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EXPLOITING TENSOR RANK-ONE DECOMPOSITION
IN PROBABILISTIC INFERENCE

Petr Savicky and Jiř́ı Vomlel

We propose a new additive decomposition of probability tables - tensor rank-one de-
composition. The basic idea is to decompose a probability table into a series of tables,
such that the table that is the sum of the series is equal to the original table. Each table
in the series has the same domain as the original table but can be expressed as a product
of one-dimensional tables. Entries in tables are allowed to be any real number, i.e. they
can be also negative numbers. The possibility of having negative numbers, in contrary
to a multiplicative decomposition, opens new possibilities for a compact representation of
probability tables. We show that tensor rank-one decomposition can be used to reduce the
space and time requirements in probabilistic inference. We provide a closed form solution
for minimal tensor rank-one decomposition for some special tables and propose a numerical
algorithm that can be used in cases when the closed form solution is not known.
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1. INTRODUCTION

The fundamental property of probabilistic graphical models [9, 7] that allows their
application in domains with hundreds to thousands variables is the multiplicative
factorization of the joint probability distribution. The multiplicative factorization
is exploited in inference methods, e.g., in the junction tree propagation method [8].
However, in some real applications the models may become intractable even when
the junction tree propagation method (or other exact inference methods) are used
because after the moralization and triangularization steps the graphical structure
becomes too dense, cliques consist of too many variables, and, consequently, the
probability tables corresponding to the cliques are too large to be efficiently manip-
ulated. In such case one usually turns to an approximative inference method.

Following the ideas presented in [3, 11] we propose a new decomposition of prob-
ability tables that allows to use exact inference in some models where – without
the suggested decomposition – the exact inference using the standard methods is
impossible. The basic idea is to decompose a probability table into a series of tables,
such that the table that is the sum of the series is equal to the original table. Each
table in the series has the same domain as the original table but can be expressed
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as a product of one-dimensional tables. Entries in tables are allowed to be any
real number. Extending the range to negative numbers opens new possibilities for
compact representation of probability tables and allows to find a shorter series.

It is convenient to formally specify the task using the tensor terminology. Assume
variables Xi, i ∈ N ⊂ N each variable Xi taking values (a value of Xi will be denoted
xi) from a finite set Xi. Let for any A ⊆ N the symbol xA denotes a vector of the
values (xi)i∈A, where for all i ∈ A: xi is a value from Xi.

Definition 1 Tensor
Let A ⊂ N . Tensor ψ over A is a mapping

×i∈AXi 7→ R .

The cardinality |A| is called tensor dimension.

Note that every probability table can be looked upon as a tensor. Tensor ψ over
A is an (unconditional) probability table if for every xA it holds that 0 ≤ ψ(xA) ≤ 1
and

∑
xA
ψ(xA) = 1. Tensor ψ is a conditional probability table (CPT) if for every

xA it holds that 0 ≤ ψ(xA) ≤ 1 and if there exists B ⊂ A such that for every xB it
holds

∑
xA\B

ψ(xB , xA\B) = 1.
Next, we will recall the basic tensor notion. If |A| = 1 then tensor is a vector.

If |A| = 2 then tensor is a matrix. The outer product ψ ⊗ ϕ of two tensors ψ :
×i∈AXi 7→ R and ϕ : ×i∈BXi 7→ R, A∩B = ∅ is a tensor ξ : ×i∈A∪BXi 7→ R defined
for all xA∪B as

ξ(xA∪B) = ψ(xA) · ϕ(xB) .

Now, let ψ and ϕ are defined on the same domain ×i∈AXi. The sum ψ + ϕ of
two tensors is tensor ξ : ×i∈AXi 7→ R such that for all xA

ξ(xA) = ψ(xA) + ϕ(xA) .

Definition 2 Tensor rank [6]
Tensor of dimension |A| has rank one if it is an outer product of |A| vectors. Rank
of tensor ψ is the minimal number of tensors of rank one that sum to ψ. Rank of
tensor ψ will be denoted as rank(ψ).

