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ABSTRACT

The fixed point algorithm, known as FastICA, is one of
the most successful algorithms for independent component
analysis in terms of accuracy and low computational com-
plexity. This paper derives analytic closed form expres-
sions that characterize separating ability of both one-unit
and symmetric version of the algorithm in a local sense.
Based on the analysis it is possible to combine advantages
of the two versions. Although the analysis assumes a “good”
initialization of the algorithms and long data records, our
computer simulations demonstrate validity of the theoret-
ical expressions in the case of arbitrary initialization and
moderate data lengths.

1. INTRODUCTION

The aim of Independent Component Analysis (ICA) is to
transform a set of mixed random signals into components
that are as mutually independent as possible. ICA serves as
a tool for blind source separation, but can be also used as a
method for blind deconvolution or blind equalization. It has
applications e.g. in speech and image processing and in sig-
nal processing for wireless communications and biomedical
signals.

FastICA, an algorithm for ICA first proposed by Hyvä-
rinen and Oja, is based on the optimization of some nonlin-
ear contrast function, which indicates the non-gaussianity of
the components. Much of the earlier and recent works have
studied algorithms based on the kurtosis contrast function:
blind deconvolution [13], monotonic convergence [12], global
convergence [10], asymptotic performance analysis of the
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algorithm for one unit [5], and convergence of the symmet-
ric algorithm [9]. The Craḿer-Rao bound for ICA was stud-
ied in [2, 11, 18, 14, 17] and recently in [7].

2. DATA MODEL AND THE METHOD

The standard linear ICA model for data matrixX is

X = AS (1)

whereS is a d × N source matrix composed ofd rows,
where each rowsT

k , k = 1, . . . , d containsN independent
realizations of a random variablesk. A is ad × d mixing
matrix. The goal of independent component analysis is to
estimate the matrixA or, equivalently, the de-mixing matrix
W = A−1 or, equivalently, the original source signalsS. It
is well known that

1. the separation is unique only up to an unknown scale
and order of the components

2. the separation is possible only if at most one original
signal has a Gaussian distribution.

Since the scale of the source signals cannot be retrieved, one
can assume, without any loss in generality, that the sample
variance of the estimated source signals is equal to one. In
addition, arithmetic mean of the data is irrelevant for the
mutual information and can be removed. Thus, instead of
the original source signalsS, a normalized source signal
matrix denotedU can be estimated, where

U = D−1/2(S− S) (2)

D = diag[σ2
1 , . . . , σ2

d] (3)

σ2
k = (sk − sk)T (sk − sk)/N . (4)

sk = sT
k · 1N1N/N, k = 1, . . . , d (5)

where1N stands forN × 1 vector of 1’s.



2.1. Preprocessing

The first step of most variants of the algorithm consists in
removing the sample mean and a decorrelation,

Z = Ĉ−1/2 (X−X) (6)

whereĈ = (X−X)(X−X)T /N is the sample covariance
matrix, andX is the sample mean. The outputZ contains
whitened data in the sense thatZZT /N = I (identity ma-
trix). Note thatZ can be re-written using (1), (2) as

Z = Ĉ−1/2AD1/2 U . (7)

The ICA problem can be formulated as finding a de-mixing
matrix Ŵz that separates the signalsU from the whitened
mixtureZ asÛ = Ŵz · Z.

2.2. The FastICA Algorithm

The FastICA algorithm for one unit estimates one row of
the de-mixing matrixWz as a vector̂wT

z that is a stationary
point (minimum or maximum) of the expression E[G(wT Z)]
def= G(wT Z)1N/N subject to‖w‖ = 1, whereG(·) is a
suitable nonlinear and non-quadratic function [6].

Findingŵz proceeds iteratively. Starting with a random
initial unit norm vectorw, we iterate

w+ ← Zg(ZT w)−w g′(wT Z)1N (8)

w ← w+/‖w+‖ (9)

until convergence is achieved. In (8) and also elsewhere in
the paper,g(·) andg′(·) denote the first and second deriva-
tives of the functionG(·), and they are applied elementwise.
Classical widely used functionsg(·) include “pow3” (then
the algorithm performs kurtosis minimization), “tanh” and
“gauss”,g(x) = x exp(−x2/2).

It is not known in advance which row ofWz is being
estimated: it largely depends on the initialization. If this is
thek−th row, the resultantwT is denoted aŝW 1U

k· , that is,
the k−th row of a matrixŴ 1U

z .1 Note that the estimated
components are not constrained to be mutually orthogonal
in this variant of the algorithm,.

