Recent Advances in Model-Based Clustering: Image Segmentation and Variable Selection

Adrian E. Raftery

University of Washington, Seattle, and UTIA Dept of Adaptive Systems, Prague www.stat.washington.edu/raftery

Joint work with Nema Dean, Chris Fraley, Florence Forbes and Nathalie Peyrard Supported by the US National Institutes of Health

2nd International Workshop on Data – Algorithms – Decision Making Třešť, ČR December 10, 2006

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(ロ) (個) (主) (主) (三) の(の)

• Model-based clustering: Basic ideas

- Model-based clustering: Basic ideas
- Image segmentation applications of model-based clustering

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- Model-based clustering: Basic ideas
- Image segmentation applications of model-based clustering

(ロ)、(型)、(E)、(E)、 E、 の(の)

• Variable/feature selection for model-based clustering

▲ロト ▲圖 → ▲ 国 ト ▲ 国 ト ● の Q ()

• Automatic numerical methods for finding groups in data that are

Automatic numerical methods for finding groups in data that are
separated

• Automatic numerical methods for finding groups in data that are

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- separated
- internally cohesive

- Automatic numerical methods for finding groups in data that are
 - separated
 - internally cohesive
- Invented in the 1950s by Sokal, Sneath and others motivated by

(ロ)、(型)、(E)、(E)、 E、 の(の)

- Automatic numerical methods for finding groups in data that are
 - separated
 - internally cohesive
- Invented in the 1950s by Sokal, Sneath and others motivated by

▲□▶▲□▶▲□▶▲□▶ □ のQ@

biological taxonomy

- Automatic numerical methods for finding groups in data that are
 - separated
 - internally cohesive
- Invented in the 1950s by Sokal, Sneath and others motivated by

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- biological taxonomy
- market segmentation

- Automatic numerical methods for finding groups in data that are
 - separated
 - internally cohesive
- Invented in the 1950s by Sokal, Sneath and others motivated by

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- biological taxonomy
- market segmentation
- Interest now driven by new types of data:

- Automatic numerical methods for finding groups in data that are
 - separated
 - internally cohesive
- Invented in the 1950s by Sokal, Sneath and others motivated by

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- biological taxonomy
- market segmentation
- Interest now driven by new types of data:
 - Gene expression microarray data

- Automatic numerical methods for finding groups in data that are
 - separated
 - internally cohesive
- Invented in the 1950s by Sokal, Sneath and others motivated by

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- biological taxonomy
- market segmentation
- Interest now driven by new types of data:
 - Gene expression microarray data
 - finding groups and patterns in retail barcode data

- Automatic numerical methods for finding groups in data that are
 - separated
 - internally cohesive
- Invented in the 1950s by Sokal, Sneath and others motivated by

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- biological taxonomy
- market segmentation
- Interest now driven by new types of data:
 - Gene expression microarray data
 - finding groups and patterns in retail barcode data
 - datamining more generally

- Automatic numerical methods for finding groups in data that are
 - separated
 - internally cohesive
- Invented in the 1950s by Sokal, Sneath and others motivated by
 - biological taxonomy
 - market segmentation
- Interest now driven by new types of data:
 - Gene expression microarray data
 - finding groups and patterns in retail barcode data
 - datamining more generally
 - $\bullet\,$ analysis of Web data (finding groups of users and sites) $\longrightarrow\,$ Collaborative filtering

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Automatic numerical methods for finding groups in data that are
 - separated
 - internally cohesive
- Invented in the 1950s by Sokal, Sneath and others motivated by
 - biological taxonomy
 - market segmentation
- Interest now driven by new types of data:
 - Gene expression microarray data
 - finding groups and patterns in retail barcode data
 - datamining more generally
 - $\bullet\,$ analysis of Web data (finding groups of users and sites) $\longrightarrow\,$ Collaborative filtering

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• medical image segmentation, e.g. for finding tumors. Here, cluster = group of pixels

- Automatic numerical methods for finding groups in data that are
 - separated
 - internally cohesive
- Invented in the 1950s by Sokal, Sneath and others motivated by
 - biological taxonomy
 - market segmentation
- Interest now driven by new types of data:
 - Gene expression microarray data
 - finding groups and patterns in retail barcode data
 - datamining more generally
 - $\bullet\,$ analysis of Web data (finding groups of users and sites) $\longrightarrow\,$ Collaborative filtering
 - medical image segmentation, e.g. for finding tumors. Here, cluster = group of pixels
 - color image quantization (e.g. for the Internet on mobile phones)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Automatic numerical methods for finding groups in data that are
 - separated
 - internally cohesive
- Invented in the 1950s by Sokal, Sneath and others motivated by
 - biological taxonomy
 - market segmentation
- Interest now driven by new types of data:
 - Gene expression microarray data
 - finding groups and patterns in retail barcode data
 - datamining more generally
 - $\bullet\,$ analysis of Web data (finding groups of users and sites) $\longrightarrow\,$ Collaborative filtering
 - medical image segmentation, e.g. for finding tumors. Here, cluster = group of pixels
 - color image quantization (e.g. for the Internet on mobile phones)
 - automatic document clustering for technical documents and Web sites

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Most methods heuristic or algorithmic, not statistical, for example:

• Most methods heuristic or algorithmic, not statistical, for example:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• complete link clustering

• Most methods heuristic or algorithmic, not statistical, for example:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- complete link clustering
- average link clustering

• Most methods heuristic or algorithmic, not statistical, for example:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- complete link clustering
- average link clustering
- single link clustering

• Most methods heuristic or algorithmic, not statistical, for example:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- complete link clustering
- average link clustering
- single link clustering
- k means

• Most methods heuristic or algorithmic, not statistical, for example:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- complete link clustering
- average link clustering
- single link clustering
- k means
- Ward's sum of squares

• Most methods heuristic or algorithmic, not statistical, for example:

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- complete link clustering
- average link clustering
- single link clustering
- k means
- Ward's sum of squares
- Difficulties: No principled basis for answering:

• Most methods heuristic or algorithmic, not statistical, for example:

- complete link clustering
- average link clustering
- single link clustering
- k means
- Ward's sum of squares
- Difficulties: No principled basis for answering:
 - Which method to use?

• Most methods heuristic or algorithmic, not statistical, for example:

- complete link clustering
- average link clustering
- single link clustering
- k means
- Ward's sum of squares
- Difficulties: No principled basis for answering:
 - Which method to use?
 - How many groups are there?

• Most methods heuristic or algorithmic, not statistical, for example:

- complete link clustering
- average link clustering
- single link clustering
- k means
- Ward's sum of squares
- Difficulties: No principled basis for answering:
 - Which method to use?
 - How many groups are there?
 - What's the uncertainty in the results?

