Closed loop information processing strategy for optimal fault detection and control

Miroslav Šimandl Ivo Punčochář

Department of Cybernetics and Research Centre Data – Algorithms – Decision Making Faculty of Applied Sciences University of West Bohemia in Pilsen Czech Republic

Outline

Introduction Problem formulation Solutions for three special cases Multiple linear Gaussian model framework Numerical example Concluding remarks

Outline

Introduction

- 2 Problem formulation
- 3 Solutions for three special cases
- 4 Multiple linear Gaussian model framework
- 5 Numerical example
- 6 Concluding remarks

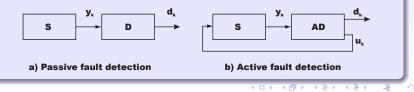
・ロト ・ 日下・ ・ ヨト・・

Introduction

Model-based approaches to the fault detection Active fault detection problem Information processing strategies Goals

Model-based approaches to the fault detection

- Uses a model of the observed system, a priori information and measurements to decide on faults
- Passive fault detection detector passively uses available information to decide on faults
- Active fault detection detector provides decision and input signal which should improve fault detection



Model-based approaches to the fault detection Active fault detection problem Information processing strategies Goals

(日) (四) (三) (三)

Introduction - cont'd

Active fault detection problem

- Deterministic [Campbell&Nikoukhah(2004)] and stochastic [Zhang(1989), Kerestecioglu(1993)] models of the observed system are used
- A general formulation of the active fault detection problem in stochastic framework is missing and the relation between active fault detection and the optimal control is not considered
- Known approaches use information is such way that the consequences of the current decision in future steps are not considered and the future losses are not taken into account

Model-based approaches to the fault detection Active fault detection problem Information processing strategies Goals

(日) (四) (三) (三)

Introduction - cont'd

Information processing strategies

- Open loop (OL) only a priori information is used
- Open loop feedback (OLF) all available information up to current time step is used, but the future information is not considered
- Closed loop (CL) all available information up to current time step is used and the availability of the future information is considered as well; so the future losses are taken into account and this strategy provides the lowest value of a criterion (i.e. $J^{CL} \leq J^{OLF} \leq J^{OL}$)

Model-based approaches to the fault detection Active fault detection problem Information processing strategies Goals

・ロト ・ 日下・ ・ ヨト・・

Introduction - cont'd

Goals

- Propose a unified formulation of the active fault detection problem
- Specify three basic special cases
 - Optimal detector for given input signal generator
 - Optimal detector and optimal input signal generator
 - Optimal detector and optimal dual controller
- Find solutions of considered special cases using CL information processing strategy

Problem formulation

Description of the observed system for $k \in \mathcal{T} = \{0, \dots, F\}$

System :
$$\mathbf{x}_{k+1} = \mathbf{f}_k (\mathbf{x}_k, \mu_k \mathbf{u}_k, \mathbf{w}_k)$$

$$\mu_{k+1} = \mathbf{g}_k (\mu_k, \mathbf{e}_k)$$

$$\mathbf{y}_k = \mathbf{h}_k (\mathbf{x}_k, \mu_k, \mathbf{v}_k)$$

 \mathbf{f}_k , \mathbf{g}_k and \mathbf{h}_k are known function; $\mathbf{x}_k \in \mathcal{R}^{n_x}$ is controllable part of the state; $\mu_k \in \mathcal{M} \subset \mathcal{R}^{n_{\mu}}$ is uncontrollable part of the state and represents faults; $\mathbf{u}_k \in \mathcal{U}_k \subset \mathcal{R}^{n_u}$ is input, $\mathbf{y}_k \in \mathcal{R}^{n_y}$ is output; $\{\mathbf{w}_k\}$, $\{\mathbf{e}_k\}$ and $\{\mathbf{v}_k\}$ are mutually independent random sequences

Problem formulation - cont'd

Description of the general active detector for $k \in T$

Active detector :
$$\begin{bmatrix} d_k \\ \mathbf{u}_k \end{bmatrix} = \begin{bmatrix} \sigma_k \left(\mathbf{I}_0^k \right) \\ \gamma_k \left(\mathbf{I}_0^k, d_k \right) \end{bmatrix}$$

 σ_k and γ_k are generally unknown functions; $d_k \in \mathcal{M}$ is an estimate of the μ_k (in special case called decision); all available information at time k is stored in $\mathbf{I}_0^k = [\mathbf{y}_0^{k^T}, \mathbf{u}_0^{k-1^T}, d_0^{k-1^T}]^T$

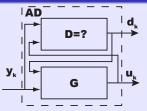
(日) (同) (E) (E)

Case I: Optimal detector for given input signal generator Case II: Optimal detector and optimal input signal generator Case III: Optimal detector and optimal dual controller Comments on special cases

Specifications and solutions of the special cases

Case I: Optimal detector for given input signal generator

The input signal generator is given by functions γ_k(**I**^k₀, d_k) (e.g. existing controller) and the detector σ_k(**I**^k₀) has to be found



