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Bayesian network
• a directed acyclic graph G = (V, E)

• each node i ∈ V corresponds to a random variable Xi with a
finite set Xi of mutually exclusive states

• pa(i) denotes the set of parents of node i in graph G

• to each node i ∈ V corresponds a conditional probability table
P(Xi | (X j) j∈pa(i))

• the DAG implies conditional independence relations between
(Xi)i∈V

• d-separation (Pearl, 1986) can be used to read the CI relations
from the DAG
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Using the chain rule we have that:

P((Xi)i∈V) = ∏
i∈V

P(Xi | Xi−1, . . . , X1)

Assume an ordering of Xi , i ∈ V such that if j ∈ pa(i) then j < i.
From the DAG we can read conditional independence relations

Xi ⊥⊥ Xk | (X j) j∈pa(i) for i ∈ V and k < i and k 6∈ pa(i)

Using the conditional independence relations from the DAG we get

P((Xi)i∈V) = ∏
i∈V

P(Xi | (X j) j∈pa(i)) .

It is the joint probability distribution represented by the Bayesian
network.
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Example:
X1 X2P(X1) P(X2)

P(X3 | X1)

P(X4 | X2)

P(X6 | X3 , X4)

P(X9 | X6)

P(X8 | X7 , X6)

P(X5 | X1)

P(X7 | X5)

X5

X7

X3

X8

X6

X9

X4

P(X1, . . . , X9) =

= P(X9|X8, . . . , X1) · P(X8|X7, . . . , X1) · . . . · P(X2|X1) · P(X1)

= P(X9|X6) · P(X8|X7, X6) · P(X7|X5) · P(X6|X4, X3)

·P(X5|X1) · P(X4|X2) · P(X3|X1) · P(X2) · P(X1)
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Typical use of Bayesian networks

• to model and explain a domain.

• to update beliefs about states of certain variables when some
other variables were observed, i.e., computing conditional
probability distributions, e.g., P(X23|X17 = yes, X54 = no).

• to find most probable configurations of variables

• to support decision making under uncertainty

• to find good strategies for solving tasks in a domain with
uncertainty.
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Simplified diagnostic example
We have a patient.
Possible diagnoses: tuberculosis, lung cancer, bronchitis.
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We don’t know anything about the pa-
tient

Patient is a smoker.
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Patient is a smoker. ... and he complains about dyspnoea
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Patient is a smoker and complains
about dyspnoea

... and his X-ray is positive
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Patient is a smoker and complains
about dyspnoea and his X-ray is pos-
itive

... and he visited Asia recently

11



Application 2 :Decision making
The goal: maximize expected utility

Hugin example: mildew4.net
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Fixed and Adaptive Test Strategies
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For all nodes n of a strategy s we
have defined:

• evidence en, i.e. outcomes of
steps performed to get to node
n,

• probability P(en) of getting to
node n, and

• utility f (en) being a real num-
ber.

Let L(s) be the set of terminal
nodes of strategy s.
Expected utility of strategy is
E f (s) = ∑`∈L(s) P(e`) · f (e`).
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Strategy s? is optimal iff it maxi-
mizes its expected utility.

Strategy s is myopically optimal iff
each step of strategy s is selected
so that it maximizes expected utility
after the selected step is performed
(one step look ahead).
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Application 3 : Adaptive test of basic
operations with fractions

Examples of tasks:

T1:
( 3

4 ·
5
6

)
− 1

8 = 15
24 −

1
8 = 5

8 −
1
8 = 4

8 = 1
2

T2: 1
6 + 1

12 = 2
12 + 1

12 = 3
12 = 1

4

T3: 1
4 · 1 1

2 = 1
4 ·

3
2 = 3

8

T4:
( 1

2 ·
1
2

)
·
( 1

3 + 1
3

)
= 1

4 ·
2
3 = 2

12 = 1
6 .
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Elementary and operational skills
CP Comparison (common nu-

merator or denominator)