• Most methods heuristic or algorithmic, not statistical, for example:

- complete link clustering
- average link clustering
- single link clustering
- k means
- Ward's sum of squares
- Difficulties: No principled basis for answering:
 - Which method to use?
 - How many groups are there?
 - What's the uncertainty in the results?
 - How to deal with outliers?

• Most methods heuristic or algorithmic, not statistical, for example:

- complete link clustering
- average link clustering
- single link clustering
- k means
- Ward's sum of squares
- Difficulties: No principled basis for answering:
 - Which method to use?
 - How many groups are there?
 - What's the uncertainty in the results?
 - How to deal with outliers?
- Model-based clustering:

• Most methods heuristic or algorithmic, not statistical, for example:

- complete link clustering
- average link clustering
- single link clustering
- k means
- Ward's sum of squares
- Difficulties: No principled basis for answering:
 - Which method to use?
 - How many groups are there?
 - What's the uncertainty in the results?
 - How to deal with outliers?
- Model-based clustering:
 - A framework for cluster analysis

• Most methods heuristic or algorithmic, not statistical, for example:

- complete link clustering
- average link clustering
- single link clustering
- k means
- Ward's sum of squares
- Difficulties: No principled basis for answering:
 - Which method to use?
 - How many groups are there?
 - What's the uncertainty in the results?
 - How to deal with outliers?
- Model-based clustering:
 - A framework for cluster analysis
 - Bases cluster analysis on a statistical (mixture) model: $y \sim \sum_{g=1}^{G} \tau_g f_g(y)$, where y is data and $f_g(\cdot)$ are distributions

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Most methods heuristic or algorithmic, not statistical, for example:

- complete link clustering
- average link clustering
- single link clustering
- k means
- Ward's sum of squares
- Difficulties: No principled basis for answering:
 - Which method to use?
 - How many groups are there?
 - What's the uncertainty in the results?
 - How to deal with outliers?
- Model-based clustering:
 - A framework for cluster analysis
 - Bases cluster analysis on a statistical (mixture) model:
 - $y \sim \sum_{g=1}^{G} \tau_{g} f_{g}(y)$, where y is data and $f_{g}(\cdot)$ are distributions
 - Gives answers to questions based on standard statistical principles

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
Cluster Analysis Methods

• Most methods heuristic or algorithmic, not statistical, for example:

- complete link clustering
- average link clustering
- single link clustering
- k means
- Ward's sum of squares
- Difficulties: No principled basis for answering:
 - Which method to use?
 - How many groups are there?
 - What's the uncertainty in the results?
 - How to deal with outliers?
- Model-based clustering:
 - A framework for cluster analysis
 - Bases cluster analysis on a statistical (mixture) model:
 - $y \sim \sum_{g=1}^{G} \tau_{g} f_{g}(y)$, where y is data and $f_{g}(\cdot)$ are distributions
 - Gives answers to questions based on standard statistical principles
 - $\bullet\,$ Here we focus on continuous data and take $f_g \sim$ multivariate normal

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

• where $\Sigma_g = \lambda_g D_g A_g D_g^T$

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

• where
$$\Sigma_g = \lambda_g D_g A_g D_g^T$$

• $\lambda_g = 1$ st eigenvalue of Σ_g : controls the *volume* of the *g*th cluster

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

- where $\Sigma_g = \lambda_g D_g A_g D_g^T$
- λ_g = 1st eigenvalue of Σ_g: controls the *volume* of the gth cluster
 A_g = diag{1, α_{2g},..., α_{dg}}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

- where $\Sigma_g = \lambda_g D_g A_g D_g^T$
- $\lambda_g = 1$ st eigenvalue of Σ_g : controls the *volume* of the *g*th cluster

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$

• controls the *shape* of the *g*th cluster

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

- where $\Sigma_g = \lambda_g D_g A_g D_g^T$
- $\lambda_g = 1$ st eigenvalue of Σ_g : controls the *volume* of the *g*th cluster

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•
$$A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$$

- controls the *shape* of the *g*th cluster
- $(1 \ge \alpha_2 \ge \ldots \ge \alpha_d > 0)$

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

- where $\Sigma_g = \lambda_g D_g A_g D_g^T$
- $\lambda_g = 1$ st eigenvalue of Σ_g : controls the *volume* of the *g*th cluster

•
$$A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$$

• controls the *shape* of the *g*th cluster

•
$$(1 \ge lpha_2 \ge \ldots \ge lpha_d > 0)$$

• E.g. α_2 close to zero: Cluster g concentrated about a line.

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

- where $\Sigma_g = \lambda_g D_g A_g D_g^T$
- $\lambda_g = 1$ st eigenvalue of Σ_g : controls the *volume* of the *g*th cluster

•
$$A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$$

• controls the *shape* of the *g*th cluster

•
$$(1 \ge lpha_2 \ge \ldots \ge lpha_d > 0)$$

- E.g. α_2 close to zero: Cluster g concentrated about a line.
- E.g. $\alpha_{2g}, \ldots, \alpha_{dg}$ all close to 1: Cluster g nearly spherical.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

• where
$$\Sigma_g = \lambda_g D_g A_g D_g^T$$

• $\lambda_g = 1$ st eigenvalue of Σ_g : controls the *volume* of the *g*th cluster

•
$$A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$$

• controls the *shape* of the *g*th cluster

•
$$(1 \ge lpha_2 \ge \ldots \ge lpha_d > 0)$$

- E.g. α_2 close to zero: Cluster g concentrated about a line.
- E.g. $\alpha_{2g}, \ldots, \alpha_{dg}$ all close to 1: Cluster g nearly spherical.
- D_g = Eigenvectors: Control the *orientation* of the *g*th cluster

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

• where
$$\Sigma_g = \lambda_g D_g A_g D_g^T$$

• $\lambda_g = 1$ st eigenvalue of Σ_g : controls the *volume* of the *g*th cluster

•
$$A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$$

• controls the *shape* of the *g*th cluster

•
$$(1 \ge \alpha_2 \ge \ldots \ge \alpha_d > 0)$$

- E.g. α_2 close to zero: Cluster g concentrated about a line.
- E.g. $\alpha_{2g}, \ldots, \alpha_{dg}$ all close to 1: Cluster g nearly spherical.
- D_g = Eigenvectors: Control the *orientation* of the *g*th cluster
- Different clustering models can be obtained by constraining each of *volume, shape* and *orientation* to be constant across clusters, or by allowing them to vary (Banfield & Raftery, 1993, *Biometrics*)