• Criterion which has to be minimized

$$J_{ADGG}(\sigma_0^F) = \mathbb{E}\left\{\sum_{i=0}^F L_i^d(d_i, \mu_i)\right\}$$

Case I: Optimal detector for given input signal generator Case II: Optimal detector and optimal input signal generator Case III: Optimal detector and optimal dual controller Comments on special cases

(日) (四) (三) (三)

Specifications and solutions of the special cases - cont'd

Case I: Optimal detector for given input signal generator

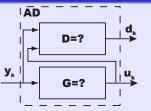
- Backward recursive equation with initial condition $V_{F+1}^* = 0$ and final value of the criterion $J_{ADGG}^{CL} = \mathbb{E} \{ V_0^*(\mathbf{I}_0) \}$ $V_k^*(\mathbf{I}_0^k) = \min_{d_k \in \mathcal{M}} \mathbb{E} \{ L_k^d(d_k, \mu_k) + V_{k+1}^*(\mathbf{I}_0^{k+1}) | \mathbf{I}_0^k, d_k \}$
- Optimal decision d^{*}_k is a trade-off between right decision at time step k and the excitation of the observed system through the law u_k = γ_k(l^k₀, d_k)

Case 1: Optimal detector for given input signal generator Case 11: Optimal detector and optimal input signal generator Case 111: Optimal detector and optimal dual controller Comments on special cases

Specifications and solutions of the special cases - cont'd

Case II: Optimal detector and optimal input signal generator

• Both the detector $\sigma_k(\mathbf{I}_0^k)$ and input signal generator $\gamma_k(\mathbf{I}_0^k, d_k)$ have to be found



• Criterion which has to be minimized

$$J_{ADG}(\sigma_0^F, \gamma_0^F) = \mathrm{E}\left\{\sum_{i=0}^F L_i^d(d_i, \mu_i)\right\}$$

Case I: Optimal detector for given input signal generator Case II: Optimal detector and optimal input signal generator Case III: Optimal detector and optimal dual controller Comments on special cases

(ロ) (四) (三) (三) (三)

Specifications and solutions of the special cases - cont'd

Case II: Optimal detector and optimal input signal generator

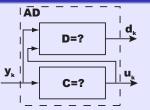
- Backward recursive equation with the initial condition $V_{F+1}^* = 0 \text{ and final value of the criterion } J_{ADG}^{CL} = \mathbb{E} \{V_0^*(\mathbf{y}_0)\}$ $V_k^*(\mathbf{y}_0^k, \mathbf{u}_0^{k-1}) = \min_{d_k \in \mathcal{M}} \mathbb{E} \left\{ L_k^d(d_k, \mu_k) | \mathbf{y}_0^k, \mathbf{u}_0^{k-1}, d_k \right\} + \min_{\mathbf{u}_k \in \mathcal{U}_k} \mathbb{E} \left\{ V_{k+1}^*(\mathbf{y}_0^{k+1}, \mathbf{u}_0^k) | \mathbf{y}_0^k, \mathbf{u}_0^k \right\}$
- Optimal decision d^{*}_k and optimal input signal u^{*}_k are chosen independently, so γ_k(y^k₀, u^{k-1}₀, d^k₀) = γ_k(y^k₀, u^{k-1}₀)
- It can be proven that $J^{CL}_{ADG} \leq J^{CL}_{ADGG}$

Case I: Optimal detector for given input signal generator Case II: Optimal detector and optimal input signal generator Case III: Optimal detector and optimal dual controller Comments on special cases

Specifications and solutions of the special cases - cont'd

Case III: Optimal detector and optimal dual controller

• Both the detector $\sigma_k(\mathbf{I}_0^k)$ and dual controller $\gamma_k(\mathbf{I}_0^k, d_k)$ have to be found



• Criterion which has to be minimized

$$J_{ADC}(\sigma_0^F) = \mathbf{E}\left\{\sum_{i=0}^F L_i^d(d_i, \mu_i) + \alpha_i L_i^c(\mathbf{x}_i, \mathbf{u}_i)\right\}$$

Case I: Optimal detector for given input signal generator Case II: Optimal detector and optimal input signal generator Case III: Optimal detector and optimal dual controller Comments on special cases

(日) (四) (三) (三)

Specifications and solutions of the special cases - cont'd

Case III: Optimal detector and optimal dual controller

- Backward recursive equation with initial condition $V_{F+1}^* = 0$ and final value of the criterion $J_{ADC}^{CL} = \mathbb{E} \{ V_0^*(\mathbf{y}_0) \}$ $V_k^*(\mathbf{y}_0^k, \mathbf{u}_0^{k-1}) = \min_{d_k \in \mathcal{M}} \mathbb{E} \{ L_k^d(d_k, \mu_k) | \mathbf{y}_0^k, \mathbf{u}_0^{k-1}, d_k \} + \min_{\mathbf{u}_k \in \mathcal{U}_k} \mathbb{E} \{ \alpha_k L_k^c(\mathbf{x}_k, \mathbf{u}_k) + V_{k+1}^*(\mathbf{y}_0^{k+1}, \mathbf{u}_0^k) | \mathbf{y}_0^k, \mathbf{u}_0^k \}$
- Optimal decision d^{*}_k and optimal input signal u^{*}_k are also independent, but optimal input signal is trade-off between control objective and the excitation of the observed system