Remark Note that the standard matrix rank is a special case of the tensor rank
for |A| = 2. An alternative definition of the matrix rank is that the rank of an m×n
matrix M is the smallest r for which there exist a m × r matrix F and a r × n
matrix G such that

M = FG . (1)

Let f i be the ith column of F and gi be the ith row of G. We can equivalently write
equation (1) as

M =
r∑

i=1

f i ⊗ gi . (2)
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Since rank(f i⊗gi) = 1 we can see that the tensor rank of M is equal to the matrix
rank of M .

Definition 3 Tensor rank-one decomposition
Assume a tensor ψ over A and an integer r. A series of tensors {%b}r

b=1 over A such
that

• for b = 1, . . . , r: rank(%b) = 1, i.e., %b = ⊗i∈A ϕi,b, where ϕi,b, i ∈ A are
vectors and

• ψ =
∑r

b=1 %b

is called tensor rank-one decomposition of ψ of length r.

Note that from the definition of tensor rank it follows that such a series exists iff
r ≥ rank(ψ). The decomposition is minimal if r = rank(ψ).

Example 1 Let ψ : {0, 1} × {0, 1} × {0, 1} 7→ R be
(

1
2

) (
2
4

)
(

2
4

) (
4
9

)
 .

This tensor has rank two since

ψ = (1, 2)⊗ (1, 2)⊗ (1, 2) + (0, 1)⊗ (0, 1)⊗ (0, 1)

and there are no three vectors whose outer product is equal to ψ. �

It was proved in [6] that the computation of tensor rank is an NP-hard prob-
lem, therefore determining the minimal rank-one decomposition is also an NP-hard
problem.

Definition 4 Tensor rank-one approximation
Assume a tensor ψ and an integer s ≥ 1. A tensor rank-one approximation of length
s is a series {%b}s

b=1 of rank-one tensors %b that is a tensor rank-one decomposition
of a tensor ψ̂ with rank(ψ̂) = s. If ψ̂ minimizes

∑
x(ψ(x)− ψ̂(x))2 we say that it is

a best tensor rank-one approximation of length s.

Higher-dimensional tensors are studied in multilinear algebra [1]. The problem of
tensor rank-one decomposition is also known as canonical decomposition (CANDE-
COMP) or parallel factors (PARAFAC). A typical task is to find a tensor of rank
one that is a best approximation of a tensor ψ. This task is usually solved using an
alternating least square algorithm (ALS) that is a higher-order generalization of the
power method for matrices [2].

The rest of the paper is organized as follows. In Section 2. we show using a simple
example how tensor rank-one decomposition can be used to reduce the space and
time requirements for the probability inference using the junction tree method. We
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compare sizes of the junction tree for the standard approach, the parent divorcing
method, and the junction tree after tensor rank-one decomposition1. In Section 3.
the main theoretical results are presented: the lower bound on the tensor rank for a
class of tensors and minimal tensor rank-one decompositions for some special tensors
– max, add, xor, and their noisy counterparts. In Section 4. we propose a numerical
method that can be used to find a tensor rank-one decomposition. We also present
results of experiments with the numerical method.

2. TENSOR RANK-ONE DECOMPOSITION AND PROBABILISTIC INFER-
ENCE

We will use an example of a simple Bayesian network to show computational savings
of the proposed decomposition. Assume a Bayesian network having the structure
given on the left hand side of Figure 1. Variables X1, . . . , Xm are binary taking
values 0 and 1. For simplicity, assume that m = 2d, d ∈ N, 2 ≤ d. Further assume
a variable Y

df
= Xm+1, whose values y =

∑m
i=1 xi. This means that Y takes m + 1

values.
If we use the standard junction tree construction [8] we connect by edges all par-

ents of Y (this step is often called moralization). We need not perform triangulation
since the graph is already triangulated. The resulting junction tree consists of one
clique containing all variables, i.e., C1 = {X1, . . . , Xm, Y }. The resulting junction
tree consists of one clique C1 = {X1, . . . , Xm, Y }. See the right hand side of Figure 1.

Y

X1 X2 Xm

Y,X1, . . . , Xm

Figure 1: Bayesian network structure and its junction tree.