▲口>▲園>★国>★国> 通 ろんの

• Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via hierarchical agglomerative model-based clustering, in which the groups merged at each stage are those that minimize the decrease in likelihood.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via hierarchical agglomerative model-based clustering, in which the groups merged at each stage are those that minimize the decrease in likelihood.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Choosing the Number of Clusters and the Clustering Method/Model:

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via hierarchical agglomerative model-based clustering, in which the groups merged at each stage are those that minimize the decrease in likelihood.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via hierarchical agglomerative model-based clustering, in which the groups merged at each stage are those that minimize the decrease in likelihood.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via hierarchical agglomerative model-based clustering, in which the groups merged at each stage are those that minimize the decrease in likelihood.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.
 - Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model
 - We use the Bayes factor, i.e. the ratio of posterior to prior odds for one model against another.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via hierarchical agglomerative model-based clustering, in which the groups merged at each stage are those that minimize the decrease in likelihood.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.
 - Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model
 - We use the Bayes factor, i.e. the ratio of posterior to prior odds for one model against another.
 - This allows comparison of the multiple, nonnested models considered.

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via hierarchical agglomerative model-based clustering, in which the groups merged at each stage are those that minimize the decrease in likelihood.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.
 - Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model
 - We use the Bayes factor, i.e. the ratio of posterior to prior odds for one model against another.
 - This allows comparison of the multiple, nonnested models considered.
 - We approximate the Bayes factors via

 $BIC = 2 \log \text{maximized likelihood} - (\# \text{ parameters}) \log(n)$

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via hierarchical agglomerative model-based clustering, in which the groups merged at each stage are those that minimize the decrease in likelihood.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.
 - Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model
 - We use the Bayes factor, i.e. the ratio of posterior to prior odds for one model against another.
 - This allows comparison of the multiple, nonnested models considered.
 - We approximate the Bayes factors via

 $BIC = 2 \log \max(n) \log(n)$

• This is consistent for the number of clusters (Keribin 2000), and also provides consistent density estimates (Roeder and Wasserman 1997).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三回 ● ●

• Data: Glucose, insulin and SSPG measurements on 145 patients (Reuven and Miller 1979).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- Data: Glucose, insulin and SSPG measurements on 145 patients (Reuven and Miller 1979).
- Goal: Use these to diagnose patients as one of "Normal," "Chemical Diabetes," or "Overt Diabetes."

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Data: Glucose, insulin and SSPG measurements on 145 patients (Reuven and Miller 1979).
- Goal: Use these to diagnose patients as one of "Normal," "Chemical Diabetes," or "Overt Diabetes."
- There is a clinical classification that we will ignore in the clustering, but that we will use to evaluate it.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Data: Glucose, insulin and SSPG measurements on 145 patients (Reuven and Miller 1979).
- Goal: Use these to diagnose patients as one of "Normal," "Chemical Diabetes," or "Overt Diabetes."
- There is a clinical classification that we will ignore in the clustering, but that we will use to evaluate it.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Many clustering methods require that we "know" the number of clusters, but model-based clustering does not.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ▼ ● ◆

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Glucose

• We know the "right" model:

・ロト ・四ト ・ヨト ・ヨト

E 990

- We know the "right" model:
 - The volume (Normal: small; Diabetes clusters: bigger)

・ロト ・聞ト ・ヨト ・ヨト

æ.

- We know the "right" model:
 - The volume (Normal: small; Diabetes clusters: bigger)
 - shape (Normal: spherical, Diabetes clusters: long and thin)

A D > A P > A B > A B >

3

- We know the "right" model:
 - The volume (Normal: small; Diabetes clusters: bigger)
 - shape (Normal: spherical, Diabetes clusters: long and thin)
 - and orientation (Chemical and Overt: orthogonal)

- We know the "right" model:
 - The volume (Normal: small; Diabetes clusters: bigger)
 - shape (Normal: spherical, Diabetes clusters: long and thin)
 - and orientation (Chemical and Overt: orthogonal)

• are all different

- We know the "right" model:
 - The volume (Normal: small; Diabetes clusters: bigger)
 - shape (Normal: spherical, Diabetes clusters: long and thin)
 - and orientation (Chemical and Overt: orthogonal)

are all different

• \implies Model is Σ_g all different (unconstrained)
Diabetes Data

- We know the "right" model:
 - The volume (Normal: small; Diabetes clusters: bigger)
 - shape (Normal: spherical, Diabetes clusters: long and thin)
 - and orientation (Chemical and Overt: orthogonal)
 - are all different
- \implies Model is Σ_g all different (unconstrained)
- The mclust R package is used

<□> <□> <□> <□> <=> <=> <=> <=> <=> <</p>

BIC plot for diabetes data

Number of components

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

BIC plot for diabetes data

• Model code:

・ロト ・聞ト ・ヨト ・ヨト

- 20

-5000 _4-· **▲** - t BIC EII -5400 ÉE! -5800 VF 2 4 6 8

BIC plot for diabetes data

- Model code:
 - Letters refer to (Volume, Shape, Orientation):

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

-5000 · **☆** <u></u> <u></u> <u></u> *t* BIC EII -5400 VII FFI -5800 VF 2 4 6 8

BIC plot for diabetes data

- Model code:
 - Letters refer to (Volume, Shape, Orientation):
 - E: Equal across clusters

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

-5000 **☆**─^**∧** BIC EII -5400 VII EEI -5800 VF 2 4 6 8

BIC plot for diabetes data

- Model code:
 - Letters refer to (Volume, Shape, Orientation):
 - E: Equal across clusters
 - V: Vary across clusters

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

-5000 BC EII -5400 VII EEI VF -5800 VF 2 4 6 8

Number of components

BIC plot for diabetes data

- Model code:
 - Letters refer to (Volume, Shape, Orientation):
 - E: Equal across clusters
 - V: Vary across clusters

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• I: Identity (spherical) covariance matrix

-5000 ▲ _____ **☆**─^**∧** BC EII -5400 VII FFI FF -5800 VF 2 4 6 8

BIC plot for diabetes data

Number of components

- Model code:
 - Letters refer to (Volume, Shape, Orientation):
 - E: Equal across clusters
 - V: Vary across clusters
 - I: Identity (spherical) covariance matrix
 - Example: **EEV**: Equal volume, equal shape, varying orientations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ⊙

<□> <□> <□> <□> <=> <=> <=> <=> <=> <</p>

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

 BIC chooses the unconstrained (VVV) model with 3 clusters.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

- BIC chooses the unconstrained (VVV) model with 3 clusters.
- The right answer!

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

- BIC chooses the unconstrained (VVV) model with 3 clusters.
- The right answer!

