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ABSTRACT algorithm for one unit [5], and convergence of the symmet-

. ) ) ) ric algorithm [9]. The Crarér-Rao bound for ICA was stud-
The fixed point algorithm, known as FastiCA, is one of jeq in[2, 11, 18, 14, 17] and recently in [7].

the most successful algorithms for independent component
analysis in terms of accuracy and low computational com-
plexity. This paper derives analytic closed form expres-
sions that characterize separating ability of both one-unit
and symmetric version of the algorithm in a local sense.
Based on the analysis it is possible to combine advantages X — AS 1)

of the two versions. Although the analysis assumes a “good”

initialization of the algorithms and long data records, our whereS is ad x N source matrix composed af rows,
computer simulations demonstrate validity of the theoret- where each row], k = 1,...,d containsN independent
ical expressions in the case of arbitrary initialization and realizations of a random variablg. A is ad x d mixing
moderate data lengths. matrix. The goal of independent component analysis is to
estimate the matriA or, equivalently, the de-mixing matrix
W = A~! or, equivalently, the original source sign&isit

is well known that

1. the separation is unique only up to an unknown scale
and order of the components

2. DATA MODEL AND THE METHOD

The standard linear ICA model for data matixis

1. INTRODUCTION

The aim of Independent Component Analysis (ICA) is to

transform a set of mixed random signals into components o _ _ .

that are as mutually independent as possible. ICA serves as 2+ the separation is possible only if at most one original

a tool for blind source separation, but can be also used asa  Signal has a Gaussian distribution.

method for blind deconvolution or blind equalization. It has Since the scale of the source signals cannot be retrieved, one

applications e.g. in speech and image processing and in sigcan assume, without any loss in generality, that the sample

nal processing for wireless communications and biomedical variance of the estimated source signals is equal to one. In

signals. addition, arithmetic mean of the data is irrelevant for the
FastICA, an algorithm for ICA first proposed by Hia mutual information and can be removed. Thus, instead of

rinen and Oja, is based on the optimization of some nonlin- the original source signalS, a normalized source signal

ear contrast function, which indicates the non-gaussianity of matrix denotedJ can be estimated, where

the components. Much of the earlier and recent works have

_ —1/2 Q
studied algorithms based on the kurtosis contrast function: U = DY (S—-5) )
blind deconvolution [13], monotonic convergence [12], global D = diagoi,...,0]] (3)
convergence [10], asymptotic performance analysis of the o = (sp—5p) T (sp —5,)/N . (4)
OThis work was supported by Ministry of Education, Youth and Sports S = S;{ . 1N1N/N> k=1,....d (5)

of the Czech Republic through the project 1M6798555601 and by the
Czech Technical University in Prague through the project CTU0508214. wherel y stands forV x 1 vector of 1's.



2.1. Preprocessing 2.3. Measure of the separation quality

The first step of most variants of the algorithm consists in The separation ability of ICA algorithms can be character-

removing the sample mean and a decorrelation, ized by the relative presence of the-th source signal in
S1/2 _ the estimated—th source signal. Itis possible, if the source
Z = C/7(X-X) (6) signals are known. Due to the permutation and sign/phase

uncertainty, the estimated sources need to be appropriately
sorted to fit the original ones. In this paper, the method pro-
posed in [15] is used. Formally, the estimated source signals
can be written using (7) as

whereC = (X — X)(X — X)7 /N is the sample covariance
matrix, andX is the sample mean. The outgtcontains
whitened data in the sense tWT/N = I (identity ma-
trix). Note thatZ can be re-written using (1), (2) as