Since the CPT P (Y | X1, . . . , Xm) has a special form we can use the parent
divorcing method [10] and introduce a number of auxiliary variables, one auxiliary
variable for a pair of parent variables. This is used hierarchically, i.e. we get a tree
of auxiliary variables with node Y being the root of the tree. The resulting Bayesian
network is given in Figure 2. The resulting junction tree consists of m − 1 cliques.
See Figure 3.

In Section 3.2. we will show that if the CPT corresponds to addition of m binary
variables then we can decompose this CPT to a series of m + 1 tensors that are

1Several other methods were proposed to exploit a special structure of CPTs. For a review of
these methods see, for example, [11]. In this paper we do comparisons with the parent divorcing
method only.
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A1
1

Y

Xm−1X1 X2 Xm

Ad
1 Ad

md
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m1

d = log2m,md = 2

m1 = m/2

Figure 2: Bayesian network after parent divorcing.

A1
1, X1, X2 A1

2, X3, X4 A1
m1
, Xm−1, Xm

A1
1, A

1
2, A

2
1

Ad
1, A

d
2, Y

m1 = m/2

m2 = m/4

md = 2

A1
m1−1, A

1
m1
, A2

m2

A1
m1−1, Xm−3, Xm−2

Figure 3: Junction tree for the parent divorcing method.
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products of vectors

P (Y | X1, . . . , Xm) =
m+1∑
b=1

ξb ⊗ (⊗m
i=1 ϕi,b) .

As suggested in [3] we can visualize an additive decomposition using one additional
variable, which we will denote B. In case of addition of m binary variables variable
B will have m+ 1 states. Instead of moralization we add variable B into the model
and connect it with nodes corresponding to variables Y,X1, . . . , Xm. We get the
structure given in Figure 4. Note that all edges are undirected, which means that
we do not perform any moralization. It is not difficult to show (see [11]) that this
model can be used to compute marginal probability distributions as in the original
model. The resulting junction tree of this model is given in Figure 5.

Y

X1 X2 Xm

B

Figure 4: Bayesian network after the decomposition

B,X2B,X1 B,Xm

B, Y

Figure 5: Junction tree for the model after the rank-one decomposition

After little algebra we get that the total clique size in the standard case is (m+1)·
2m, after parent divorcing it is 1

3m
3+ 5

2m
2+2m logm− 11

6 m−1, and after the tensor
rank-one decomposition (described latter in this paper) it is only 3m2 + 4m+ 1. In
Figure 6 we compare dependence of the total size of junction trees on the number of
parent nodes2 m of node Y . Note that we use the logarithmic scale for the vertical
axis.

2It may seem unrealistic to have a node with more than ten parents in an real world application,
but it can easily happen, especially, when we need to introduce logical constraints into the model.
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Figure 6: Comparison of the total size of junction tree.

It should be noted that the tensor rank-one decomposition can be applied to any
probabilistic model. The savings depend on the graphical structure of the prob-
abilistic model. In fact, by avoiding the moralization of the parents, we give the
triangulation algorithm more freedom for the construction of a triangulated graph
so that the resulting tables corresponding to the cliques of the triangulated graph
can be smaller.

3. MINIMAL TENSOR RANK-ONE DECOMPOSITION

In this section we will present main theoretical results. Recall that determining
the minimal rank-one decomposition is an NP-hard problem [6]. However, we will
provide closed-form solution for the problem of finding a minimal rank-one decom-
position of some special tensors that play an important role, since they correspond
to CPTs that are often used in Bayesian network models in real applications.

The class of tensors of our special interest are tensors ψf that represent a func-
tional dependence of one variable Y on variables X1, . . . , Xm. Let X = X1 × . . .Xm

and x = (x1, . . . , xm) ∈ X . Further, let

I(expr) =
{

1 if expr is true
0 otherwise.

Then for a function f : X 7→ Y the tensor is defined for all (x, y) ∈ X × Y as
ψf (x, y) = I(y = f(x)).

