Bayesian Melding in Urban Simulations

Hana Ševčíková

Center for Urban Simulation and Policy Analysis University of Washington, Seattle UTIA Dept. of Pattern Recognition, Praha www.stat.washington.edu/hana, www.urbansim.org

Joint work with Adrian Raftery and Paul Waddell

2nd International Workshop DAR, Třešť 2006

Motivation

2nd Int. Workshop DAR, Třešť, Dec 9-12, 2006 – 2 / 18

- Motivation
- Description of the computer model UrbanSim

- Motivation
- Description of the computer model UrbanSim
- Methodology of applying Bayesian melding to UrbanSim

- Motivation
- Description of the computer model UrbanSim
- Methodology of applying Bayesian melding to UrbanSim
- Results

- Motivation
- Description of the computer model UrbanSim
- Methodology of applying Bayesian melding to UrbanSim
- Results
- Summary

Target: Simulation models for land use, transportation and environmental planning

- Target: Simulation models for land use, transportation and environmental planning
- Such models are subject to uncertainty

- Target: Simulation models for land use, transportation and environmental planning
- Such models are subject to uncertainty
 - measurement errors in input data,

- Target: Simulation models for land use, transportation and environmental planning
- Such models are subject to uncertainty
 - measurement errors in input data, systematic errors,

- Target: Simulation models for land use, transportation and environmental planning
- Such models are subject to uncertainty
 - measurement errors in input data, systematic errors, model structure,

- Target: Simulation models for land use, transportation and environmental planning
- Such models are subject to uncertainty
 - measurement errors in input data, systematic errors, model structure, input parameters,

- Target: Simulation models for land use, transportation and environmental planning
- Such models are subject to uncertainty
 - measurement errors in input data, systematic errors, model structure, input parameters, stochasticity

- Target: Simulation models for land use, transportation and environmental planning
- Such models are subject to uncertainty
 - measurement errors in input data, systematic errors, model structure, input parameters, stochasticity
 - They usually provide point predictions.

- Target: Simulation models for land use, transportation and environmental planning
- Such models are subject to uncertainty
 - measurement errors in input data, systematic errors, model structure, input parameters, stochasticity
- They usually provide point predictions.
- Need for expressing uncertainty about model output quantities of policy interest.

- Target: Simulation models for land use, transportation and environmental planning
- Such models are subject to uncertainty
 - measurement errors in input data, systematic errors, model structure, input parameters, stochasticity
- They usually provide point predictions.
- Need for expressing uncertainty about model output quantities of policy interest.
- Multiple runs not satisfactory.

- Target: Simulation models for land use, transportation and environmental planning
- Such models are subject to uncertainty
 - measurement errors in input data, systematic errors, model structure, input parameters, stochasticity
- They usually provide point predictions.
- Need for expressing uncertainty about model output quantities of policy interest.
- Multiple runs not satisfactory.
- Method: Bayesian Melding

Open Platform for Urban Simulation

UrbanSim

UrbanSim

Uncertainty: 75 submodels (51 stochastic)

UrbanSim

Uncertainty:

75 submodels (51 stochastic) 972 input par. for PSRC appl.

Population change in Puget Sound area (30 years prediction)

no UGB + highway

 Θ \qquad collection of model inputs

 $\begin{array}{ll} \Theta & \mbox{ collection of model inputs} \\ q(\Theta) & \mbox{ prior probability distribution of inputs} \end{array}$

 $\begin{array}{ll} \Theta & \mbox{collection of model inputs} \\ q(\Theta) & \mbox{prior probability distribution of inputs} \\ \Phi & \mbox{collection of model outputs about which} \\ & \mbox{we have information} \end{array}$

- Θ collection of model inputs
- $q(\Theta)$ prior probability distribution of inputs
- $\Phi \qquad \mbox{collection of model outputs about which} \\ \mbox{we have information}$
- Ψ quantities of policy interest

- Θ collection of model inputs
- $q(\Theta)$ prior probability distribution of inputs
- $\Phi \qquad \mbox{collection of model outputs about which} \\ \mbox{we have information}$
- Ψ quantities of policy interest
- y observed data

- Θ collection of model inputs
- $q(\Theta)$ prior probability distribution of inputs
- $\Phi \qquad \mbox{collection of model outputs about which} \\ \mbox{we have information}$
- Ψ quantities of policy interest
- y observed data