The symmetric FastICA proceeds by applying the recur-
sion (8) for all components in parallel, with the difference
that the normalization in (9) is replaced by a symmetrization
step: Starting with a random unitary matrixW iterate

W+ ← g(WZ)ZT − diag[g′(WZ)1N ]W (10)

W ← (W+W+T )−1/2W+ (11)

until convergence is achieved. The result is denotedŴSY M
z .

1Convergence of the recursion for some components might be problem-
atic. This problem is successfully solved in the algorithm variant Smart
FastICA, introduced later in Section 4.

2.3. Measure of the separation quality

The separation ability of ICA algorithms can be character-
ized by the relative presence of thek−th source signal in
the estimatedi−th source signal. It is possible, if the source
signals are known. Due to the permutation and sign/phase
uncertainty, the estimated sources need to be appropriately
sorted to fit the original ones. In this paper, the method pro-
posed in [15] is used. Formally, the estimated source signals
can be written using (7) as

Û = Ŵz · Z = ŴzĈ−1/2 AD1/2U = ĜU (12)

where Ĝ = ŴzĈ−1/2AD1/2 and Ŵz stands either for
Ŵ1U

z or for ŴSY M
z . It will be calledgain matrix for easy

reference. The de-mixing matrix that separates the indepen-
dent components from the original data iŝWx = ŴzĈ−1/2.
With the above notations,̂G = ŴxAD1/2.

The relative presence of thek−th source signal in the
estimatedi−th source signal is represented by the(k`)−th
element ofĜ, denotedGk`. Then, the total signal-to-inter-
ference of thek−th source signal is defined as

SIRk =
E[G2

kk]

E
[∑d

`=1
` 6=k

G2
k`

] ≈ 1∑d
`=1
` 6=k

E[G2
k`]

(13)

3. TEST OF SADDLE POINTS

In general, the global convergence of the symmetric Fas-
tICA is known to be quite good. Nevertheless, if it is run
10 000 times from random initial demixing matrices, on
the average in 1 - 100 cases the algorithm gets stuck in
local minima that can be recognized by exceptionally low
achieved SIR. A detailed investigation of the false solu-
tions showed that they contain one or more pairs of esti-
mated components, say(ûk, û`) such that they are close
to (uk + u`)/

√
2 and(uk − u`)/

√
2, respectively, where

(uk,u`) is the desired solution. It is because of symmetry,
the saddle points of the criterion function mostly lie approx-
imately on half the way between two correct solutions that
differ by the order of two of the componets. Thus, an ap-
propriate estimate of(uk,u`) would be(û′

k, û′
`) where

û′
k = (ûk + û`)/

√
2 and û′

` = (ûk − û`)/
√

2 .

A selection between given candidates(ûk, û`), (û′
k, û′

`) for
a better estimate of(uk,u`) can be done by maximizing the
criterion used in the very beginning of derivation of Fas-
tICA,

c(ûk, û`) = [G(ûT
k )1N/N −G0]2 +[G(ûT

` )1N/N −G0]2

whereG0 = E[G(ξ)] andξ is a standard normal random
variable. In the case of the nonlinearity “tanh”,G(x) =
log cosh(x) andG0 ≈ 0.3746.



Thus, we suggest to complete the plain symmetric Fas-
tICA by the check of all

(
d
2

)
pairs of the estimated indepen-

dent components for a possible improvement via the saddle
points. If the test for saddle point is positive, it is suggested
to perform a few more (1-4) additional iterations of the orig-
inal algorithm, starting from the improved estimate. The
improved FastICA imitates a global search for the minimum
of the chosen criterion function. It is used in the simulation
section.

4. ANALYSIS

To analyze the algorithm it is useful to note that the esti-
matorÛ is invariant with respect to orthogonal transforma-
tions of the decorrelated dataZ, or equivariant [1]. Thus it
is possible to show that the output of the algorithm (the gain
matrixĜ) is independent of the mixing matrixA, and is the
same as ifZ were equal toZ = R−1/2U, where

R = UUT /N (14)

This observation simplifies the analysis greatly.
The following Proposition summarizes the main result.

Proposition 1
Assume that (1) all original independent components

have zero mean and unit variance, (2) the functiong in algo-
rithm FastICA is twice continuously differentiable, (3) the
following expectations exist

E[skg(sk)] def= µk (15)

E[g′(sk)] def= ρk (16)

E[g2(sk)] def= βk (17)

for k = 1, . . . , d, and (4) the FastICA algorithm (in both
variants) is started from the correct demixing matrix and
stops after a single iteration.

