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Introduction

Model-based approaches to the fault detection

Uses a model of the observed system, a priori information and
measurements to decide on faults

Passive fault detection - detector passively uses available
information to decide on faults

Active fault detection - detector provides decision and input
signal which should improve fault detection
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a) Passive fault detection
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b) Active fault detection
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Introduction – cont’d

Active fault detection problem

Deterministic [Campbell&Nikoukhah(2004)] and stochastic
[Zhang(1989), Kerestecioglu(1993)] models of the observed
system are used

A general formulation of the active fault detection problem in
stochastic framework is missing and the relation between
active fault detection and the optimal control is not considered

Known approaches use information is such way that the
consequences of the current decision in future steps are not
considered and the future losses are not taken into account
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Introduction – cont’d

Information processing strategies

Open loop (OL) - only a priori information is used

Open loop feedback (OLF) - all available information up to
current time step is used, but the future information is not
considered

Closed loop (CL) - all available information up to current time
step is used and the availability of the future information is
considered as well; so the future losses are taken into account
and this strategy provides the lowest value of a criterion (i.e.
JCL ≤ JOLF ≤ JOL)
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Introduction – cont’d

Goals

Propose a unified formulation of the active fault detection
problem

Specify three basic special cases

Optimal detector for given input signal generator
Optimal detector and optimal input signal generator
Optimal detector and optimal dual controller

Find solutions of considered special cases using CL
information processing strategy
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Problem formulation

Description of the observed system for k ∈ T = {0, . . . ,F}

System : xk+1 = fk (xk , µk uk ,wk)

µk+1 = gk (µk , ek)

yk = hk (xk , µk , vk)

fk , gk and hk are known function; xk ∈ Rnx is controllable part of
the state; µk ∈ M ⊂ Rnµ is uncontrollable part of the state and
represents faults; uk ∈ Uk ⊂ Rnu is input, yk ∈ Rny is output;
{wk}, {ek} and {vk} are mutually independent random sequences
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Problem formulation – cont’d

Description of the general active detector for k ∈ T

Active detector :

[
dk

uk

]
=

[
σk

(
Ik0

)
γk

(
Ik0 , dk

) ]
σk and γk are generally unknown functions; dk ∈M is an estimate
of the µk (in special case called decision); all available information

at time k is stored in Ik0 = [yk
0
T

,uk−1
0

T
, dk−1

0

T
]T
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Specifications and solutions of the special cases

Case I: Optimal detector for given input signal generator

The input signal generator is
given by functions γk(Ik0 , dk)
(e.g. existing controller)
and the detector σk(Ik0) has
to be found

D=?

yk

G
uk

dk

AD

Criterion which has to be minimized

JADGG (σF
0 ) = E

{
F∑

i=0

Ld
i (di , µi )

}
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Specifications and solutions of the special cases – cont’d

Case I: Optimal detector for given input signal generator

Backward recursive equation with initial condition V ∗
F+1 = 0

and final value of the criterion JCL
ADGG = E {V ∗

0 (I0)}
V ∗

k (Ik0) = min
dk∈M

E
{

Ld
k (dk , µk) + V ∗

k+1(I
k+1
0 )|Ik0 , dk

}
Optimal decision d∗k is a trade-off between right decision at
time step k and the excitation of the observed system through
the law uk = γk(Ik0 , dk)
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Specifications and solutions of the special cases – cont’d

Case II: Optimal detector and optimal input signal generator

Both the detector σk(Ik0)
and input signal generator
γk(Ik0 , dk) have to be found

D=?

yk

G=?
uk

dk

AD

Criterion which has to be minimized

JADG (σF
0 , γF

0 ) = E

{
F∑

i=0

Ld
i (di , µi )

}
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Case II: Optimal detector and optimal input signal generator

Backward recursive equation with the initial condition
V ∗

F+1 = 0 and final value of the criterion JCL
ADG = E {V ∗

0 (y0)}

V ∗
k (yk

0 ,uk−1
0 ) = min

dk∈M
E

{
Ld

k (dk , µk)|yk
0 ,uk−1

0 , dk

}
+

min
uk∈Uk

E
{

V ∗
k+1(y

k+1
0 ,uk

0)|yk
0 ,uk

0

}
Optimal decision d∗k and optimal input signal u∗k are chosen
independently, so γk(yk

0 ,uk−1
0 , dk

0 ) = γk(yk
0 ,uk−1

0 )

It can be proven that JCL
ADG ≤ JCL

ADGG
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Specifications and solutions of the special cases – cont’d