1
2 > 1

3 , 2
3 > 1

3

AD Addition (comm. denom.) 1
7 + 2

7 = 1+2
7 = 3

7

SB Subtract. (comm. denom.) 2
5 −

1
5 = 2−1

5 = 1
5

MT Multiplication 1
2 ·

3
5 = 3

10

CD Common denominator
(

1
2 , 2

3

)
=

(
3
6 , 4

6

)
CL Cancelling out 4

6 = 2·2
2·3 = 2

3

CIM Conv. to mixed numbers 7
2 = 3·2+1

2 = 3 1
2

CMI Conv. to improp. fractions 3 1
2 = 3·2+1

2 = 7
2
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Misconceptions

Label Description Occurrence

MAD a
b + c

d = a+c
b+d 14.8%

MSB a
b −

c
d = a−c

b−d 9.4%

MMT1 a
b ·

c
b = a·c

b 14.1%

MMT2 a
b ·

c
b = a+c

b·b 8.1%

MMT3 a
b ·

c
d = a·d

b·c 15.4%

MMT4 a
b ·

c
d = a·c

b+d 8.1%

MC a b
c = a·b

c 4.0%
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Student model

CP

ACD

HV2 HV1

AD SB CMI CIM CL CD MT

MMT1 MMT2 MMT3 MMT4MCMAD MSB

ACMI ACIM ACL
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Evidence model for task T1(
3
4
· 5

6

)
− 1

8
=

15
24

− 1
8

=
5
8
− 1

8
=

4
8

=
1
2

T1 ⇔ MT & CL & ACL & SB & ¬MMT3 & ¬MMT4 & ¬MSB

CL

MMT4

MSB

SB

MMT3

ACL MT

T1

X1

P(X1 | T1)

Hugin: model-hv-2.net
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Using information gain as the utility function

“The lower the entropy of a probability distribution the more we know.”

H (P(X)) = −∑
x

P(X = x) · log P(X = x)

0
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Information gain in a node n of a strategy

IG(en) = H(P(S))− H(P(S | en))
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Skill Prediction Quality
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Application 4: Troubleshooting

Dezide Advisor customized to a specific portal, seen from the user’s
perspective through a web browser.

23



Application 2: Troubleshooting - Light print problem

F
F3

F2

F1

F4

Faults
Actions

A3

A2

A1

Q1

Problem

Questions

• Problems: F1 Distribution problem, F2 Defective toner, F3

Corrupted dataflow, and F4 Wrong driver setting.

• Actions: A1 Remove, shake and reseat toner, A2 Try another
toner, and A3 Cycle power.

• Questions: Q1 Is the configuration page printed light?
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Troubleshooting strategy

A1 = no

A2 = yes

Q1 = no

A1 = yesA2 = yes

Q1 = yes

A1 = yes

A2 = no

A1 = noA2 = no

A2

Q1

A1

A2 A1

The task is to find a strategy s ∈ S minimising expected cost of repair

ECR(s) = ∑
`∈L(s)

P(e`) · ( t(e`) + c(e`) ) .
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Expected cost of repair for a given strategy

A1 = no

A2 = yes

Q1 = no

A1 = yesA2 = yes

Q1 = yes

A1 = yes

A2 = no

A1 = noA2 = no

A2

Q1

A1

A2 A1

ECR(s) =

P(Q1 = no, A1 = yes) ·
(
cQ1 + cA1

)
+P(Q1 = no, A1 = no, A2 = yes) ·

(
cQ1 + cA1 + cA2

)
+P(Q1 = no, A1 = no, A2 = no) ·

(
cQ1 + cA1 + cA2 + cCS

)
+P(Q1 = yes, A2 = yes) ·

(
cQ1 + cA2

)
+P(Q1 = yes, A2 = no, A1 = yes) ·

(
cQ1 + cA2 + cA1

)
+P(Q1 = yes, A2 = no, A1 = no) ·

(
cQ1 + cA2 + cA1 + cCS

)

Demo: www.dezide.com Products/Demo/‘‘Try out expert mode’’
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Commercial applications of Bayesian networks in
educational testing and troubleshooting

• Hugin Expert A/S.
software product: Hugin - a Bayesian network tool.
http://www.hugin.com/

• Educational Testing Service (ETS)
the world’s largest private educational testing organization
Research unit doing research on adaptive tests using Bayesian
networks: http://www.ets.org/research/

• SACSO Project
Systems for Automatic Customer Support Operations
- research project of Hewlett Packard and Aalborg University.
The troubleshooter offered as DezisionWorks by Dezide Ltd.
http://www.dezide.com/
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