Then, the normalized gain matrix elementsN1/2G1U
k`

andN1/2GSY M
k` for the one-unit FastICA and for symmet-

ric FastICA, respectively, have asymptotically Gaussian dis-
tributionN (0, V 1U

k` ) andN (0, V SY M
k` ), where

V 1U
k` =

βk − µ2
k

(µk − ρk)2
(18)

V SY M
k` =

βk − µ2
k + β` − µ2

` + (µ` − ρ`)2

(|µk − ρk|+ |µ` − ρ`|)2
(19)

for k, ` = 1, . . . , d, k 6= `, provided that the denominators
are nonzero.

Proof: See Appendix. (18) can be found in [1, 5], but
(19) is novel.

The assumption 4 may look peculiar at the first glance,
but it is not so restrictive as it seems to be. Once the algo-
rithm is started from an initialW that lies in a right domain

of attraction, the resultant stationary point of the recursion,
denoted̂W, is the same, and is approximately equal toW+

obtained after one step from the ideal solution, thanks to the
fact that the convergence is quadratic.

Note some interesting cases:
(1) µk = ρk implies infinite variance ofG1U

k` . It occurs
when the probability distribution is Gaussian, regardless of
the choice ofg(·).
(2) βk = µ2

k, meaning that the variance decays faster with
growing N than the usualO(1/N). This condition is ful-
filled for signals known under the acronym BPSK in wire-
less communications, which havesk = +1 or sk = −1
both with probability 0.5 .
(3) If g(x) = −f ′(x)/f(x), i.e. if g is chosen as the score
function of the pdf of the components, the variances in (18)-
(19) are minimized. The minimum variances are compared
with the corresponding CRB in [7].

5. EXAMPLE OF UTILIZATION

In this section, the previous analysis is used to derive a
novel variant of the FastICA algorithm is proposed, which
combines advantages of both previously discussed variants.
For easy reference it will be called “Smart FastICA”. This
algorithm begins with applying symmetric FastICA with
nonlinearity “tanh”. For each estimated component signal
ûT

k , parametersµk, ρk andβk are computed according to
(15)-(17), namelŷµk = ûT

k g(ûk)/N , ρ̂k = 1̂T
Ng′(ûk)/N ,

β̂k = 1̂T
Ng2(ûk)/N . and then they are plugged in (18)-(19)

and (13), namely

ŜIR
(1U)

k =
N∑d

`=1
` 6=k

V̂
(1U)
k`

, ŜIR
(SY M)

k =
N∑d

`=1
` 6=k

V̂
(SY M)
k`

If the former SIR is better than the latter one, the one unit
algorithm is performed for the component, taking advan-
tage of a more suitable nonlinearityg for each of particular
cases: In the supergaussian case, defined by the condition
µ̂k < ρ̂k, the option “gauss” is selected, and in the subgaus-
sian case witĥµk > ρ̂k, “pow3” is applied (see the simu-
lation section for a reason). Then,µ̂k, ρ̂k, β̂k andŜIRk are
computed again. If the neŵSIRk is better than the previous
one and if, at the same time, the scalar product between the
former separating vector and the new one is higher in abso-
lute value than a constant (we have used 0.95), then the one
unit refinement is accepted in favour of the former vector.
The condition on the scalar product is intended to elimi-
nate the cases where the one unit algorithm converged to a
wrong component. Further improvements of the algorithm
are subject of an accompanying paper [8].



6. SIMULATIONS

In this section, the validity of the analysis is supported by
computer simulations.
Example 1. Four independent random signals with general-
ized Gaussian distribution [7] with parameterα and length
N = 5000 were generated in 100 independent trials. The
signals were mixed with a matrix that was randomly gen-
erated in each trial, and de-mixed again by eight variants
of the algorithm: the symmetric FastICA with nonlineari-
ties tanh, gauss, pow3, and with the score function, that is
g(x) = sign(x) · |x|α−1, see [7], as well as the one-unit Fas-
tICA with the same nonlinearities, implemented like smart
FastICA. The resulting theoretical and empirical SIR is plot-
ted in Figure 1 (a) and (b). An erratic behavior of the em-
pirical results is experienced for smallα and nonlinearity
pow3. Here, the convergence of sample estimates of the ex-
pressions in (15)-(17) to their expectations is slow.

We can see that among theα-independent nonlineari-
ties, the “pow3” performs best in the case ofα > 2 that
corresponds to the sub-Gaussian case, and “gauss” is the
best one forα < 2 where the distribution is super-Gaussian.
FastICA withg(·) equal to the score function does not work
properly (does not converge at all) forα ≤ 1, because the
score function is not continuous for theseα’s.
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Fig. 1 Performance of One-Unit FastICA (diagram (a)) and
of Symmetric FastICA (diagram (b)) in separating signals

with distribution GG(α) as a function ofα.