Let r = rank(ψf ) and

ψf =
r∑

b=1

ξb ⊗ (⊗m
i=1ϕi,b) , (3)

where ξb : Y 7→ R and ϕi,b : Xi 7→ R for all b ∈ {1, . . . , r}. Formula (3) is called a
minimal tensor rank-one decomposition of ψf .
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First, we will provide a lower bound on the rank of tensors from this class. This
bound will be later used to prove the minimality of certain rank-one decompositions.

Lemma 1 Let function f : X 7→ Y and ψf : X×Y 7→ {0, 1} be a tensor representing
the functional dependence given by f . Then rank(ψf ) ≥ |Y|.

Proof For a minimal tensor rank-one decomposition of ψf it holds for all (x, y) ∈
X × Y that

ψf (x, y) =
r∑

b=1

ξb(y) ·
m∏

i=1

ϕi,b(xi) , (4)

where r = rank(ψf ). Consider the matrices3

W = {ψf (x, y)}y∈Y
x∈X ,

U = {ξb(y)}y∈Y
b∈{1,...,r} ,

V =

{
m∏

i=1

ϕi,b(xi)

}b∈{1,...,r}

x∈X

.

Equation (4) can be rewritten as

W = UV .

Each row of W contains at least one nonzero entry, since each y ∈ Y is in the range
of f . Moreover, each column of W contains exactly one nonzero entry, since f is
a function. Hence, no row is a linear combination of other rows. Therefore there
are |Y| independent rows in W and rank(W ) = |Y|. Since the rank of a matrix
product cannot be higher than the rank of matrices in the product [4] we get that
rank(W ) ≤ rank(U) ≤ r. Altogether, |Y| ≤ r. 2

3.1. Maximum and minimum

An additive decomposition of max was originally proposed in [3]. This result is in-
cluded in this section for completeness and we add a result about its optimality. The
proofs are constructive, i.e., they provide a minimal tensor rank-one decomposition
for max and min.

Let us assume that Xi = [ai, bi] is an interval of integers for each i = 1, . . . ,m.
Clearly, the range Y of max on X1× . . .×Xm is [maxm

i=1 ai,maxm
i=1 bi] and the range

Y of min is [minm
i=1 ai,minm

i=1 bi].

Theorem 1 If f(x) = max{x1, . . . , xm} and xi ∈ [ai, bi] for i = 1, . . . ,m then
rank(ψf ) = |Y|.

3The upper index labels the rows and the lower index labels the columns.
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Proof Let for i ∈ {1, . . . ,m}, xi ∈ Xi, and b ∈ Y

ϕi,b(xi) =
{

1 xi ≤ b
0 otherwise

and for y ∈ Y, b ∈ Y

ξb(y) =

 +1 b = y
−1 b = y − 1

0 otherwise.

Let ω(x, y) = I(max(x1, . . . , xm) ≤ y). Put

ω(x, y) =
m∏

i=1

ϕi,y(xi) .

Therefore,

ψf (x, y) = ω(x, y)− ω(x, y − 1),

where ω(x, ymin − 1) is considered to be zero. Altogether,

ψf (x, y) =
m∏

i=1

ϕi,y(xi)−
m∏

i=1

ϕi,y−1(xi) .

Since the product ξb(y) ·
∏m

i=1 ϕi,b(xi) is nonzero only for b = y and b = y − 1, we
have

ψf (x, y) = ξy(y) ·
m∏

i=1

ϕi,y(xi) + ξy−1(y) ·
m∏

i=1

ϕi,y−1(xi)

=
∑
b∈Y

ξb(y) ·
m∏

i=1

ϕi,b(xi) .

Taking b′ = b+ ymin − 1 we get the required decomposition

ψf =
|Y|∑

b′=1

ξb′ ⊗ (⊗m
i=1ϕi,b′) .

By Lemma 1, this is a minimal tensor rank-one decomposition of ψf . 2

Theorem 2 If f(x) = min{x1, . . . , xm} and xi ∈ [ai, bi] for i = 1, . . . ,m then
rank(ψf ) = |Y|.

