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ABSTRACT

Linear state-space model with uniformly distributed innova-
tions is considered. Its state and parameters are estimated
under hard physical bounds. Off-line maximum a posteriori
probability estimation reduces to linear programming. No ap-
proximation is required for sole estimation of either model
parameters or states. The noise bounds are estimated in both
cases. The algorithm is extended to (i) on-line mode by es-
timating within a sliding window, and (ii) joint state and pa-
rameter estimation. This approach may be used as a start-
ing point for full Bayesian treatment of distributions with re-
stricted support.

1. INTRODUCTION

Statistically inclined research concentrates naturally on stochas-
tic features of the modelled systems and evaluated estimates.
However, practically oriented engineers are more concerned
with bounds on parameters and states. Respecting physical
bounds is a challenging problem especially when the bounds
are uncertain. A range of approaches to this problem has
been published, including unknown-but-bounded methodol-
ogy [1] or elliptical approximations [2] to name a few. They
often intentionally avoid statistical aspects in order to focus
on bounds. This dominating focus restricts their use. Here,
we respect both uncertainty and physical bounds by exploit-
ing Bayesian approach. Hard physical bounds are modelled
by restricted support of the corresponding joint probability
density function (pdf).

We show that off-line evaluation of maximum a posteri-
ori probability (MAP) estimate of linear state-space model
with uniform distributions of innovations is equivalent to lin-
ear programming (LP). This observation is a starting point
for extensions of the approach for more complex models. As
a first step, we propose the use of sliding-window for on-line
estimation. Moreover, the use of Taylor expansion for ap-
proximation of non-linear models yields algorithm for joint
parameter and state estimation.

2. LINEAR UNIFORM STATE-SPACE MODEL

We consider the standard linear model

xt = Axt−1 + But + wt, yt = Cxt + Dut + vt, (1)

known from Kalman filtering (KF) theory [3]. The notation
xt ∈ <n, yt ∈ <m, ut ∈ <p, follows traditional conventions
for unobserved state, output and input vectors respectively.
Also, the identifiersA,B,C, D of the involved parameter ma-
trices of appropriate dimensions are standard in linear filter-
ing as well as common notationΘ for unknown elements in
A,B,C, D. Unlike in the KF case, the distributions of vector
innovationswt andvt are assumed to be uniform

f (wt) = U (0, rx) , f (vt) = U (0, ry) . (2)

U (µ, rx) denotes uniform pdf on the box with the centerµ
and half-width of the support intervalrx.

Equations (1) together with the assumptions (2) define the
linear uniform state-space model (LU). This model comple-
ments its classical Gaussian counterpart (LG) and provides
the following advantages: (i) it respects natural bounds on
stochastic disturbances, (ii) it allows estimation of the innova-
tion range (unlike KF), and (iii) it allows—without excessive
computational demands—to respect hard, physically justified,
prior bounds on model parameters and states. Moreover, the
presence of finite hard bounds makes the approximate exten-
sions of basic estimation algorithms (such as joint parameter
and state estimation) more robust.

3. OFF-LINE ESTIMATION

We assume that the generator of the inputsu1:t ≡ (u1, . . . , ut)
meets natural conditions of control [4]. They formalize as-
sumption that information about unknown quantities for gen-
eratingut can only be extracted from the observed datad1:t−1,
wheredt = (yt, ut). Then, for a given initial statex0, half-
widthsrx, ry and parametersΘ, the joint pdf of data and the
state trajectoryx1:t of the LU model is

f
(
d1:t, x1:t

∣∣x0, rx, ry,Θ
)
∝

n∏
i=1

r−t
x,i

m∏
j=1

r−t
y,jχ(S). (3)

χ(S) is the indicator of the supportS. ∝ denotes equality up
to a constant factor. The convex setS is defined by inequali-
ties,

−rx ≤ xτ−Axτ−1−Buτ ≤ rx, −ry ≤ yτ−Cxτ−Duτ ≤ ry.

whereτ = 1, 2, . . . , t. Bayesian estimation ofx0, rx, ry re-
quires to complement the conditional pdf (3) by aprior pdf



f (x0, rx, ry|Θ). For knownΘ, it can be chosen as uniform
pdf on supportS0 defined by inequalities

S0 = {x0 ≤ x0 ≤ x0, 0 < rx ≤ rx, 0 < ry ≤ ry} . (4)

Here,x0 denotes a prior upper bound on the initial state. The
meaning of other bounds is similar. For unknownΘ, the uni-
form prior pdff (x0, rx, ry,Θ) can be chosen on the set (4)
extended by conditionsΘ ≤ Θ ≤ Θ.

For fixed observationsd1:t and uniform prior (4), the ex-
pression (3)—on supportS∩S0—is proportional toposterior
pdf. Due to the power−t, it is sharply peaked at lower bounds
on rx andry. Moreover, the number of vertices of the sup-
port is proportional to the number of data. The proportionality
factor may be large for realistic systems. Consequently, eval-
uation of moments of this pdf is computationaly demanding.
This motivates our focus on MAP estimation of all unknowns.

Without loss of generality, we assume that elements of
rx andry are (significantly) smaller than 1. Under this as-
sumption, the negative logarithm of the posterior pdf can be
approximated by sum of elements ofrx andry on the convex,
linearly restricted setS ∩ S0. Thus, MAP estimate of states
and rx, ry, for a givenΘ, is found by linear programming
(LP). Efficient algorithms for solution of high-dimensional
LP problems are widely available.

4. ON-LINE ESTIMATION

Standard Bayesianfiltering and smoothing with a fixed lag
∂ ≥ 0 integrates out from the posterior pdf the superfluous
statext−∂−1 in each time step,t. However, with increasingt,
this operation yields increasingly complex support of the pos-
terior pdf and soon becomes intractable. The unknown-but-
bounded approaches [1, 2] face this problem by a recursive
construction of simple (typically outer) approximation of the
support. In order to avoid these approximations, we propose
to use a sliding window of length∂ and apply LP in order to
find MAP estimate of the statesxt−∂:t ≡ (xt−∂ , . . . , xt) on
the intersection of setsS andS0 for τ = t − ∂, . . . , t. This
approximation immediately opens a way to feasiblejoint pa-
rameter and state estimation. It is sufficient to linearize the
product

Axt−1 ≈ Âxt−1 + Ax̂t−1 − Âx̂t−1. (5)

By handlingCxt in the same way, we get the approximate
joint estimate as solution of the corresponding LP task. Note
that unlike in extended KF, the algorithm updates estimates
of the whole window of length∂ hence, points of expansion
Â, x̂t−1 in (5) can be re-evaluated in each time-step as a mov-
ing average of MAP estimates on the whole window. More-
over, the expansion (5), which is often used in extended KF
is expected to be better conditioned due to the exploited re-
alistic bounds on the estimated quantities. This conjecture is
supported by simulation experiments, which will be presented

in the final paper. For illustration, estimates of lower bounds
on interval of innovationsrx, ry for a simple LU model with
two-dimensional state and one-dimensional observations is
presented in Figure 1.
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Fig. 1. Illustration of performance of the algorithm for es-
timation of half-range of innovations. Dashed line denotes
simulated and full-lines estimated values.

5. CONCLUDING REMARKS

The proposed approach opens a way for on-line parameter
and state estimation for a class of non-uniform distributions
with restricted support as well as for Bayesian filtering of
non-linear systems. The directly feasible cases are those in
which linear programming is replaced by convex program-
ming. Moreover, the outer approximation of the support by
ellipsoids or by union of boxes is a good preliminary step
for an efficient application of sampling-based estimation al-
gorithms.
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