 $\Phi = M_{\Phi}(\Theta)$

- Θ collection of model inputs
- $q(\Theta)$ prior probability distribution of inputs
- $\Phi \qquad \mbox{collection of model outputs about which} \\ \mbox{we have information}$
- Ψ quantities of policy interest
- y observed data

$$\Phi = M_{\Phi}(\Theta)$$

$$\Psi = M_{\Psi}(\Theta, \Phi) = M_{\Psi}(\Theta, M_{\Phi}(\Theta))$$

- Θ collection of model inputs
- $q(\Theta)$ prior probability distribution of inputs
- $\Phi \qquad \mbox{collection of model outputs about which} \\ \mbox{we have information}$
- Ψ quantities of policy interest
- y observed data

$$\Phi = M_{\Phi}(\Theta)$$

$$\Psi = M_{\Psi}(\Theta, \Phi) = M_{\Psi}(\Theta, M_{\Phi}(\Theta))$$
$$L(\Phi) = \mathsf{Prob}(y|\Phi)$$

- Θ collection of model inputs
- $q(\Theta)$ prior probability distribution of inputs
- $\Phi \qquad \mbox{collection of model outputs about which} \\ \mbox{we have information}$
- Ψ quantities of policy interest
- y observed data

$$\Phi = M_{\Phi}(\Theta)$$

$$\Psi = M_{\Psi}(\Theta, \Phi) = M_{\Psi}(\Theta, M_{\Phi}(\Theta))$$
$$L(\Phi) = \operatorname{Prob}(y|\Phi)$$
$$L(\Theta) = \operatorname{Prob}(y|M_{\Phi}(\Theta))$$

- Θ collection of model inputs
- $q(\Theta)$ prior probability distribution of inputs
- $\Phi \qquad \mbox{collection of model outputs about which} \\ \mbox{we have information}$
- Ψ quantities of policy interest
- y observed data

$$\Phi = M_{\Phi}(\Theta)$$

$$\Psi = M_{\Psi}(\Theta, \Phi) = M_{\Psi}(\Theta, M_{\Phi}(\Theta))$$

$$L(\Phi) = \mathsf{Prob}(y|\Phi)$$

$$L(\Theta) = \mathsf{Prob}(y|M_{\Phi}(\Theta))$$

 $\pi(\Theta) \propto q(\Theta) L(\Theta)$

- Θ collection of model inputs
- $q(\Theta)$ prior probability distribution of inputs
- $\Phi \qquad \mbox{collection of model outputs about which} \\ \mbox{we have information}$
- Ψ quantities of policy interest
- y observed data

$$\Phi = M_{\Phi}(\Theta)$$

Bayesian Melding

For a deterministic model, based on Importance Sampling:

Bayesian Melding

For a deterministic model, based on Importance Sampling:

Computing the Posterior Distribution

For a stochastic model:
For a stochastic model:

1. Draw a sample $\{\Theta_1, \ldots, \Theta_I\}$ from $q(\Theta)$.

- 1. Draw a sample $\{\Theta_1, \ldots, \Theta_I\}$ from $q(\Theta)$.
- 2. For each Θ_i , run the model J times with different seeds to obtain $\Phi_{ij}, j = 1, \ldots, J$.

- 1. Draw a sample $\{\Theta_1, \ldots, \Theta_I\}$ from $q(\Theta)$.
- 2. For each Θ_i , run the model J times with different seeds to obtain $\Phi_{ij}, j = 1, \ldots, J$.
- 3. Compute weights $w_i = L(\bar{\Phi}_i)$ where $\bar{\Phi}_i = \frac{1}{J} \sum_{j=1}^{J} \Phi_{ij}$.

- 1. Draw a sample $\{\Theta_1, \ldots, \Theta_I\}$ from $q(\Theta)$.
- 2. For each Θ_i , run the model J times with different seeds to obtain $\Phi_{ij}, j = 1, \ldots, J$.
- 3. Compute weights $w_i = L(\bar{\Phi}_i)$ where $\bar{\Phi}_i = \frac{1}{J} \sum_{j=1}^{J} \Phi_{ij}$. Result: An approximate posterior distribution of inputs with values $\{\Theta_1, \ldots, \Theta_I\}$ and probabilities proportional to $\{w_1, \ldots, w_I\}$.