Zoomed BIC plot for diabetes data

- BIC chooses the unconstrained (VVV) model with 3 clusters.
- The right answer!

• The EII model, $\Sigma_g = \lambda I \ (\approx k \text{ means})$ not good.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Zoomed BIC plot for diabetes data

- The EII model, $\Sigma_g = \lambda I \ (\approx k \text{ means})$ not good.
 - Thus *k* means would not be good for these data.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- BIC chooses the unconstrained (VVV) model with 3 clusters.
- The right answer!

Zoomed BIC plot for diabetes data

- The EII model, $\Sigma_g = \lambda I \ (\approx k \text{ means})$ not good.
 - Thus *k* means would not be good for these data.
 - BIC allows us to assess when k means, or other methods, would work well.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- BIC chooses the unconstrained (VVV) model with 3 clusters.
- The right answer!

Zoomed BIC plot for diabetes data

- BIC chooses the unconstrained (VVV) model with 3 clusters.
- The right answer!

- The EII model, $\Sigma_g = \lambda I \ (\approx k \text{ means})$ not good.
 - Thus k means would not be good for these data.
 - BIC allows us to assess when k means, or other methods, would work well.
- Tradeoff between the clustering model and the number of clusters:

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三三 - のへで

- BIC chooses the unconstrained (VVV) model with 3 clusters.
- The right answer!

- The EII model, $\Sigma_g = \lambda I \ (\approx k \text{ means})$ not good.
 - Thus k means would not be good for these data.
 - BIC allows us to assess when k means, or other methods, would work well.
- Tradeoff between the clustering model and the number of clusters:
 - E.g. with the EII model (equal volume spherical), far more clusters are needed than with the VVV model (unconstrained ellipses).

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 - の へ ()

- BIC chooses the unconstrained (VVV) model with 3 clusters.
- The right answer!

- The EII model, $\Sigma_g = \lambda I \ (\approx k \text{ means})$ not good.
 - Thus k means would not be good for these data.
 - BIC allows us to assess when *k* means, or other methods, would work well.
- Tradeoff between the clustering model and the number of clusters:
 - E.g. with the EII model (equal volume spherical), far more clusters are needed than with the VVV model (unconstrained ellipses).
 - Thus BIC determines whether it is better to use the "peas" or the "pod."

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

True Classification

Glucose

Mclust Classification: Error Rate 12%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Mclust Classification: Error Rate 12%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

K means Classification: Error rate 18%

Mclust Classification: Error Rate 12%

K means Classification: Error rate 18%

Single Link Classification: Error rate 47%

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

• The model is expanded to explicitly include outliers:

• The model is expanded to explicitly include outliers:

• Outliers arise from a low-intensity Poisson process on the "data region," *R*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• The model is expanded to explicitly include outliers:

- Outliers arise from a low-intensity Poisson process on the "data region," *R*.
- \implies outliers are generated from a uniform distribution on the data region.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

• The model is expanded to explicitly include outliers:

- Outliers arise from a low-intensity Poisson process on the "data region," *R*.
- → outliers are generated from a uniform distribution on the data region.
- Expanded mixture model:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g) + \tau_0 U(R)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The model is expanded to explicitly include outliers:

- Outliers arise from a low-intensity Poisson process on the "data region," *R*.
- → outliers are generated from a uniform distribution on the data region.
- Expanded mixture model:

$$y_i \sim \sum_{g=1}^{G} \tau_g \text{MVN}_d(\mu_g, \Sigma_g) + \tau_0 U(R)$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Proceed as before with EM and BIC

• The model is expanded to explicitly include outliers:

- Outliers arise from a low-intensity Poisson process on the "data region," *R*.
- → outliers are generated from a uniform distribution on the data region.
- Expanded mixture model:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g) + \tau_0 U(R)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ ● のへで

- Proceed as before with EM and BIC
- This has good robustness properties (Hennig 2004, Ann Stat)

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ → □ ● ● ● ● ●

• Breast tumor detection is usually done using X-ray mammography

• Breast tumor detection is usually done using X-ray mammography

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• This has a high false positive rate, leading to

• Breast tumor detection is usually done using X-ray mammography

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- This has a high false positive rate, leading to
 - many unnecessary biopsies
• Breast tumor detection is usually done using X-ray mammography

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- This has a high false positive rate, leading to
 - many unnecessary biopsies
 - unnecessary deaths

• Breast tumor detection is usually done using X-ray mammography

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- This has a high false positive rate, leading to
 - many unnecessary biopsies
 - unnecessary deaths
 - search for a better method

- Breast tumor detection is usually done using X-ray mammography
- This has a high false positive rate, leading to
 - many unnecessary biopsies
 - unnecessary deaths
 - search for a better method

• An alternative: Dynamic Magnetic Resonance Imaging (MRI):

- Breast tumor detection is usually done using X-ray mammography
- This has a high false positive rate, leading to
 - many unnecessary biopsies
 - unnecessary deaths
 - search for a better method
- An alternative: Dynamic Magnetic Resonance Imaging (MRI):

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Patient injected with a contrast agent, Gaudolinium

- Breast tumor detection is usually done using X-ray mammography
- This has a high false positive rate, leading to
 - many unnecessary biopsies
 - unnecessary deaths
 - search for a better method
- An alternative: Dynamic Magnetic Resonance Imaging (MRI):
 - Patient injected with a contrast agent, Gaudolinium
 - 3-d images made every 10 seconds for about 4 minutes (25 images)

- Breast tumor detection is usually done using X-ray mammography
- This has a high false positive rate, leading to
 - many unnecessary biopsies
 - unnecessary deaths
 - search for a better method
- An alternative: Dynamic Magnetic Resonance Imaging (MRI):
 - Patient injected with a contrast agent, Gaudolinium
 - 3-d images made every 10 seconds for about 4 minutes (25 images)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Our goal: Automatically find a region of interest that may contain the tumor. Method:

- Breast tumor detection is usually done using X-ray mammography
- This has a high false positive rate, leading to
 - many unnecessary biopsies
 - unnecessary deaths
 - search for a better method
- An alternative: Dynamic Magnetic Resonance Imaging (MRI):
 - Patient injected with a contrast agent, Gaudolinium
 - 3-d images made every 10 seconds for about 4 minutes (25 images)

- Our goal: Automatically find a region of interest that may contain the tumor. Method:
 - Each slice analyzed separately; best results used

- Breast tumor detection is usually done using X-ray mammography
- This has a high false positive rate, leading to
 - many unnecessary biopsies
 - unnecessary deaths
 - search for a better method
- An alternative: Dynamic Magnetic Resonance Imaging (MRI):
 - Patient injected with a contrast agent, Gaudolinium
 - 3-d images made every 10 seconds for about 4 minutes (25 images)

- Our goal: Automatically find a region of interest that may contain the tumor. Method:
 - Each slice analyzed separately; best results used
 - Each voxel has a 25-dimensional intensity measurement

- Breast tumor detection is usually done using X-ray mammography
- This has a high false positive rate, leading to
 - many unnecessary biopsies
 - unnecessary deaths
 - search for a better method
- An alternative: Dynamic Magnetic Resonance Imaging (MRI):
 - Patient injected with a contrast agent, Gaudolinium
 - 3-d images made every 10 seconds for about 4 minutes (25 images)
- Our goal: Automatically find a region of interest that may contain the tumor. Method:
 - Each slice analyzed separately; best results used
 - Each voxel has a 25-dimensional intensity measurement
 - Reduced to 5 variables: Time to peak, Difference at peak, ...