7 _ GPADU @ U=W. Z=W.C'/2AD'?U=GU (12

o ~ whereG = W.C~/2AD'/2 and W, stands either for
The ICé\probIem can be formulated as finding a de-miXing 71U o for WSY M _ |t will be calledgain matrix for easy

matrix W, that separates the signdlsfrom the whitened  reference. The de-mixing matrix that separates the indepen-

mixtureZ asU = W - Z. dent components from the original data¥s = W,C—1/2.
_ With the above notation€ = W,AD!/2,
2.2. The FastICA Algorithm The relative presence of tHe-th source signal in the

estimated —th source signal is represented by {i€)—th
element ofG, denoted>;,. Then, the total signal-to-inter-
ference of the:—th source signal is defined as

The FastICA algorithm for one unit estimates one row of
the de-mixing matridW , as a vectow?! that is a stationary
point (minimum or maximum) of the expressiofEw’ Z)]

déf G(WTZ)lN/N subject tOHWH = 1, WhereG(') is a E[G%'k] L

suitable nonlinear and non-quadratic function [6]. SIRy, = d 5]~ ~d 2 (13)
o . . . . E {Z =1 Gu} > =1 E[Gy]
Findingw, proceeds iteratively. Starting with a random iz K -
initial unit norm vectorw, we iterate
3. TEST OF SADDLE POINTS
wt — Zg(Z"w)-wg (Ww'Z)1y (8)
w — wi/|wt 9) In general, the global convergence of the symmetric Fas-

tICA is known to be quite good. Nevertheless, if it is run

until convergence is achieved. In (8) and also elsewhere in10 000 times from random initial demixing matrices, on
the papery(-) andg’(-) denote the first and second deriva- the average in 1 - 100 cases the algorithm gets stuck in
tives of the functiorGG(-), and they are applied elementwise. |ocal minima that can be recognized by exceptionally low
Classical widely used functiong-) include “pow3” (then  achieved SIR. A detailed investigation of the false solu-
the algorithm performs kurtosis minimization), “tanh” and tions showed that they contain one or more pairs of esti-
“gauss”,g(z) = xexp(—z?/2). mated components, sdyix,1,) such that they are close

It is not known in advance which row &, is being to (up + u,)/v/2 and(uy, — uy)/v/2, respectively, where
estimated: it largely depends on the initiali/z\ation. If this is (uy, uy) is the desired solution. It is because of symmetry,
the k—th row, the resultantv” is denoted as$V!Y, that is, the saddle points of the criterion function mostly lie approx-
the k—th row of a matriijU 1 Note that the estimated imately on half the way between two correct solutions that
components are not constrained to be mutually orthogonaldiffer by the order of two of the componets. Thus, an ap-
in this variant of the algorithm,. propriate estimate dfug, u,) would be(u},, i) where

The symmetric FastICA proceeds by applying the recur- A R A
sion (8) for all components in parallel, with the difference W= (G +0,)/V2  and W= (G —)/V2.
that the normalization in (9) is replaced by a symmetrization

. ) ! ; A selection between given candidates., u,), (u},, u}) for
step: Starting with a random unitary matiV¥ iterate g (@6, 0e), (1, 07)

a better estimate df1;, u,) can be done by maximizing the
Wt g(W2)ZT — diagy (WZ)15]W (10) criterion used in the very beginning of derivation of Fas-
it TN—1/2 tICA,
W — (WrwH)—1/2w+ (11)

| - I (@, 0) = [G(A] )1y /N — Gol? + [G(RF ) Ly /N — Gi]?
until convergence is achieved. The result is dendtegh V.

1Convergence of the recursion for some components might be problem-WherGGO = E[G(S)] and¢ is a standard normal random

atic. This problem is successfully solved in the algorithm variant Smart Variable. In the case of the nonlinearity “taniG(z) =
FastICA, introduced later in Section 4. log cosh(z) andGy =~ 0.3746.