Proof Let for i ∈ {1, . . . ,m}, xi ∈ Xi, and b ∈ Y

ϕi,b(xi) =
{

1 xi ≥ b
0 otherwise
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and for y ∈ Y, b ∈ Y

ξb(y) =

 +1 b = y
−1 b = y + 1

0 otherwise.

and follow an analogous argument as in the proof of Theorem 1 to obtain tensor
rank-one decomposition of ψf . Again, by Lemma 1, this is a minimal tensor rank-one
decomposition. 2

Remark If for i ∈ {1, . . . ,m} Xi = {0, 1}, then the functions max{x1, . . . , xm}
and min{x1, . . . , xm} correspond to logical disjunction x1 ∨ . . . ∨ xm and logical
conjunction x1 ∧ . . . ∧ xm, respectively. In Example 2 we illustrate how this can be
generalized to Boolean expressions consisting of negations and disjunctions.

Example 2 In order to achieve minimal tensor rank-one decomposition of

ψ(x1, x2, y) = I(y = (x1 ∨ ¬x2))

with variable B having two states 0 and 1, it is sufficient to use functions:

ϕ1,b(x1) = I(x1 ≤ b)
ϕ2,b(x2) = I(¬x2 ≤ b)

ξb(y) =

 +1 y = b
−1 y = 1, b = 0

0 y = 0, b = 1

�

3.2. Addition

In this section, we assume an integer ri for each i = 1, . . . ,m and assume that Xi is
the interval of integers [0, ri]. This assumption is made for simplicity and without
the loss of generality. If Xi are intervals of integers, which do not start at zero, it is
possible to transform the variables by subtracting the lower bounds of the intervals
to obtain variables satisfying the assumption. Moreover, let f : Nm → N be a
function, such that f(x) = f0(

∑m
i=1 xi) where f0 : N → N. Let A be the interval of

integers [0,
∑m

i=1 ri]. Clearly, A is the range of
∑m

i=1 xi.

Theorem 3 Let f0, f and A be as above. Then rank(ψf ) ≤ |A|. Moreover, if f0
is the identity function, then rank(ψf ) = |A|.

Proof Consider the Vandermonde matrix
α0

1 α0
2 . . . α0

|A|
α1

1 α1
2 . . . α1

|A|
. . .

α
|A|−1
1 α

|A|−1
2 . . . α

|A|−1
|A|

 , (5)
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where α1, . . . , α|A| are pairwise distinct real numbers and the upper index is the
exponent. This matrix is non-singular, since the corresponding Vandermonde deter-
minant is non-zero [4]. The system of equations

βt =
|A|∑
b=1

zb · αt
b, t ∈ A (6)

has the Vandermonde matrix as its system matrix and since the Vandermonde de-
terminant is non-zero it has always a solution for variables zb, b ∈ A.

For a fixed y ∈ Y define ξb(y) to be the solution of system (6) with βt = I(y =
f0(t)). Therefore it holds for a fixed y ∈ Y and for all t ∈ A that

I(y = f0(t)) =
|A|∑
b=1

ξb(y) · αt
b . (7)

By substituting t =
∑m

i=1 xi and taking ϕi,b(xi) = αxi

b for b = 1, . . . , |A| we obtain
that for all combinations of the values of x and y

I(y = f0(
m∑

i=1

xi)) =
|A|∑
b=1

ξb(y) ·
m∏

i=1

ϕi,b(xi) .

This proves the first assertion of the theorem.
If f0 is the identity, then the range of f is the whole A. It follows from Lemma 1

that rank(ψf ) ≥ |A| and therefore the above decomposition is minimal. 2

Example 3 Let Xi = {0, 1} for i = 1, 2, f(x1, x2) = x1 + x2 and Y = {0, 1, 2}. We
have

ψf (x1, x2, y) = I(y = x1 + x2)

=



 1
0
0

  0
1
0

 0
1
0

  0
0
1




As in the proof of Theorem 3, we assume ϕi,b(xi) = αxi

b for i = 1, 2 and distinct αb,
b = 0, 1, 2. For simplicity of notation, let us assume α0 = α, α1 = β and α2 = γ. Let
us substitute these ϕi,b(xi) into (3) and rewrite it using tensor product as follows.