Example 2.Here, we have generated signals with four inde-
pendent components with the distributions: (1) generalized
Gaussian withα = 0.5, (2) ”Sinus”, that is the distribution
of
√

2 sin(u), whereu is uniformly distributed in(0, 2π),
(3) Laplace, and (4) Gaussian, of various lengths. Again, the
signals were randomly mixed and separated by two meth-
ods: symmetric FastICA with nonlinearity tanh, and Smart

FastICA. Resultant empirical and theoretical SIR’s are plot-
ted in Figure 2 as functions of the data lengthN . The agree-
ment between the theory and simulation is very good. The
smart FastICA is shown to outperform symmetric FastICA
in separating the components with “more” non-Gaussian
distributions (in the example it is “Sinus” and GG(0.5)),
while estimates of the other components remain unchanged.
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Fig. 2: Performance of symmetric FastICA and smart
FastICA versus varying data length.

7. APPENDIX - PROOF OF PROPOSITION 1

The proof utilizes the following lemma.Lemma 1Let

W = W0 + ∆W (20)

whereW0 = diag(w1, . . . , wd) is a diagonal matrix, with
wk > 0 for k = 1, . . . , d. Then, the(k`)−th element of
(WWT )−1/2W is equal to, fork, ` = 1, . . . , d, k 6= `,

[(WWT )−1/2W]k` =
∆Wk` −∆W`k

wk + w`
+ O(‖∆W‖2) .

Proof of the lemma is skipped for lack of space.

Proof of Proposition 1 proceeds in several steps.

A. Notes on Stochastic Convergence

Invoking assumption (1) of the proposition, and the weak
law of large numbers it follows that the sample varianceσ2

k

of sk defined in (4) converges to 1 in probability forN going
to infinity, symbolicallyσ̂2

k

p−→ 1, or σ̂k = 1+op(1), where
op(·) is the stochastic order symbol. Similarly, thanks to the
assumption (3),

N−1sT
k g(sk) = µk + op(1) (21)

N−1g′T (sk)1N = ρk + op(1) . (22)

In addition, thanks to the mutual independence of compo-
nents, it holds for̀ 6= k,

N−1g′T (sk)(s` � s`) = ρk + op(1) (23)



where� denotes the elementwise product. It can be shown,
that the same limits are obtained ifsk, s` in (21)-(23) are
replaced by the normalized componentsuk, u`, whereuk

is thek−th column ofU, k = 1, . . . , d. Note from (2) that
uk = (sk − sk)/σ̂k, sk = Op(N−1/2), σ̂k = 1 + op(1),
consequentlyuk = sk +op(1), g(uk) = g(sk)+op(1), and

uT
k g(uk) = [sk + op(1)]T [g(sk) + op(1)]

= sT
k g(sk) + op(N) = Nµk + op(N) . (24)

Similarly, it can be shown that

g′T (uk)1N = Nρk + op(N) (25)

g′T (uk)(u` � u`) = Nρk + op(N) (26)

Moreover, using the asymptotic expression forR, to be de-
rived in the next subsection, it can be shown that the rela-
tions (21) and (22) hold true as well, ifsk is replaced with
zk, that is defined as thek−th column ofZ, k = 1, . . . , d,

zT
k g(zk) = Nµk + op(N) (27)

g′T (zk)1N = Nρk + op(N) . (28)

B. Asymptotic behaviour ofR

As N goes to infinity, the matrixR defined in (14) ap-
proaches identity matrix in the mean square sense. To see
this, note that the diagonal elementsRkk of R are equal to
one by definition, and that the off-diagonal elementsRk`

with k 6= ` have zero mean. Variance of theseRk` =
uT

k u`/N can be shown to be equal to1/(N−1) [16]. Hence

∆R def= R− I = Op(N−1/2) . (29)

Using a Taylor series expansion it can be derived that

R−1/2 = I− 1
2
∆R + Op(N−1) . (30)

C. Approximation for Z, g(Z)

Obviously,U = Op(1) and

Z = R−1/2U =
(
I− 1

2
∆R + Op(N−1)

)
U

= U− 1
2
∆RU + Op(N−1) . (31)

A Taylor series expansion of functiong(·) in a neighbor-
hood ofZ = U gives

g(Z) = g(U) + g′(U)�∆Z + Op(N−1) (32)

where� denotes the elementwise product and

∆Z def= Z−U = −1
2

∆RU + Op(N−1) . (33)

Using (14), thek−th column of∆ZT is

∆zk = − 1
2N

d∑
m=1
m 6=k

uT
k umum + Op(N−1) . (34)