Case I: Optimal detector for given input signal generator Case II: Optimal detector and optimal input signal generator Case III: Optimal detector and optimal dual controller Comments on special cases

・ロト ・ 日ト ・ 日下 ・ 日日

Specifications and solutions of the special cases - cont'd

Comments on special cases

- The case III: Optimal detector and optimal dual controller describes the most general problem and it includes the previous cases
- A nonlinear filter can provide required pdf's $p(\mu_k | \mathbf{y}_0^k, \mathbf{u}_0^{k-1})$, $p(\mathbf{x}_k | \mathbf{y}_0^k, \mathbf{u}_0^{k-1})$ and $p(\mathbf{y}_{k+1} | \mathbf{y}_0^k, \mathbf{u}_0^k)$
- The function $V_k^*(\cdot)$ can not be expressed analytically in explicit form and the approximations are necessary to obtain a feasible suboptimal solution

Special case - Multiple linear Gaussian model

Specification of the MM framework

- It is special case of the proposed description of the observed system and it simplifies a computation
- The observed system is supposed to be described by finite number of linear Gaussian models, so pdf's of the initial condition **x**_k and noises w_k, v_k are Gaussian
- The set M = 1,..., N is discrete and µk denotes scalar index to the model valid at time k
- The state equation µ_{k+1} = g(µ_k, e_k) is replaced by transition probabilities P_{i,j} = P(µ_{k+1} = j|µ_k = i), i, j ∈ M

・ロト ・日下・ ・ヨト・・

Numerical example

 P_{i}

Observed system description for $k \in \mathcal{T} = \{0, 1\}$

$$\begin{split} \mu_k &= 1: \ x_{k+1} = 0.99 x_k + u_k + \sqrt{0.25} w_k \\ y_k &= 2 x_k + \sqrt{0.25} v_k \\ \mu_k &= 2: \ x_{k+1} = 1.01 x_k + 0.99 u_k + \sqrt{0.25} w_k \\ y_k &= 2 x_k + \sqrt{0.25} v_k \\ \mu_k &= 3: \ x_{k+1} = 0.5 x_k + 1.5 u_k + \sqrt{0.25} w_k \\ y_k &= 1.5 x_k + \sqrt{0.25} v_k \\ j &= \begin{cases} 0.9 \ iff \ i &= j, \ p(w_k) = p(v_k) = \mathcal{N}\{0, 1\}, p(x_0) = \mathcal{N}\{1, 0.1\} \\ 0.05 \ iff \ i &\neq j, \ P(\mu_0 = 1) = 0.4, \ P(\mu_0 = 2) = P(\mu_0 = 3) = 0.3 \end{cases} \end{split}$$

4

イロト イヨト イヨト イヨト

Numerical example – cont'd

Loss functions for $k \in \mathcal{T}$

$$egin{aligned} d_k &= \mu_k \Rightarrow L_k^d(d_k,\mu_k) = 0 & L_k^c(x_k,u_k) = x_k^2 + u_k^2 \ d_k &= \mu_k \Rightarrow L_k^d(d_k,\mu_k) = 1 & lpha = 0.01 \end{aligned}$$

Input signal generator for $k \in T$

- Set of input signal $\mathcal{U}_k = \{-1, 1\}$
- Description of the generator for the case I

$$d_k = 1 \lor d_k = 3 \Rightarrow u_k = -1,$$

 $d_k = 2 \Rightarrow u_k = 1$

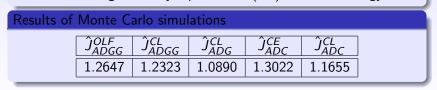
(□) (□) (□) (□)

4

Numerical example - cont'd

Approaches used for active detector design

- Case I (Optimal detector for given input signal generator) is solved using OLF (MAP model estimate) and CL strategy
- Case II (Optimal detector and optimal input signal generator) is solved only using CL strategy
- Case III (Optimal detector and optimal dual controller) is solved using certainty equivalence (CE) and CL strategy



イロト イヨト イヨト イヨト

Concluding remarks

Remarks

- The new unified formulation of the active fault detection problem was proposed
- The formulation provides very general framework and the other cases together with corresponding solutions can be easily derived in addition to the presented cases
- In general, CL information processing strategy provides better results than OLF strategy
- In the case II (Optimal detector and optimal input signal generator) it was shown that the optimal decision d^{*}_k and optimal input signal u^{*}_k are independent

(日) (四) (三) (三)