- Breast tumor detection is usually done using X-ray mammography
- This has a high false positive rate, leading to
 - many unnecessary biopsies
 - unnecessary deaths
 - search for a better method
- An alternative: Dynamic Magnetic Resonance Imaging (MRI):
 - Patient injected with a contrast agent, Gaudolinium
 - 3-d images made every 10 seconds for about 4 minutes (25 images)
- Our goal: Automatically find a region of interest that may contain the tumor. Method:
 - Each slice analyzed separately; best results used
 - Each voxel has a 25-dimensional intensity measurement
 - Reduced to 5 variables: Time to peak, Difference at peak, ...
 - Mclust with G = 3 (background, heart, skin) and G = 4 (same + tumor) groups

- Breast tumor detection is usually done using X-ray mammography
- This has a high false positive rate, leading to
 - many unnecessary biopsies
 - unnecessary deaths
 - search for a better method
- An alternative: Dynamic Magnetic Resonance Imaging (MRI):
 - Patient injected with a contrast agent, Gaudolinium
 - 3-d images made every 10 seconds for about 4 minutes (25 images)
- Our goal: Automatically find a region of interest that may contain the tumor. Method:
 - Each slice analyzed separately; best results used
 - Each voxel has a 25-dimensional intensity measurement
 - Reduced to 5 variables: Time to peak, Difference at peak, ...
 - Mclust with G = 3 (background, heart, skin) and G = 4 (same + tumor) groups

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Bayesian morphology: Fast Bayesian image restoration via mathematical morphology (Forbes and Raftery 1999, JASA)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Images at 10, 70, 150, 250 seconds

Images at 10, 70, 150, 250 seconds

Intensity curve for one voxel

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

Intensity curve for one voxel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mclust segmentation with 4 clusters

С

Mclust segmentation with 4 clusters

Bayesian morphology restoration

Breast MRI Results for 19 patients

Breast MRI Results for 19 patients

TABLE 2. Curve Type Versus Pathology Results for the 19 Patients

Curve Type	Number of Patients	Pathology Results
1 (benign)	6	5 benign, 1 unknown
2 (uncertain)	5	1 unknown, 4 cancer
3 (malignant)	8	8 cancer

Breast MRI Results for 19 patients

TABLE 2. Curve Type Versus Pathology Results for the19 Patients

Curve Type	Number of Patients	Pathology Results
1 (benign)	6	5 benign, 1 unknown
2 (uncertain)	5	1 unknown, 4 cancer
3 (malignant)	8	8 cancer

Reference: Forbes et al, 2006, *J. Computer Assisted Tomography*, "Finding regions of interest in dynamic breast MRI."

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三回 ● ●

• Papers at:

• Papers at:

• www.stat.washington.edu/raftery/Research/publications.html

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Papers at:
 - www.stat.washington.edu/raftery/Research/publications.html

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• OR from my home page: \longrightarrow Research \longrightarrow Publications

- Papers at:
 - www.stat.washington.edu/raftery/Research/publications.html
 - OR from my home page: \longrightarrow Research \longrightarrow Publications
- Image segmentation with small features using incremental model-based clustering (Fraley et al, 2005, *J. Comput. Graph. Stat*)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ ● のへで

- Papers at:
 - www.stat.washington.edu/raftery/Research/publications.html
 - OR from my home page: \longrightarrow Research \longrightarrow Publications
- Image segmentation with small features using incremental model-based clustering (Fraley et al, 2005, *J. Comput. Graph. Stat*)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Multi-band image segmentation via model-based cluster trees (Murtagh et al, 2005, *Image & Vision Computing*)

- Papers at:
 - www.stat.washington.edu/raftery/Research/publications.html
 - OR from my home page: \longrightarrow Research \longrightarrow Publications
- Image segmentation with small features using incremental model-based clustering (Fraley et al, 2005, *J. Comput. Graph. Stat*)
- Multi-band image segmentation via model-based cluster trees (Murtagh et al, 2005, *Image & Vision Computing*)
- Segmentation of microarray images with inner holes, artifacts and blank spots (Li et al, 2005, *Bioinformatics*)

- Papers at:
 - www.stat.washington.edu/raftery/Research/publications.html
 - OR from my home page: \longrightarrow Research \longrightarrow Publications
- Image segmentation with small features using incremental model-based clustering (Fraley et al, 2005, *J. Comput. Graph. Stat*)
- Multi-band image segmentation via model-based cluster trees (Murtagh et al, 2005, *Image & Vision Computing*)
- Segmentation of microarray images with inner holes, artifacts and blank spots (Li et al, 2005, *Bioinformatics*)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Image segmentation with model-based clustering via sampling (Wehrens et al, 2004, *J. Classification*)

- Papers at:
 - www.stat.washington.edu/raftery/Research/publications.html
 - OR from my home page: \longrightarrow Research \longrightarrow Publications
- Image segmentation with small features using incremental model-based clustering (Fraley et al, 2005, *J. Comput. Graph. Stat*)
- Multi-band image segmentation via model-based cluster trees (Murtagh et al, 2005, *Image & Vision Computing*)
- Segmentation of microarray images with inner holes, artifacts and blank spots (Li et al, 2005, *Bioinformatics*)
- Image segmentation with model-based clustering via sampling (Wehrens et al, 2004, *J. Classification*)
- Detecting features in spatial point patterns: minefields, earthquake faults (papers with Byers, Dasgupta, Walsh 1998–)

• Which variables to include in clustering?