ψf (x1, x2, y) = (α0, α1)⊗ (α0, α1)⊗ (u0, u1, u2)

+(β0, β1)⊗ (β0, β1)⊗ (v0, v1, v2)

+(γ0, γ1)⊗ (γ0, γ1)⊗ (w0, w1, w2)
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For each y = 0, 1, 2 we require(
I(y = 0) I(y = 1)
I(y = 1) I(y = 2)

)
= uy ·

(
α0 α1

α1 α2

)
+vy ·

(
β0 β1

β1 β2

)
+ wy ·

(
γ0 γ1

γ1 γ2

)
,

which defines a system of three linear equations with three variables uy, vy, wy I(y = 0)
I(y = 1)
I(y = 2)

 =

 α0 β0 γ0

α1 β1 γ1

α2 β2 γ2

 ·

 uy

vy

wy

 .

If α, β, and γ are pairwise distinct real numbers then the corresponding Vander-
monde determinant is non-zero and a solution exists. The solution for α = 1, β =
2, γ = 3 is

ψf (x1, x2, y) = (1, 1)⊗ (1, 1)⊗ (3,−5
2
,
1
2
)

+ (1, 2)⊗ (1, 2)⊗ (−3, 4,−1)

+ (1, 3)⊗ (1, 3)⊗ (1,−3
2
,
1
2
) .

�

3.3. Generalized addition

In this section, we present a tensor rank-one decomposition of ψf , where f is defined
as f(x) = f0(

∑m
i=1 fi(xi)). Let A be the set of all possible values of

∑m
i=1 fi(xi).

The rank of ψf depends on the nature of functions fi, more exactly, on the range of
the values of

∑m
i=1 fi(xi). The decomposition is useful, if this range is substantially

smaller than |X1| · . . . · |Xm|.

Theorem 4 If f(x) = f0(
∑m

i=1 fi(xi)), where fi are integer valued functions, then
rank(ψf ) ≤ |A|.

Proof Without a loss of generality, we may assume that fi(xi) ≥ 0 for i = 1, . . . ,m
and that zero is in the range of fi. If not, this may be achieved by using fi(xi) −
minzi

fi(zi) instead of fi and modifying f0 so that f does not change. The proof is
analogous to the proof of the Theorem 3, where t =

∑m
i=1 fi(xi) and ϕi,b(xi) = α

f(xi)
b

for b = 1, . . . , |A|. 2

3.4. Exclusive-or (parity) function

Let ⊕ denote the addition modulo two, which is also known as the exclusive-or op-
eration. Parity is often used in coders and decoders. We conjecture tensor rank-one
decomposition may substantially speed up exact inference in probabilistic graphical
models used to model decoders for noisy channels. By the parity or exclusive-or
function, we will understand the function x1 � . . .� xm.
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Theorem 5 Let Xi = Y = {0, 1} for i = 1, . . . ,m and f(x) = x1 � . . .� xm. Then
rank(ψf ) = 2.

Proof The exclusive-or function may easily be expressed as a product, if the values
{0, 1} are replaced by {1,−1} using substitution 0 7→ 1, 1 7→ −1. An odd number of
ones in the 0/1 representation is equivalent to a negative product of the correspond-
ing values in the 1/− 1 representation. Expressing the required transformations in
the form of a linear transformation, we obtain

x1 � . . .� xm =
1
2
(1− (1− 2x1) . . . (1− 2xm)).

Since ψf (x, y) = I(y ⊕ x1 ⊕ . . .⊕ xm = 0) = y ⊕ x1 ⊕ . . .⊕ xm ⊕ 1, we have

ψf (x, y) =
1
2
(1 + (1− 2y)(1− 2x1) . . . (1− 2xm)).

Hence, ψf may be expressed as a sum of two functions, the first of which is the
constant 1

2 and the second is ( 1
2 −y)(1−2x1) . . . (1−2xm). It is now easy to express

ψf in the form of (3), if we use tensors defined as follows. Let for i ∈ {1, . . . ,m},
xi ∈ {0, 1}, and b ∈ {1, 2}

ϕi,b(xi) =
{

1 b = 1
1− 2xi b = 2

and

ξb(y) =

{
1
2 b = 1
1
2 − y b = 2 .