Thus, we suggest to complete the plain symmetric Fas-of attraction, the resultant stationary point of the recursion,
tICA by the check of all(g) pairs of the estimated indepen- denotedW, is the same, and is approximately equai¥o
dent components for a possible improvement via the saddleobtained after one step from the ideal solution, thanks to the
points. If the test for saddle point is positive, it is suggested fact that the convergence is quadratic.
to perform afew more (1-4) additiqnal iterationg of the orig- Note some interesting cases:
inal algorithm, starting from the improved estimate. The 1) e = px implies infinite variance of31V. It occurs
improved FastICA imitates a global search for the minimum nen the probability distribution is Gaussian, regardless of
of the chosen criterion function. It is used in the simulation the choice ofy(-).

section. (2) B = 13, meaning that the variance decays faster with

growing N than the usua®D(1/N). This condition is ful-
4. ANALYSIS filled for signals known under the acronym BPSK in wire-

less communications, which havg = +1 ors, = —1
To analyze the algorithm it is useful to note that the esti- hoth with probability 0.5 .

matorU is invariant with respect to orthogonal transforma- (3) | g(z) = —f'(z)/f(x), i.e. if g is chosen as the score

tions of the decorrelated dafa or equivariant [1]. Thusit  function of the pdf of the components, the variances in (18)-

is possible to show that the output of the algorithm (the gain (19) are minimized. The minimum variances are compared
matrix G) is independent of the mixing matrix, andisthe  with the corresponding CRB in [7].
same as iZ were equal t& = R~/2U, where

R = UUY/N (14)
5. EXAMPLE OF UTILIZATION
This observation simplifies the analysis greatly.
The following Proposition summarizes the main result.
Proposition 1
Assume that (1) all original independent components
have zero mean and unit variance, (2) the funcgiamalgo-
rithm FastICA is twice continuously differentiable, (3) the
following expectations exist

In this section, the previous analysis is used to derive a
novel variant of the FastICA algorithm is proposed, which
combines advantages of both previously discussed variants.
For easy reference it will be called “Smart FastICA”. This
algorithm begins with applying symmetric FastiICA with
nonlinearity “tanh”. For each estimated component signal
u;, parametersgu, p,, and 3, are computed according to

Elsrg(s = 15 v P . ~ N
sralowll (19 (15)-17), namelyi, — &L g(a,)/N, i — 15/(a)/N,
Elg'(sk)] = & (16) B, =1%¢2(tx)/N . and then they are plugged in (18)-(19)
Elg%(sk)] def B (17) and (13), namely
fork = 1,...,d, and (4) the FastICA algorithm (in both §\R(1U) B N ﬁ@yzw) B N
variants) is started from the correct demixing matrix and koo d_ o)’ k - E%—l 7 (5YM)
stops after a single iteration. T ezn RE

Then, the normalized gain matrix elemed¥s/2G+Y
andN'/2G7Y M for the one-unit FastICA and for symmet-  If the former SIR is better than the latter one, the one unit
ric FastICA, respectively, have asymptotically Gaussian dis- algorithm is performed for the component, taking advan-

tribution A/ (0, V1Y) and (0, V,5¥ M), where tage of a more suitable nonlinearigyfor each of particular
cases: In the supergaussian case, defined by the condition
ViU _ Br — 13 18 s < pr, the option “gauss” is selected, and in the subgaus-
K= e — )2 (18) ; L b i . )
Uk — Pk) sian case withi, > pi, “pow3” is applied (see the simu-
sy Bre— i+ Be— p2 + (e — pe)? lation section for a reason). Thefay, p, 3 andSIR;, are
Vit = (It — pie| + e — pel)? (19) computed again. If the ne®IR; is better than the previous

one and if, at the same time, the scalar product between the
fork,£ =1,...,d, k # £, provided that the denominators former separating vector and the new one is higher in abso-

are nonzero. lute value than a constant (we have used 0.95), then the one
Proof: See Appendix. (18) can be found in [1, 5], but unit refinement is accepted in favour of the former vector.
(19) is novel. The condition on the scalar product is intended to elimi-

The assumption 4 may look peculiar at the first glance, nate the cases where the one unit algorithm converged to a
but it is not so restrictive as it seems to be. Once the algo-wrong component. Further improvements of the algorithm
rithm is started from an initiaW that lies in aright domain  are subject of an accompanying paper [8].