- Which variables to include in clustering?
- General approach: Treat it as a model choice problem by vewing each combination of variables as a statistical model

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Which variables to include in clustering?
- General approach: Treat it as a model choice problem by vewing each combination of variables as a statistical model

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Formulate both choices of variables as models for (Y_1, Y_2, Y_3) :

- Which variables to include in clustering?
- General approach: Treat it as a model choice problem by vewing each combination of variables as a statistical model
- Formulate both choices of variables as models for (Y_1, Y_2, Y_3) :
 - Model for (Y_1, Y_2) choice says that Y_3 is conditionally independent of the cluster assignment variable Z given (Y_1, Y_2)

- Which variables to include in clustering?
- General approach: Treat it as a model choice problem by vewing each combination of variables as a statistical model
- Formulate both choices of variables as models for (Y_1, Y_2, Y_3) :
 - Model for (Y_1, Y_2) choice says that Y_3 is conditionally independent of the cluster assignment variable Z given (Y_1, Y_2)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Model for (Y_1, Y_2, Y_3) choice says that all 3 variables depend on which cluster the object is in

Variable Selection Method

(4日) (個) (目) (目) (目) (の)

Variable Selection Method

• We consider whether to include one extra variable as a clustering variable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ
- We consider whether to include one extra variable as a clustering variable
- Two models: One says that the new variable is useful for clustering given the current clustering variables

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- We consider whether to include one extra variable as a clustering variable
- Two models: One says that the new variable is useful for clustering given the current clustering variables
- The other model says that the variable is *not* useful for clustering given the current clustering variables

- We consider whether to include one extra variable as a clustering variable
- Two models: One says that the new variable is useful for clustering given the current clustering variables
- The other model says that the variable is *not* useful for clustering given the current clustering variables
- We partition the data Y into 3 disjoint subsets $Y^{(clust)}, Y^{(?)}$ and $Y^{(other)}$ where

- We consider whether to include one extra variable as a clustering variable
- Two models: One says that the new variable is useful for clustering given the current clustering variables
- The other model says that the variable is *not* useful for clustering given the current clustering variables
- We partition the data Y into 3 disjoint subsets $Y^{(clust)}, Y^{(?)}$ and $Y^{(other)}$ where

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $Y^{(clust)}$ is the set of currently selected clustering variables

- We consider whether to include one extra variable as a clustering variable
- Two models: One says that the new variable is useful for clustering given the current clustering variables
- The other model says that the variable is *not* useful for clustering given the current clustering variables
- We partition the data Y into 3 disjoint subsets $Y^{(clust)}, Y^{(?)}$ and $Y^{(other)}$ where
 - $Y^{(clust)}$ is the set of currently selected clustering variables
 - $Y^{(?)}$ is the new variable considered for inclusion into $Y^{(clust)}$

- ロ ト - 4 回 ト - 4 □ - 4

- We consider whether to include one extra variable as a clustering variable
- Two models: One says that the new variable is useful for clustering given the current clustering variables
- The other model says that the variable is *not* useful for clustering given the current clustering variables
- We partition the data Y into 3 disjoint subsets $Y^{(clust)}, Y^{(?)}$ and $Y^{(other)}$ where
 - $Y^{(clust)}$ is the set of currently selected clustering variables
 - $Y^{(?)}$ is the new variable considered for inclusion into $Y^{(clust)}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Y^(other) is the set of all other variables

- We consider whether to include one extra variable as a clustering variable
- Two models: One says that the new variable is useful for clustering given the current clustering variables
- The other model says that the variable is *not* useful for clustering given the current clustering variables
- We partition the data Y into 3 disjoint subsets $Y^{(clust)}, Y^{(?)}$ and $Y^{(other)}$ where
 - Y^(clust) is the set of currently selected clustering variables
 - $Y^{(?)}$ is the new variable considered for inclusion into $Y^{(clust)}$
 - $Y^{(other)}$ is the set of all other variables
- Let Z be the matrix of (unobserved) variables that say which group each observation belongs to (as in EM and MCMC for mixtures)

- ロ ト - 4 回 ト - 4 □ - 4

To Include or Not To Include $Y^{(?)}$? Here are the Models

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

To Include or Not To Include $Y^{(?)}$? Here are the Models

(日) (個) (目) (目) (日) (の)

$$p(Y \mid Z, M_1) = p(Y^{(clust)}, Y^{(?)}, Y^{(other)} \mid Z)$$

$$p(Y \mid Z, M_1) = p(Y^{(clust)}, Y^{(?)}, Y^{(other)} \mid Z)$$

$$= p(Y^{(other)} \mid Y^{(clust)}, Y^{(?)})$$

$$\times p(Y^{(?)} \mid Y^{(clust)})p(Y^{(clust)} \mid Z)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$p(Y \mid Z, M_1) = p(Y^{(clust)}, Y^{(?)}, Y^{(other)} \mid Z)$$

$$= p(Y^{(other)} \mid Y^{(clust)}, Y^{(?)})$$

$$\times p(Y^{(?)} \mid Y^{(clust)})p(Y^{(clust)} \mid Z)$$

$$p(Y | Z, M_2) = p(Y^{(clust)}, Y^{(?)}, Y^{(other)} | Z)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$p(Y | Z, M_2) = p(Y^{(clust)}, Y^{(!)}, Y^{(other)} | Z)$$

$$p(Y | Z, M_1) = p(Y^{(clust)}, Y^{(?)}, Y^{(other)} | Z) = p(Y^{(other)} | Y^{(clust)}, Y^{(?)}) \times p(Y^{(?)} | Y^{(clust)}) p(Y^{(clust)} | Z)$$

$$p(Y \mid Z, M_2) = p(Y^{(clust)}, Y^{(?)}, Y^{(other)} \mid Z)$$

$$= p(Y^{(other)} \mid Y^{(clust)}, Y^{(?)})$$

$$\times p(Y^{(?)}, Y^{(clust)} \mid Z)$$

• If $Y^{(?)}$ is a single variable, then

$$E(Y^{(?)} | Y^{(clust)}) = \alpha + Y^{(clust)}\beta$$

$$\Rightarrow p(Y^{(?)} | Y^{(clust)}) = \text{regression model}$$

(ロ)、

• If $Y^{(?)}$ is a single variable, then

$$E(Y^{(?)} | Y^{(clust)}) = \alpha + Y^{(clust)}\beta$$

$$\Rightarrow p(Y^{(?)} | Y^{(clust)}) = \text{regression model}$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

• Given the partition and the two models we would like to make a decision based on the Bayes factor *B*₂₁.

