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2nd Int. Workshop DAR, Třeš̌t, Dec 9-12, 2006 – 3 / 18

■ Target: Simulation models for land use, transportation and
environmental planning

■ Such models are subject to uncertainty



Motivation
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■ Target: Simulation models for land use, transportation and
environmental planning

■ Such models are subject to uncertainty

◆ measurement errors in input data, systematic errors,
model structure, input parameters, stochasticity

■ They usually provide point predictions.

■ Need for expressing uncertainty about model output quantities of
policy interest.

■ Multiple runs not satisfactory.

■ Method: Bayesian Melding
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Uncertainty:
75 submodels (51 stochastic)
972 input par. for PSRC appl.
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Θ collection of model inputs
q(Θ) prior probability distribution of inputs
Φ collection of model outputs about which

we have information
Ψ quantities of policy interest
y observed data

Φ = MΦ(Θ)

Ψ = MΨ(Θ,Φ) = MΨ(Θ,MΦ(Θ))

L(Φ) = Prob(y|Φ)

L(Θ) = Prob(y|MΦ(Θ))

π(Θ) ∝ q(Θ)L(Θ) yields π(Ψ)
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For a deterministic model, based on Importance Sampling:
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2nd Int. Workshop DAR, Třeš̌t, Dec 9-12, 2006 – 9 / 18

For a stochastic model:

1. Draw a sample {Θ1, . . . ,ΘI} from q(Θ).

2. For each Θi, run the model J times with different seeds to obtain
Φij, j = 1, . . . , J .

3. Compute weights wi = L(Φ̄i) where Φ̄i = 1

J

∑J

j=1
Φij.

Result: An approximate posterior distribution of inputs with values
{Θ1, . . . ,ΘI} and probabilities proportional to {w1, . . . , wI}.

4. Distributions of Φ and Ψ are finite mixtures:

π(Φ) =
I

∑

i=1

wi p(Φ|Θi)



Computing the Posterior

Distribution
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For a stochastic model:

1. Draw a sample {Θ1, . . . ,ΘI} from q(Θ).

2. For each Θi, run the model J times with different seeds to obtain
Φij, j = 1, . . . , J .

3. Compute weights wi = L(Φ̄i) where Φ̄i = 1

J

∑J

j=1
Φij.

Result: An approximate posterior distribution of inputs with values
{Θ1, . . . ,ΘI} and probabilities proportional to {w1, . . . , wI}.

4. Distributions of Φ and Ψ are finite mixtures:

π(Φ) =
I

∑

i=1

wi p(Φ|Θi) π(Ψ) =
I

∑

i=1

wi p(Ψ|Θi)
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2nd Int. Workshop DAR, Třeš̌t, Dec 9-12, 2006 – 10 / 18

■ Test database: Eugene Springfield, OR



Application to UrbanSim
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■ Test database: Eugene Springfield, OR

■ Baseyear data available for 1980.

■ We have observed the number of households in each zone in 1994,
y1, . . . , yK (K = 295).

■ Prediction for 2000, Ψ1, . . . ,ΨK .

■ start: 1980, present: 1994, future: 2000.
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2nd Int. Workshop DAR, Třeš̌t, Dec 9-12, 2006 – 11 / 18

We are interested in

wi ∝ p(y|Θi) =
K
∏

k=1

p(yk|Θi)

based on

Φijk = µik + δijk, where δijk
iid∼ N(0, σ2

δ )

(yk|Θ = Θi) = µik + a + ǫik, where ǫik
iid∼ N(0, σ2

i )



Likelihood and posterior

distribution
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We are interested in

wi ∝ p(y|Θi) =
K
∏

k=1

p(yk|Θi)

based on

Φijk = µik + δijk, where δijk
iid∼ N(0, σ2

δ )

(yk|Θ = Θi) = µik + a + ǫik, where ǫik
iid∼ N(0, σ2

i )

Estimation of µik, σ2

δ , σ2

i , and a done by approximate maximum
likelihood.
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yk|Θi ∼ N(â + µ̂ik, vi) with vi = σ̂2

i +
σ̂2

δ

J

wi ∝ p(y|Θi) =
K
∏

k=1

1√
2πvi

exp

[

−1/2(yk − â − µ̂ik)
2

vi

]

π(Ψk) =
I

∑

i=1

wiN(âba +
1

J

J
∑

j=1

Ψijk, vibv) , k = 1, . . . ,K
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■ parameters estimated by multinomial logistic regression or linear
regression:

MV N(Θ̂, diag
(

SE(Θ̂)2

)

)

■ mobility rates r:

N(r̂, (
r̂(1 − r̂)

n
)2) truncated at zero

■ control totals:

N(ĉ, 20V (ĉ)), V is estimated variance per year
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■ Run the model for 100 different outputs, 2 × with different seed
⇒ I = 100, J = 2 (results confirmed with I = 1000, J = 3)

■ Variances σ2

δ and σ2

i stabilized by applying the sqrt transform.

■ From the results Φijk we estimated â, σ̂2

δ , and σ̂2

i

■ Weights:

i 64 13 12 76 68 88 23 33(min)
wi 0.8058 0.0883 0.0370 0.0217 0.0122 0.0116 0.0068 4 · 10−45

R = 0.93 R = 0.84

■ propagation factors ba and bv set to 20/14
(

2000−1980

1994−1980

)
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Multiple runs

observation ranking within the simulated values
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Multiple runs

observation ranking within the simulated values
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observation ranking within the simulated values

D
en

si
ty

0 20 40 60 80 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Bayesian melding

observation ranking within the simulated values

D
en

si
ty

0 20 40 60 80 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ranking

F
(r

an
ki

ng
)



Verification rank histogram
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Multiple runs

observation ranking within the simulated values
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method missed cases coverage missed cases coverage
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2nd Int. Workshop DAR, Třeš̌t, Dec 9-12, 2006 – 18 / 18

■ Goal is to assess uncertainty in the output from urban simulation
models.

■ Bayesian melding extended for application to a stochastic simulation
model.

■ Experiment on Eugene, OR, 1980-2000:

◆ Simple multiple runs underestimated uncertainty.



Summary
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■ Goal is to assess uncertainty in the output from urban simulation
models.

■ Bayesian melding extended for application to a stochastic simulation
model.

■ Experiment on Eugene, OR, 1980-2000:

◆ Simple multiple runs underestimated uncertainty.

◆ Bayesian melding provided well calibrated results.


	red Outline
	red Motivation
	red Open Platform for Urban Simulation
	red UrbanSim
	red Population change in Puget Sound area (30 years prediction)
	red Bayesian Melding notation
	red Bayesian Melding
	red Computing the Posterior Distribution
	red Application to UrbanSim
	red Likelihood and posterior distribution
	red Likelihood and posterior distribution (cont.)
	red Prior on inputs
	red Simulation
	red Results
	red Verification rank histogram
	red Simulation size
	red Summary