It follows from Lemma 1 that this defines a minimal tensor rank-one decomposition
of exclusive-or. 2

3.5. Noisy functional dependence

For every i = 1, . . . ,m we define a dummy variable X ′
i taking values x′i from set

X ′
i = Xi. The noisy functional dependence of Y on X = (X1, . . . , Xm) is defined by

ψ(x, y) =
∑
x′

ψf (x′, y) ·
m∏

i=1

κi(xi, x
′
i) , (8)

where ψf is tensor that represent a functional dependence y = f(x′) and for i =
1, . . . ,m tensors κi represent the noise for variable Xi. Note that models like noisy-
or, noisy-and, etc., fall within the scope of the above definition. Actually, the defi-
nition covers the whole class of models known as models of independence of causal
influence (ICI) [5].

Theorem 6 Let tensor ψ represent the noisy functional dependence f defined by
formula (8). Then rank(ψ) ≤ rank(ψf ).
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Proof Let r = rank(ψf ). Then

ψf (x′, y) =
r∑

b=1

ξb(y) ·
m∏

i=1

ϕi,b(x′i) .

Substituting this to formula (8) we get

ψ(x, y) =
∑
x′

r∑
b=1

ξb(y) ·
m∏

i=1

(ϕi,b(x′i) · κi(xi, x
′
i))

=
r∑

b=1

ξb(y)
m∏

i=1

∑
x′

i

(ϕi,b(x′i) · κi(xi, x
′
i))

=
r∑

b=1

ξb(y) ·
m∏

i=1

ϕ′b,i(xi) ,

where ϕ′b,i(xi) =
∑

x′
i
(ϕi,b(x′i) · κi(xi, x

′
i)). The last equation proves that rank(ψ) ≤

rank(ψf ). 2

4. NUMERICAL METHOD

In the previous section we showed how a minimal tensor rank-one decomposition can
be found for some special CPTs. But since it would be useful to get tensor rank-one
decompositions for CPTs with an unknown closed-form solution we tested several
numerical methods.

Recall that a tensor rank-one approximation of length s (Definition 4) is a series
{%b}s

b=1 of rank-one tensors %b that is a tensor rank-one decomposition of a tensor ψ̂
with rank(ψ̂) = s. If ψ̂ minimizes

∑
x(ψ(x)− ψ̂(x))2 we say that it is a best tensor

rank-one approximation of length s.
Note that if s = rank(ψ) then the minimal value of

∑
x(ψ(x) − ψ̂(x))2 is zero

and a best tensor rank-one approximation of length s is also a minimal tensor rank-
one decomposition of ψ. Therefore, we can search numerically for a minimal tensor
rank-one decomposition by solving the task from Definition 4 starting with s = 1
and then incrementing s by one until

∑
x(ψ(x)− ψ̂(x))2 is sufficiently close to zero.

We performed tests with several gradient methods. The best performance was
achieved with Polak-Ribière conjugate gradient method that used the Newton method
in one dimension. We performed experiments for tensors corresponding to the
exclusive-or and maximum functions of three binary variables. For these functions
we know the tensor rank is two therefore we could verify whether for s = 2 the
algorithm found a tensor rank-one decomposition of these tensors.

The initial values for the algorithm were random numbers from interval [−0.5,+0.5].
In most cases the algorithm converged to vectors that were tensor rank-one decom-
position. However, sometimes we needed to restart the algorithm from another
starting values since it got stuck in a local minima. Figures 7 and 8 illustrate the
convergence using three sample runs. The displayed value is one value of ψ̂ as it
changes with the progress of the algorithm.



Exploiting tensor rank-one decomposition in probabilistic inference 15

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70

va
lu

e

iteration

restart nr. 1
restart nr. 2
restart nr. 3

Figure 7: Development of one value of ψ′ in case of decomposition of xor.

We also applied the numerical algorithm to tensors for which we do not know their
exact rank. Namely, it was the family of tensors corresponding to CPTs representing
Boolean functions - the Boolean threshold functions and exactly-t functions.