- 1. Draw a sample $\{\Theta_1, \ldots, \Theta_I\}$ from $q(\Theta)$.
- 2. For each Θ_i , run the model J times with different seeds to obtain $\Phi_{ij}, j = 1, \ldots, J$.
- 3. Compute weights $w_i = L(\bar{\Phi}_i)$ where $\bar{\Phi}_i = \frac{1}{J} \sum_{j=1}^{J} \Phi_{ij}$. Result: An approximate posterior distribution of inputs with values $\{\Theta_1, \ldots, \Theta_I\}$ and probabilities proportional to $\{w_1, \ldots, w_I\}$.
- 4. Distributions of Φ and Ψ are finite mixtures:

$$\pi(\Phi) = \sum_{i=1}^{I} w_i \, p(\Phi|\Theta_i)$$

- 1. Draw a sample $\{\Theta_1, \ldots, \Theta_I\}$ from $q(\Theta)$.
- 2. For each Θ_i , run the model J times with different seeds to obtain $\Phi_{ij}, j = 1, \ldots, J$.
- 3. Compute weights $w_i = L(\bar{\Phi}_i)$ where $\bar{\Phi}_i = \frac{1}{J} \sum_{j=1}^{J} \Phi_{ij}$. Result: An approximate posterior distribution of inputs with values $\{\Theta_1, \ldots, \Theta_I\}$ and probabilities proportional to $\{w_1, \ldots, w_I\}$.
- 4. Distributions of Φ and Ψ are finite mixtures:

$$\pi(\Phi) = \sum_{i=1}^{I} w_i \, p(\Phi|\Theta_i) \qquad \pi(\Psi) = \sum_{i=1}^{I} w_i \, p(\Psi|\Theta_i)$$

Test database: Eugene Springfield, OR

- Test database: Eugene Springfield, OR
- Baseyear data available for 1980.

- Test database: Eugene Springfield, OR
- Baseyear data available for 1980.
- We have observed the number of households in each zone in 1994, y_1, \ldots, y_K (K = 295).

- Test database: Eugene Springfield, OR
- Baseyear data available for 1980.
- We have observed the number of households in each zone in 1994, y_1, \ldots, y_K (K = 295).
- Prediction for 2000, Ψ_1, \ldots, Ψ_K .

- Test database: Eugene Springfield, OR
- Baseyear data available for 1980.
- We have observed the number of households in each zone in 1994, $y_1, \ldots, y_K \ (K = 295).$
- Prediction for 2000, Ψ_1, \ldots, Ψ_K .
 - start: 1980, present: 1994, future: 2000.

We are interested in

$$w_i \propto p(y|\Theta_i) = \prod_{k=1}^{K} p(y_k|\Theta_i)$$

We are interested in

$$w_i \propto p(y|\Theta_i) = \prod_{k=1}^{K} p(y_k|\Theta_i)$$

based on

$$\Phi_{ijk} = \mu_{ik} + \delta_{ijk}$$
, where $\delta_{ijk} \stackrel{iid}{\sim} N(0, \sigma_{\delta}^2)$

We are interested in

$$w_i \propto p(y|\Theta_i) = \prod_{k=1}^{K} p(y_k|\Theta_i)$$

based on

$$\Phi_{ijk} = \mu_{ik} + \delta_{ijk}, \text{ where } \delta_{ijk} \stackrel{iid}{\sim} N(0, \sigma_{\delta}^2)$$
$$(y_k | \Theta = \Theta_i) = \mu_{ik} + a + \epsilon_{ik}, \text{ where } \epsilon_{ik} \stackrel{iid}{\sim} N(0, \sigma_i^2)$$

We are interested in

$$w_i \propto p(y|\Theta_i) = \prod_{k=1}^{K} p(y_k|\Theta_i)$$

based on

$$\Phi_{ijk} = \mu_{ik} + \delta_{ijk}, \text{ where } \delta_{ijk} \overset{iid}{\sim} N(0, \sigma_{\delta}^2)$$
$$(y_k | \Theta = \Theta_i) = \mu_{ik} + a + \epsilon_{ik}, \text{ where } \epsilon_{ik} \overset{iid}{\sim} N(0, \sigma_i^2)$$

Estimation of μ_{ik} , σ_{δ}^2 , σ_i^2 , and a done by approximate maximum likelihood.