Case III: Optimal detector and optimal dual controller

Both the detector σk(Ik0)
and dual controller
γk(Ik0 , dk) have to be
found

D=?

yk

C=?
uk

dk

AD

Criterion which has to be minimized

JADC (σF
0 ) = E

{
F∑

i=0

Ld
i (di , µi ) + αiL

c
i (xi ,ui )

}
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Specifications and solutions of the special cases – cont’d

Case III: Optimal detector and optimal dual controller

Backward recursive equation with initial condition V ∗
F+1 = 0

and final value of the criterion JCL
ADC = E {V ∗

0 (y0)}
V ∗

k (yk
0 ,uk−1

0 )= min
dk∈M

E
{

Ld
k (dk , µk)|yk

0 ,uk−1
0 , dk

}
+

min
uk∈Uk

E
{

αkLc
k(xk ,uk)+V ∗

k+1(y
k+1
0 ,uk

0)|yk
0 ,uk

0

}
Optimal decision d∗k and optimal input signal u∗k are also
independent, but optimal input signal is trade-off between
control objective and the excitation of the observed system
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Specifications and solutions of the special cases – cont’d

Comments on special cases

The case III: Optimal detector and optimal dual controller
describes the most general problem and it includes the
previous cases

A nonlinear filter can provide required pdf’s p(µk |yk
0 ,uk−1

0 ),
p(xk |yk

0 ,uk−1
0 ) and p(yk+1|yk

0 ,uk
0)

The function V ∗
k (·) can not be expressed analytically in

explicit form and the approximations are necessary to obtain a
feasible suboptimal solution

Closed loop information processing strategy for optimal fault detection and control 15/20



Outline
Introduction

Problem formulation
Solutions for three special cases

Multiple linear Gaussian model framework
Numerical example
Concluding remarks

Special case – Multiple linear Gaussian model

Specification of the MM framework

It is special case of the proposed description of the observed
system and it simplifies a computation

The observed system is supposed to be described by finite
number of linear Gaussian models, so pdf’s of the initial
condition xk and noises wk , vk are Gaussian

The set M = 1, . . . , N is discrete and µk denotes scalar index
to the model valid at time k

The state equation µk+1 = g(µk , ek) is replaced by transition
probabilities Pi ,j = P(µk+1 = j |µk = i), i , j ∈M
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Numerical example

Observed system description for k ∈ T = {0, 1}

µk = 1 : xk+1 = 0.99xk +uk +
√

0.25wk

yk = 2xk +
√

0.25vk

µk = 2 : xk+1 = 1.01xk +0.99uk +
√

0.25wk

yk = 2xk +
√

0.25vk

µk = 3 : xk+1 = 0.5xk +1.5uk +
√

0.25wk

yk = 1.5xk +
√

0.25vk

Pi ,j =

{
0.9 iff i = j , p(wk)=p(vk)=N{0, 1}, p(x0)=N{1, 0.1}
0.05 iff i 6= j , P(µ0 =1)=0.4, P(µ0 =2)=P(µ0 =3)=0.3
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Numerical example – cont’d

Loss functions for k ∈ T

dk = µk ⇒ Ld
k (dk , µk) = 0 Lc

k(xk , uk) = x2
k + u2

k

dk 6= µk ⇒ Ld
k (dk , µk) = 1 α = 0.01

Input signal generator for k ∈ T
Set of input signal Uk = {−1, 1}
Description of the generator for the case I

dk = 1 ∨ dk = 3 ⇒ uk = −1,

dk = 2 ⇒ uk = 1
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Numerical example – cont’d

Approaches used for active detector design

Case I (Optimal detector for given input signal generator) is
solved using OLF (MAP model estimate) and CL strategy

Case II (Optimal detector and optimal input signal generator)
is solved only using CL strategy

Case III (Optimal detector and optimal dual controller) is
solved using certainty equivalence (CE) and CL strategy

Results of Monte Carlo simulations

ĴOLF
ADGG ĴCL

ADGG ĴCL
ADG ĴCE

ADC ĴCL
ADC

1.2647 1.2323 1.0890 1.3022 1.1655
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Concluding remarks

Remarks

The new unified formulation of the active fault detection
problem was proposed

The formulation provides very general framework and the
other cases together with corresponding solutions can be
easily derived in addition to the presented cases

In general, CL information processing strategy provides better
results than OLF strategy

In the case II (Optimal detector and optimal input signal
generator) it was shown that the optimal decision d∗k and
optimal input signal u∗k are independent
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