Definition 5 Boolean threshold function is a Boolean function f such that

f(x) =
{

0 if |x| < t
1 if |x| ≥ t.

where t ∈ {0, . . . ,m+ 1} is the threshold value.

Note that if t = 0 then it corresponds to the true function, if t = m+1 it is the false
function, if t = 1 then it is the or function, and if t = m then it is the and function.

Definition 6 Let ft+1 be the Boolean threshold function with threshold t+ 1 and
ft+2 be the Boolean threshold function with threshold t + 2. Then for any t ∈
{1,m− 1} the exactly-t function is function gt(x) = ft+1(x)− ft+2(x).

To compute numerically the rank of tensors corresponding to the threshold func-
tion, the exactly-t function, and a general randomly generated Boolean functions
we again used the Polak-Ribière conjugate gradient method. For each s = 1, 2, . . .
we searched for the best tensor rank-one approximation of length s until we found
an approximation that was sufficiently closed to the tensor of a given Boolean func-
tion (we again started the algorithm from ten different randomly generated starting
points). As a stopping criteria we used the condition∑

x

(ψ(x)− ψ̂(x))2 < 10−5 .

The lowest value of s for which the above condition was met we regarded to be the
rank of the tensor of the given Boolean function.
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Figure 8: Development of one value of ψ′ in case of decomposition of max.

Table 1: Rank of the threshold Boolean functions with threshold t compared with
the average rank and the rank interval of randomly generated Boolean functions.

t 0 1 2 3 4 5 6 random
m = 2 1 2 2 1 1 1 1 1.92 [1,2]
m = 3 1 2 3 2 1 1 1 2.78 [2,3]
m = 4 1 2 3 3 2 1 1 3.94 [3,5]
m = 5 1 2 3 4 3 2 1 6.62 [5,8]

In Table 1 we compare the rank of the threshold Boolean functions with threshold
t compared with the average rank and the rank interval of randomly generated
Boolean functions. We did the computations for different number of variables m.
The average was computed from tensor rank values of fifty randomly generated
Boolean functions. The values in brackets correspond to the interval of the rank
values. Note that this does not mean that there do not exist Boolean functions with
lower or higher rank. In Table 2 we present similar comparisons for the exactly-t
function.

From the tables we can see that the rank of the threshold Boolean functions (for
m > 3) and also the exactly-t Boolean functions (for m > 4) is lower than rank of a
randomly generated Boolean functions. The lower the rank the more compact is the
tensor rank-one decomposition, which implies that the probabilistic inference with
these models can be performed more efficiently.
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Table 2: Rank of the exactly-t function compared with the average rank and the
rank interval of randomly generated Boolean functions.

t 0 1 2 3 4 5 6 random
m = 2 2 2 2 1 1 1 1 1.92 [1,2]
m = 3 2 3 3 2 1 1 1 2.78 [2,3]
m = 4 2 3 4 3 2 1 1 3.94 [3,5]
m = 5 2 3 4 4 3 2 1 6.62 [5,8]

5. CONCLUSIONS

In many applications of Bayesian networks, special types of relations between vari-
ables are used. The transformation applied in this paper exploits functional depen-
dence in order to achieve substantially more efficient probabilisticvinference. The
transformation is based on introducing an auxiliary variable. Less states of the
auxiliary variable mean more efficient probabilistic inference. We observed the cor-
respondence between the problem of minimal number of states of the auxiliary vari-
able and the problem of the rank of a tensor. We proposed a new factorization for
the addition and parity functions and their noisy counterparts. The factorization
with an auxiliary variable can be also used to approximate large potentials. This
could be used in an approximate propagation method when the exact inference is
not possible.

ACKNOWLEDGMENTS

The authors were supported by the Ministry of Education of the Czech Republic under the
project nr. 1M0545 (P. Savicky) and nr. 1M0572 (J. Vomlel). J. Vomlel was also supported
by the Grant Agency of the Czech Republic under the project nr. 201/04/0393.

(Received June 12, 2006.)

Petr Savicky, Inst. of Comp. Science, Academy of Sciences of the Czech Rep., Pod
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