• If $Y^{(?)}$ is a single variable, then

$$E(Y^{(?)} | Y^{(clust)}) = \alpha + Y^{(clust)}\beta$$

$$\Rightarrow p(Y^{(?)} | Y^{(clust)}) = \text{regression model}$$

- Given the partition and the two models we would like to make a decision based on the Bayes factor *B*₂₁.
- We use the BIC approximation

 $2\log B_{21} \approx BIC(M_2) - BIC(M_1)$

- ロ ト - 4 回 ト - 4 □ - 4

• If $Y^{(?)}$ is a single variable, then

$$E(Y^{(?)} | Y^{(clust)}) = \alpha + Y^{(clust)}\beta$$

$$\Rightarrow p(Y^{(?)} | Y^{(clust)}) = \text{regression model}$$

- Given the partition and the two models we would like to make a decision based on the Bayes factor *B*₂₁.
- We use the BIC approximation

$$2\log B_{21} \approx BIC(M_2) - BIC(M_1)$$

• With mild assumptions about the models' parameter priors, each Bayes factor decomposes into separate mixture model and regression components.

• If $Y^{(?)}$ is a single variable, then

$$E(Y^{(?)} | Y^{(clust)}) = \alpha + Y^{(clust)}\beta$$

$$\Rightarrow p(Y^{(?)} | Y^{(clust)}) = \text{regression model}$$

- Given the partition and the two models we would like to make a decision based on the Bayes factor *B*₂₁.
- We use the BIC approximation

$$2 \log B_{21} \approx BIC(M_2) - BIC(M_1)$$

- With mild assumptions about the models' parameter priors, each Bayes factor decomposes into separate mixture model and regression components.
- Thus each BIC is the sum of BICs for mixture models and possibly regression models.

▲ロト ▲圖 → ▲ 国 ト ▲ 国 ト ● の Q ()

• In order to explore all of the model space (create different partitions of the variables to check) we need a search algorithm.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• In order to explore all of the model space (create different partitions of the variables to check) we need a search algorithm.

• We iterate between inclusion and exclusion steps:

- In order to explore all of the model space (create different partitions of the variables to check) we need a search algorithm.
- We iterate between inclusion and exclusion steps:
 - Inclusion steps test new variables for inclusion into the set of clustering variables

- In order to explore all of the model space (create different partitions of the variables to check) we need a search algorithm.
- We iterate between inclusion and exclusion steps:
 - Inclusion steps test new variables for inclusion into the set of clustering variables
 - Exclusion steps test variables currently in the set of clustering variables for exclusion from that set

- In order to explore all of the model space (create different partitions of the variables to check) we need a search algorithm.
- We iterate between inclusion and exclusion steps:
 - Inclusion steps test new variables for inclusion into the set of clustering variables
 - Exclusion steps test variables currently in the set of clustering variables for exclusion from that set
 - Inclusion and exclusion decisions are based on the approximate Bayes factors

- In order to explore all of the model space (create different partitions of the variables to check) we need a search algorithm.
- We iterate between inclusion and exclusion steps:
 - Inclusion steps test new variables for inclusion into the set of clustering variables
 - Exclusion steps test variables currently in the set of clustering variables for exclusion from that set
 - Inclusion and exclusion decisions are based on the approximate Bayes factors

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• We stop when two proposed changes in a row are rejected

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三 のへぐ

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ●

• First we look at an example where there are no noise variables present

⇒ 𝒴𝔄

• First we look at an example where there are no noise variables present

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Have two variables with clustering information

• First we look at an example where there are no noise variables present

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Have two variables with clustering information
- 150 observations

- First we look at an example where there are no noise variables present
- Have two variables with clustering information
- 150 observations
- The clusters are well separated with different variances

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- First we look at an example where there are no noise variables present
- Have two variables with clustering information
- 150 observations
- The clusters are well separated with different variances
- The method correctly selects both variables

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

<ロト (個) (目) (目) (目) (目) (の)</p>

<ロト <回ト < 注ト < 注ト

3

<ロト <回ト < 注ト < 注ト

-

• Same 2 clustering variables as before

イロト 不良 トイヨト イロト

- 3

• 5 noise variables added:

- Same 2 clustering variables as before
- 5 noise variables added:
 - X3, X4 and X5 are independent

- Same 2 clustering variables as before
- 5 noise variables added:
 - X3, X4 and X5 are independent
 - X6 and X7 are dependent

- Same 2 clustering variables as before
- 5 noise variables added:
 - X3, X4 and X5 are independent
 - X6 and X7 are dependent

• Compare clustering results:

- Same 2 clustering variables as before
- 5 noise variables added:
 - X3, X4 and X5 are independent
 - X6 and X7 are dependent

• Compare clustering results:

-2 0 1 2 3
* 🕷 🐲
L 🕷 🕷

- Same 2 clustering variables as before
- 5 noise variables added:
 - X3, X4 and X5 are independent
 - X6 and X7 are dependent
- Compare clustering results:

Variables	# of	Error
	Groups	rate

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	-20240	-4 -2 0 2 4 0	-2 0 1 2 3
	N		
*			
¢۴	x3		
198			
1	动物 加熱		
100	ðæ 1944		X6
1998 -	2 C .		

- Same 2 clustering variables as before
- 5 noise variables added:
 - X3, X4 and X5 are independent
 - X6 and X7 are dependent
- Compare clustering results:

Variables	# of	Error
	Groups	rate
All 7	5	44.7%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

h

- Same 2 clustering variables as before
- 5 noise variables added:
 - X3, X4 and X5 are independent
 - X6 and X7 are dependent
- Compare clustering results:

Variables	# of	Error
	Groups	rate
All 7	5	44.7%
All 7	2 (constrained)	3.3%

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

- Same 2 clustering variables as before
- 5 noise variables added:
 - X3, X4 and X5 are independent
 - X6 and X7 are dependent
- Compare clustering results:

Variables	# of	Error
	Groups	rate
All 7	5	44.7%
All 7	2 (constrained)	3.3%
Selected 2	2	0%

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

・ロト (個) (注) (注) (注) (三) (の)

• 4 groups: male orange, female orange, male blue and female blue

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

- 4 groups: male orange, female orange, male blue and female blue
- 200 observations (50 per group)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 4 groups: male orange, female orange, male blue and female blue
- 200 observations (50 per group)
- 5 variables measuring size

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 4 groups: male orange, female orange, male blue and female blue
- 200 observations (50 per group)
- 5 variables measuring size

(日)、

3

- 4 groups: male orange, female orange, male blue and female blue
- 200 observations (50 per group)
- 5 variables measuring size

- 4 groups: male orange, female orange, male blue and female blue
- 200 observations (50 per group)
- 5 variables measuring size

• Variables selected: 4 of the 5 variables were selected, all except length along mid-line of carapace (CL)

(日)、

-20

- 4 groups: male orange, female orange, male blue and female blue
- 200 observations (50 per group)
- 5 variables measuring size