 $y_k | \Theta_i \sim N(\hat{a} + \hat{\mu}_{ik}, v_i)$

$$y_k | \Theta_i \sim N(\hat{a} + \hat{\mu}_{ik}, v_i) \quad \text{with} \quad v_i = \hat{\sigma}_i^2 + \frac{\hat{\sigma}_{\delta}^2}{J}$$

$$y_k | \Theta_i \sim N(\hat{a} + \hat{\mu}_{ik}, v_i) \quad \text{with} \quad v_i = \hat{\sigma}_i^2 + \frac{\hat{\sigma}_{\delta}^2}{J}$$

 $w_i \propto p(y|\Theta_i) =$

$$y_k | \Theta_i \sim N(\hat{a} + \hat{\mu}_{ik}, v_i) \quad \text{with} \quad v_i = \hat{\sigma}_i^2 + \frac{\hat{\sigma}_{\delta}^2}{J}$$

$$w_i \propto p(y|\Theta_i) = \prod_{k=1}^K \frac{1}{\sqrt{2\pi v_i}} \exp\left[-\frac{1/2(y_k - \hat{a} - \hat{\mu}_{ik})^2}{v_i}\right]$$

$$y_k | \Theta_i \sim N(\hat{a} + \hat{\mu}_{ik}, v_i) \quad \text{with} \quad v_i = \hat{\sigma}_i^2 + \frac{\hat{\sigma}_{\delta}^2}{J}$$

$$w_i \propto p(y|\Theta_i) = \prod_{k=1}^{K} \frac{1}{\sqrt{2\pi v_i}} \exp\left[-\frac{1/2(y_k - \hat{a} - \hat{\mu}_{ik})^2}{v_i}\right]$$

$$\pi(\Psi_k) = \sum_{i=1}^{I} w_i N(\hat{a}b_a + \frac{1}{J} \sum_{j=1}^{J} \Psi_{ijk}, v_i b_v), \quad k = 1, \dots, K$$

parameters estimated by multinomial logistic regression or linear regression:

parameters estimated by multinomial logistic regression or linear regression:

$$MVN(\hat{\Theta}, \operatorname{diag}\left(\mathsf{SE}(\hat{\Theta})^2\right))$$

parameters estimated by multinomial logistic regression or linear regression:

$$MVN(\hat{\Theta}, \operatorname{diag}\left(\mathsf{SE}(\hat{\Theta})^2\right))$$

mobility rates r:

parameters estimated by multinomial logistic regression or linear regression:

$$MVN(\hat{\Theta}, \operatorname{diag}\left(\mathsf{SE}(\hat{\Theta})^2\right))$$

mobility rates r:

$$N(\hat{r}, (\frac{\hat{r}(1-\hat{r})}{n})^2)$$
 truncated at zero

parameters estimated by multinomial logistic regression or linear regression:

$$MVN(\hat{\Theta}, \operatorname{diag}\left(\mathsf{SE}(\hat{\Theta})^2\right))$$

mobility rates r:

$$N(\hat{r}, (\frac{\hat{r}(1-\hat{r})}{n})^2)$$
 truncated at zero

control totals:

parameters estimated by multinomial logistic regression or linear regression:

$$MVN(\hat{\Theta}, \operatorname{diag}\left(\mathsf{SE}(\hat{\Theta})^2\right))$$

mobility rates r:

 $N(\hat{r}, (\frac{\hat{r}(1-\hat{r})}{n})^2)$ truncated at zero

control totals:

 $N(\hat{c}, 20V(\hat{c})), V$ is estimated variance per year

Run the model for 100 different outputs, 2 × with different seed $\Rightarrow I = 100, J = 2$ (results confirmed with I = 1000, J = 3)

- Run the model for 100 different outputs, 2 × with different seed $\Rightarrow I = 100, J = 2$ (results confirmed with I = 1000, J = 3)
- Variances σ_{δ}^2 and σ_i^2 stabilized by applying the sqrt transform.

- Run the model for 100 different outputs, 2 × with different seed $\Rightarrow I = 100, J = 2$ (results confirmed with I = 1000, J = 3)
- Variances σ_{δ}^2 and σ_i^2 stabilized by applying the sqrt transform.
 - From the results Φ_{ijk} we estimated \hat{a} , $\hat{\sigma}_{\delta}^2$, and $\hat{\sigma}_i^2$

Run the model for 100 different outputs, 2 × with different seed $\Rightarrow I = 100$, J = 2 (results confirmed with I = 1000, J = 3)

• Variances σ_{δ}^2 and σ_i^2 stabilized by applying the sqrt transform.