D. Approximation for W+

InsertingW = I in (10), thek`−th element ofW+ reads

W+
k` =

{
g(zT

k )z` for k 6= `
g(zT

k )zk − g′(zT
k )1N for k = `

(35)

Fork = ` we get using (27)-(28)

W+
kk = N(µk − ρk) + op(N) . (36)

Fork 6= ` we get using (32), (34)

W+
k` = g(zT

k ) z`

= [g(uT
k ) + g′(uT

k )�∆zT
k + Op(N−1)][u` + ∆z`]

=

g(uT
k )− 1

2N

d∑
m=1
m 6=k

g′(uT
k )� (uT

k umuT
m)


·

u` −
1

2N

d∑
m=1
m 6=`

uT
` umum

 + Op(1) . (37)

After some simplifications, using (24)-(26), it can be shown
that

W+
k` = g(uT

k )u` −
µk + ρk

2
uT

k u` + op(N1/2) . (38)

E. Approximation for Ŵ, G

Note that ifŴ+
kk < 0 for somek, thek−th diagonal ele-

ment of the de-mixing matriceŝW 1U
kk andŴSY M

kk may have
wrong sign, i.e. it might be close to -1 instead of 1. It corre-
sponds to reversed sign of thek−th estimated independent
component. In the one-unit version of the algorithm, the
sign can be corrected by replacing the normalization in (9)
by an equivalent formula

Ŵ 1U
k` =

W+
k`

W+
kk

=
W+

k`

N(µk − ρk)
+ op(N−1/2) . (39)

Similarly, using Lemma 1, the asymptotically equivalent
sign corrected expression for the estimated de-mixing ma-
trix element̂WSY M

k` with k 6= ` is

ŴSY M
k` =

W+
k`sign(W+

kk)−W+
`ksign(W+

`` )
|W+

kk|+ |W
+
`` |

+op(N− 1
2 ) .(40)



For both estimator variants,̂W1U andŴSY M we can write

∆W = Ŵ − I = Op(N−1/2) . (41)

Since

G = ŴR−1/2 = (I + ∆W)
(
I− 1

2
∆R + Op(N−1)

)
= I + ∆W − 1

2
∆R + Op(N−1) (42)

the gain matrix off-diagonal elements read

Gk` = Ŵk` −
1

2N
uT

k u` + Op(N−1) . (43)

For the one unit variant we get using (39)

N1/2G1U
k` = N1/2 W+

k`

N(µk − ρk)
− 1

2N1/2
uT

k u` + op(1)

=
N−1/2

µk − ρk
(g(uT

k )u` − µk uT
k u`) + op(1) .(44)

Finally we will show that (44) can be re-written in terms of
sk, s` in an asymptotically equivalent formula

N1/2G1U
k` =

N−1/2

µk − ρk
(g(sT

k )s` − µk sT
k s`) + op(1) . (45)

To prove (45), note that

uT
k u` =

(
sk − sk

σ̂k

)T s` − s`

σ̂`
=

sT
k s` − sT

k s`

σ̂kσ̂`

=
sT
k s` −Op(1)
1 + op(1)

= sT
k s` + op(N1/2) . (46)

Similarly it can be shown that

g(uT
k )u` = g(sT

k )s` + op(N1/2) . (47)

Combining (44), (46) and (47) gives (45). Next, apply-
ing the central limit theorem to (45) implies that the dis-
tribution ofN1/2G1U

k` is asymptotic normal with zero mean
and variance equal to the variance of the leading term in
(45). A simple computation gives E[(g(sT

k )s`)2] = Nβk,
E[(sT

k s`)2] = N , E[(g(sT
k )s`)(sT

k s`)] = Nµk, and hence

V 1U
k` = var

[
N−1/2

µk − ρk
(g(sT

k )s` − µk sT
k s`)

]
=

N−1

(µk − ρk)2
var

[
(g(sT

k )s` − µk sT
k s`)

]
=

βk − µ2
k

(µk − ρk)2
(48)

Similarly for symmetric FastICA it holds using (40) that

N1/2GSY M
k` = N1/2ŴSY M

k` − 1
2N1/2

uT
k u` + op(1)

=
W+

k`sign(µk − ρk)−W+
`ksign(µ` − ρ`)

N1/2(|µk − ρk|+ |µ` − ρ`|)

− 1
2N1/2

uT
k u` + op(1) (49)

The variance of the leading term in (49) results, using (38),
after some algebra in (19).
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nal components separated by blind techniques”,IEEE Signal
Processing Letters, Vol. 11, No. 2, pp.119-122, Feb. 2004.
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