 Variables selected: 4 of the 5 variables were selected, all except length along mid-line of carapace (CL)

(日)、

-

• Compare clustering results:

- 4 groups: male orange, female orange, male blue and female blue
- 200 observations (50 per group)
- 5 variables measuring size

 Variables selected: 4 of the 5 variables were selected, all except length along mid-line of carapace (CL)

(日)、

-

• Compare clustering results:

- 4 groups: male orange, female orange, male blue and female blue
- 200 observations (50 per group)
- 5 variables measuring size

- Variables selected: 4 of the 5 variables were selected, all except length along mid-line of carapace (CL)
- Compare clustering results:

Variables	# of	Error
	Groups	rate

(日)、

-

- 4 groups: male orange, female orange, male blue and female blue
- 200 observations (50 per group)
- 5 variables measuring size

- Variables selected: 4 of the 5 variables were selected, all except length along mid-line of carapace (CL)
- Compare clustering results:

Variables	# of	Error
	Groups	rate
All 5	7	42.5%

イロト イポト イヨト イヨト

-

- 4 groups: male orange, female orange, male blue and female blue
- 200 observations (50 per group)
- 5 variables measuring size

- Variables selected: 4 of the 5 variables were selected, all except length along mid-line of carapace (CL)
- Compare clustering results:

Variables	# of	Error
	Groups	rate
All 5	7	42.5%
All 5	4	7.5%
	(constrained)	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

- 4 groups: male orange, female orange, male blue and female blue
- 200 observations (50 per group)
- 5 variables measuring size

- Variables selected: 4 of the 5 variables were selected, all except length along mid-line of carapace (CL)
- Compare clustering results:

Variables	# of	Error
	Groups	rate
All 5	7	42.5%
All 5	4	7.5%
	(constrained)	
Selected 4	4	7.5%

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ―臣 = ∽ へ ⊙

• Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

 Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• How many groups?

 Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- How many groups?
- Which clustering method to use?

 Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- How many groups?
- Which clustering method to use?
- How certain can we be about the clustering?

• Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- How many groups?
- Which clustering method to use?
- How certain can we be about the clustering?
- How to deal with outliers?

- Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:
 - How many groups?
 - Which clustering method to use?
 - How certain can we be about the clustering?
 - How to deal with outliers?
- Successfully applied to several image segmentation problems

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:
 - How many groups?
 - Which clustering method to use?
 - How certain can we be about the clustering?
 - How to deal with outliers?
- Successfully applied to several image segmentation problems
- A statistically based method proposed for variable selection/feature selection in model-based clustering

- Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:
 - How many groups?
 - Which clustering method to use?
 - How certain can we be about the clustering?
 - How to deal with outliers?
- Successfully applied to several image segmentation problems
- A statistically based method proposed for variable selection/feature selection in model-based clustering
- Software: R packages available at http://cran.r-project.org:

- Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:
 - How many groups?
 - Which clustering method to use?
 - How certain can we be about the clustering?
 - How to deal with outliers?
- Successfully applied to several image segmentation problems
- A statistically based method proposed for variable selection/feature selection in model-based clustering
- Software: R packages available at http://cran.r-project.org:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Model-based clustering: mclust

- Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:
 - How many groups?
 - Which clustering method to use?
 - How certain can we be about the clustering?
 - How to deal with outliers?
- Successfully applied to several image segmentation problems
- A statistically based method proposed for variable selection/feature selection in model-based clustering
- Software: R packages available at http://cran.r-project.org:

- Model-based clustering: mclust
- Variable selection: clustvarsel

- Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:
 - How many groups?
 - Which clustering method to use?
 - How certain can we be about the clustering?
 - How to deal with outliers?
- Successfully applied to several image segmentation problems
- A statistically based method proposed for variable selection/feature selection in model-based clustering
- Software: R packages available at http://cran.r-project.org:

- Model-based clustering: mclust
- Variable selection: clustvarsel
- References:

- Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:
 - How many groups?
 - Which clustering method to use?
 - How certain can we be about the clustering?
 - How to deal with outliers?
- Successfully applied to several image segmentation problems
- A statistically based method proposed for variable selection/feature selection in model-based clustering
- Software: R packages available at http://cran.r-project.org:

- Model-based clustering: mclust
- Variable selection: clustvarsel
- References:
 - Model-based clustering:
- Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:
 - How many groups?
 - Which clustering method to use?
 - How certain can we be about the clustering?
 - How to deal with outliers?
- Successfully applied to several image segmentation problems
- A statistically based method proposed for variable selection/feature selection in model-based clustering
- Software: R packages available at http://cran.r-project.org:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Model-based clustering: mclust
- Variable selection: clustvarsel
- References:
 - Model-based clustering:
 - Banfield and Raftery (1993, Biometrics)

- Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:
 - How many groups?
 - Which clustering method to use?
 - How certain can we be about the clustering?
 - How to deal with outliers?
- Successfully applied to several image segmentation problems
- A statistically based method proposed for variable selection/feature selection in model-based clustering
- Software: R packages available at http://cran.r-project.org:
 - Model-based clustering: mclust
 - Variable selection: clustvarsel
- References:
 - Model-based clustering:
 - Banfield and Raftery (1993, Biometrics)
 - Fraley and Raftery (2002, J. Amer. Statist. Ass.)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:
 - How many groups?
 - Which clustering method to use?
 - How certain can we be about the clustering?
 - How to deal with outliers?
- Successfully applied to several image segmentation problems
- A statistically based method proposed for variable selection/feature selection in model-based clustering
- Software: R packages available at http://cran.r-project.org:
 - Model-based clustering: mclust
 - Variable selection: clustvarsel
- References:
 - Model-based clustering:
 - Banfield and Raftery (1993, Biometrics)
 - Fraley and Raftery (2002, J. Amer. Statist. Ass.)
 - Variable selection: Raftery and Dean (2006, J. Amer. Statist. Ass.)

- Model-based clustering puts cluster analysis on a solid statistical basis and answers questions such as:
 - How many groups?
 - Which clustering method to use?
 - How certain can we be about the clustering?
 - How to deal with outliers?
- Successfully applied to several image segmentation problems
- A statistically based method proposed for variable selection/feature selection in model-based clustering
- Software: R packages available at http://cran.r-project.org:
 - Model-based clustering: mclust
 - Variable selection: clustvarsel
- References:
 - Model-based clustering:
 - Banfield and Raftery (1993, Biometrics)
 - Fraley and Raftery (2002, J. Amer. Statist. Ass.)
 - Variable selection: Raftery and Dean (2006, J. Amer. Statist. Ass.)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Website: www.stat.washington.edu/raftery

 \longrightarrow Research \longrightarrow Model-based clustering