6. SIMULATIONS

In this section, the validity of the analysis is supported by
computer simulations.

Example 1 Four independent random signals with general-
ized Gaussian distribution [7] with parameteiand length

N = 5000 were generated in 100 independent trials. The
signals were mixed with a matrix that was randomly gen-
erated in each trial, and de-mixed again by eight variants
of the algorithm: the symmetric FastICA with nonlineari-
ties tanh, gauss, pow3, and with the score function, that is
g(z) = sign(z) -|z|*~1, see [7], as well as the one-unit Fas-
tICA with the same nonlinearities, implemented like smart
FastICA. The resulting theoretical and empirical SIR is plot-
ted in Figure 1 (a) and (b). An erratic behavior of the em-
pirical results is experienced for smalland nonlinearity
powa3. Here, the convergence of sample estimates of the e
pressions in (15)-(17) to their expectations is slow.

We can see that among theindependent nonlineari-
ties, the “pow3” performs best in the case®f> 2 that
corresponds to the sub-Gaussian case, and “gauss” is th
best one forv < 2 where the distribution is super-Gaussian.
FastICA withg(-) equal to the score function does not work
properly (does not converge at all) far< 1, because the
score function is not continuous for thess.
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Fig. 1 Performance of One-Unit FastICA (diagram (a)) and
of Symmetric FastICA (diagram (b)) in separating signals
with distribution GG«) as a function ofv.

Example 2.Here, we have generated signals with four inde-

pendent components with the distributions: (1) generalized
Gaussian withe = 0.5, (2) "Sinus”, that is the distribution

of v/2sin(u), wherew is uniformly distributed in(0, 27),

(3) Laplace, and (4) Gaussian, of various lengths. Again, the
signals were randomly mixed and separated by two meth-
ods: symmetric FastICA with nonlinearity tanh, and Smart

FastICA. Resultant empirical and theoretical SIR’s are plot-
ted in Figure 2 as functions of the data length The agree-
ment between the theory and simulation is very good. The
smart FastICA is shown to outperform symmetric FastiCA
in separating the components with “more” non-Gaussian
distributions (in the example it is “Sinus” and GG(0.5)),
while estimates of the other components remain unchanged.
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e Fig. 2. Performance of symmetric FastiICA and smart
FastICA versus varying data length.

7. APPENDIX - PROOF OF PROPOSITION 1

The proof utilizes the following lemmd.emma 1 Let

W Wy + AW (20)

whereW, = diag(ws,...,wq) is a diagonal matrix, with
w, > 0fork = 1,...,d. Then, the(k¢)—th element of
(WWT)~1/2W is equal to, fork, £ = 1,...,d, k # ¢,

AW — AWy

WWT —1/2W _
[( ) ke R

+O(|AW|?) .
Proof of the lemma is skipped for lack of space.

Proof of Proposition 1 proceeds in several steps.

A. Notes on Stochastic Convergence

Invoking assumption (1) of the proposition, and the weak
law of large numbers it follows that the sample variange

of s;, defined in (4) converges to 1 in probability fdrgoing

to infinity, symbolicallys? L51,0r64 = 1+o0,(1), where
op(+) is the stochastic order symbol. Similarly, thanks to the
assumption (3),

N~7'sfg(sk) =
N—lg/T(sk)lN

(21)
(22)

M+ Op(l)
pr +op(1) .