From the results Φ_{ijk} we estimated \hat{a} , $\hat{\sigma}_{\delta}^2$, and $\hat{\sigma}_i^2$

Weights:

i	64	13	12	76	68	88	23	$33(\min)$
w_i	0.8058	0.0883	0.0370	0.0217	0.0122	0.0116	0.0068	$4 \cdot 10^{-45}$

Run the model for 100 different outputs, 2 × with different seed $\Rightarrow I = 100, J = 2$ (results confirmed with I = 1000, J = 3)

• Variances σ_{δ}^2 and σ_i^2 stabilized by applying the sqrt transform.

From the results Φ_{ijk} we estimated \hat{a} , $\hat{\sigma}_{\delta}^2$, and $\hat{\sigma}_i^2$

Weights:

Run the model for 100 different outputs, 2 × with different seed $\Rightarrow I = 100, J = 2$ (results confirmed with I = 1000, J = 3)

• Variances σ_{δ}^2 and σ_i^2 stabilized by applying the sqrt transform.

From the results Φ_{ijk} we estimated \hat{a} , $\hat{\sigma}_{\delta}^2$, and $\hat{\sigma}_i^2$

Weights:

Run the model for 100 different outputs, 2 × with different seed $\Rightarrow I = 100, J = 2$ (results confirmed with I = 1000, J = 3)

• Variances σ_{δ}^2 and σ_i^2 stabilized by applying the sqrt transform.

From the results Φ_{ijk} we estimated \hat{a} , $\hat{\sigma}_{\delta}^2$, and $\hat{\sigma}_i^2$

Weights:

propagation factors b_a and b_v set to $20/14 \left(\frac{2000-1980}{1994-1980}\right)$

Results

Multiple runs

Multiple runs

Bayesian melding

Multiple runs

Bayesian melding

method missed cases coverage

2nd Int. Workshop DAR, Třešť, Dec 9-12, 2006 – 15 / 18

Multiple runs

Bayesian melding

method	missed cases	coverage
multiple runs	163	0.39

2nd Int. Workshop DAR, Třešť, Dec 9-12, 2006 – 15 / 18

Multiple runs

Bayesian melding

method	missed cases	coverage
multiple runs	163	0.39
Bayesian melding	31	0.88

Bayesian melding

Bayesian melding

Bayesian melding

2nd Int. Workshop DAR, Třešť, Dec 9-12, 2006 – 16 / 18

simulation size	100×2		$100 \times 2 \qquad \qquad 1000 \times 3$	
method	missed cases	coverage	missed cases	coverage

		ľ

simulation size	100×2		1000 >	< 3
method	missed cases	coverage	missed cases	coverage
Bayesian melding	31	0.88		

simulation size	100×2		1000 >	< 3
method	missed cases	coverage	missed cases	coverage
Bayesian melding	31	0.88	29	0.89

simulation size	100×2		1000 >	< 3
method	missed cases	coverage	missed cases	coverage
Bayesian melding	31	0.88	29	0.89
multiple runs	163	0.39		

simulation size	100×2		1000 ×	< 3
method	missed cases	coverage	missed cases	coverage
Bayesian melding	31	0.88	29	0.89
multiple runs	163	0.39	165	0.38

simulation size	100×2		$1000 \times$	< 3
method	missed cases	coverage	missed cases	coverage
Bayesian melding	31	0.88~	29	-0.89
multiple runs	163	0.39	165	0.38

simulation size	100×2		1000 ×	< 3
method	missed cases	coverage	missed cases	coverage
Bayesian melding	31	0.88~	29	0.89
multiple runs	163	0.39~	165	0.38

Goal is to assess uncertainty in the output from urban simulation models.

- Goal is to assess uncertainty in the output from urban simulation models.
- Bayesian melding extended for application to a stochastic simulation model.

- Goal is to assess uncertainty in the output from urban simulation models.
- Bayesian melding extended for application to a stochastic simulation model.
- Experiment on Eugene, OR, 1980-2000:

- Goal is to assess uncertainty in the output from urban simulation models.
- Bayesian melding extended for application to a stochastic simulation model.
- Experiment on Eugene, OR, 1980-2000:
 - Simple multiple runs underestimated uncertainty.

- Goal is to assess uncertainty in the output from urban simulation models.
- Bayesian melding extended for application to a stochastic simulation model.
- Experiment on Eugene, OR, 1980-2000:
 - Simple multiple runs underestimated uncertainty.
 - Bayesian melding provided well calibrated results.