subseteq N \mid i \in R \text { and } R \subseteq A_{r}\right\} .
$$

Shapley Mapping: Constructive Approach

Theorem
There exists a unique Shapley mapping

$$
\Phi: v \mapsto\left(\Phi_{1}(v)(A), \ldots, \Phi_{n}(v)(A)\right)
$$

and

$$
\Phi_{i}(v)(A)= \begin{cases}\psi(r) \sum_{S \in \mathcal{P}_{i}\left(A_{r}\right)} \frac{(|S|-1)!\left(\left|A_{r}\right|-|S|\right)!}{\left|A_{r}\right|!}(v(S)-v(S \backslash\{i\})), & \text { if } A(i)=r \\ 0, & \text { otherwise }\end{cases}
$$

where

$$
\mathcal{P}_{i}\left(A_{r}\right)=\left\{R \subseteq N \mid i \in R \text { and } R \subseteq A_{r}\right\} .
$$

WHAT IS THE EXPECTED TOTAL ALLOCATION $\Phi_{i}(v)$ OF PLAYER i IN THE COOPERATIVE PROCESS?

Cumulative Value

Definition
The cumulative value of player i is defined as

$$
\Phi_{i}(v)=\int_{[0,1]^{N}} \Phi_{i}(v)(A) d A
$$

Theorem
If the weight function ψ is bounded and Lebesgue integrable, then the cumulative value $\Phi_{i}(v)$ is well defined and

Cumulative Value

Definition
The cumulative value of player i is defined as

$$
\Phi_{i}(v)=\int_{[0,1]^{N}} \Phi_{i}(v)(A) d A
$$

Theorem
If the weight function ψ is bounded and Lebesgue integrable, then the cumulative value $\Phi_{i}(v)$ is well defined and

$$
\Phi_{i}(v)=v(\{i\}) \int_{0}^{1} \psi(t) d t
$$

Game from $\mathcal{G}[\psi]$ and Outside $\mathcal{G}[\psi]$

Example

- $N=\{1,2\}, \psi(t)=t$
- v defined by $v(\{1\})=1, v(\{2\})=1, v(\{1,2\})=3$ determines a game that is not continuous at $(1,1)$
- Shapley mapping $\Phi_{i}(v)(A)=A(i)$, cumulative value $\Phi_{i}(v)=0.5$

Example

- $N=\{1,2\}$
- $v(A)=\max _{i \in N} A(i), \quad v \notin \mathcal{G}[\psi]$
- Aubin's value is the subgradient

Game from $\mathcal{G}[\psi]$ and Outside $\mathcal{G}[\psi]$

Example

- $N=\{1,2\}, \psi(t)=t$
- v defined by $v(\{1\})=1, v(\{2\})=1, v(\{1,2\})=3$ determines a game that is not continuous at $(1,1)$
- Shapley mapping $\Phi_{i}(v)(A)=A(i)$, cumulative value $\Phi_{i}(v)=0.5$

Example

- $N=\{1,2\}$
- $v(A)=\max _{i \in N} A(i), \quad v \notin \mathcal{G}[\psi]$
- Aubin's value is the subgradient

$$
\partial v(1,1)=\left\{x \in[0,1]^{n} \mid\langle x, d\rangle \leq v_{d}^{\prime}(1,1), \forall d \in \mathbb{R}^{2}\right\}
$$