In addition, thanks to the mutual independence of compo-
nents, it holds fo¥ # k,

N~ (s1)(s¢ ©@s0) = pr. + 0p(1) (23)



where® denotes the elementwise product. It can be shown, Using (14), thek—th column of AZ7 is

that the same limits are obtainedsif, s, in (21)-(23) are
replaced by the normalized componenis uy, whereuy,
is thek—th column ofU, k = 1,...,d. Note from (2) that
up = (Sk — §k)/aky S = Op(Nfl/z), ak =1+ OP(]‘)’
consequentlyr, = si +0,(1), g(ug) = g(s) +0,(1), and

uig(ur) = [s +0p(1)]" [g(sk) + 0p(1)]
= s1.9(st) + 0p(N) = Ny, + 0p(N) .(24)

Similarly, it can be shown that

g (up)1y

g7 (up)(wp ©uy) =

Npi +0p(N)  (25)
Npg +o0p(N)  (26)

Moreover, using the asymptotic expressioniRyrto be de-

rived in the next subsection, it can be shown that the rela-

tions (21) and (22) hold true as well,sf, is replaced with
zy, that is defined as thie—th column ofZ, £ =1, ... ,d,

Npy + 0p(N) (27)
Npi +0p(N) . (28)

Zzg(zk)
g (z)ly =

B. Asymptotic behaviour of R

As N goes to infinity, the matrix® defined in (14) ap-
proaches identity matrix in the mean square sense. To see

this, note that the diagonal elemelits;, of R are equal to
one by definition, and that the off-diagonal elemeRig
with & # ¢ have zero mean. Variance of theRg, =
u’u,/N can be shown to be equaltg(N —1) [16]. Hence

ARY R -I=0,(N"/?). (29)
Using a Taylor series expansion it can be derived that

1
R/? I- §AR—|—OP(N_1). (30)

C. Approximation for Z, g(Z)
Obviously,U = O,(1) and

1
Z=R?U = (1 — ;AR + op(N—1)> U

1
U - 5ARU +0,(N7Y) . (31)

A Taylor series expansion of functiof(-) in a neighbor-
hood ofZ = U gives

9(2) =

where® denotes the elementwise product and

9(U) +4'(U) 0 AZ+ Op(N71) (32)

def

AZ = Z—U:—%ARU—&-OP(N_I). (33)

- Z ul u,u,, + O, (N7Y) . (34)

D. Approximation for W+
InsertingW = I in (10), thek/—th element ofW * reads

v [ g(zh)ze for k#¢
e = { 9(z; )z — g'(z3 )1n for k= (35)
For k = ¢ we get using (27)-(28)
Wi = N(uk — pr) + 0p(N) . (36)

For k # ¢ we get using (32), (34)

Wi = g(zi) 2
= [g(uf) + ¢’ (uf) © Az} + Op(N~H)][ug + Az

1
= Jotl) -~ g 3 9 0aD) & ()
;&
U~ 5 ; uj u,u,, | +O0p(1) . (37)
m#L

After some simplifications, using (24)-(26), it can be shown
that

Wi + Pk
Wi = g(uf)ue — 5 A

ul'ug + 0,(N1/?) . (38)

E. Approximation for W, G

Note that if/V[7,:7C < 0 for somek, the k—th diagonal ele-
ment of the de-mixing matricd®’ 'V andiV5Y ™ may have
wrong sign, i.e. it might be close to -1 instead of 1. It corre-
sponds to reversed sign of the-th estimated independent
component. In the one-unit version of the algorithm, the
sign can be corrected by replacing the normalization in (9)
by an equivalent formula

Wiy = okt = Il
Wi Nk — pr)

+0,(N7V%) . (39)

Similarly, using Lemma 1, the asymptotically equivalent
sign corrected expression for the estimated de-mixing ma-
trix elementW Y M with k # ¢ is

T7SY M Wi SIgn(W,5 )~ W sign(Wy;)

Wi +0,(N~%)(40)
(Wil + W, ?




For both estimator varian®'V andW5Y™ we canwrite  The variance of the leading term in (49) results, using (38),

AW =W _T= Op(N_l/g) . (41) after some algebra in (19).
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